d29e965ea96e190dbb13c78534983c535e15d3cb
[ar1516.git] / a2 / 3.tex
1 \section{Problem 3}
2 \emph{The goal of this problem is to exploit the power of the recom mended
3 tools rather than elaborating the questions by hand.}
4 \begin{enumerate}[a.]
5 \item\emph{In mathematics, a \emph{group} is defined to be a set $G$
6 with an element $I\in G$, a binary operator $∗$ and a unary
7 operator inv satisfying.
8 $$x*(y*z)=(x*y)*z, x*I=x\text{ and }x*inv(x)=I,$$
9 for all $x,y,z\in G$. Determine whether in every group each of
10 the four properties
11 $$I*x=x, inv(inv(x))=x, inv(x)*x=I\text{ and } x*y=y*x$$
12 holds for all $x,y\in G$. If a property does not hold,
13 determine the size of the smallest finite group for which it
14 does not hold.}
15 \item\emph{A term rewrite sysetm consists of the single rule
16 $$a(x,a(y,a(z,u)))\rightarrow a(y,a(z,a(x,u))),$$
17 in which $a$ is a binary symbol and $x,y,z,u$ are variables.
18 Moreover, there are constants $b,c,d,e,f,g$. Determine whether
19 $c$ and $d$ may swapped in $a(b,a(c,a(d,a(e,a(f,a(b,g))))))$ by
20 rewriting, that is, $a(b,a(c,a(d,a(e,a(f,a(b,g))))))$ rewrites
21 in a finite number of steps to
22 $a(b,a(d,a(c,a(e,a(f,a(b,g))))))$.}\\
23
24 When inspecting the rewrite rule more closely we see that the
25 entire structure of the formula stays the same and that only
26 the variables $x,y,z$ are changed in order. Because of this we
27 can simplify the rule to
28 $$x,y,z\rightarrow y,z,x$$
29 and we can simplify the question to asking whether
30 $b,c,d,e,f,b$ rewrites to $b,d,c,e,f,b$.\\
31
32 Because of this the nature of the rewritten problem becomes
33 solvable by a symbolic model checker. We define for every
34 position $i\in\{0\ldots5\}$ a variable $p_i$ of the enumeration
35 type $\{b,c,d,e,f\}$. To keep track of the moves we define a
36 move $m\in\{0\ldots4\}$ variable that indicates the location of
37 the first variable or $0$ for the initial value. The initial
38 values of the position variables is
39 $$p_0=b,p_1=c,p_2=d,p_3=e,p_4=f,p_5=b$$
40 There are four possible transitions and they are put in a
41 disjuction and shown below:
42 $$\begin{array}{rl}
43 next(m)=1 \wedge & next(p_0)=p_1 \wedge next(p_1)=p_2
44 \wedge next(p_2)=p_0 \wedge\\
45 & next(p_3)=p_3 \wedge next(p_4)=p_4 \wedge next(p_5)=p_5\\
46
47 next(m)=2 \wedge & next(p_0)=p_0 \wedge next(p_1)=p_2
48 \wedge next(p_2)=p_3 \wedge\\
49 & next(p_3)=p_1 \wedge next(p_4)=p_4 \wedge next(p_5)=p_5\\
50
51 next(m)=3 \wedge & next(p_0)=p_0 \wedge next(p_1)=p_1
52 \wedge next(p_2)=p_3 \wedge\\
53 & next(p_3)=p_4 \wedge next(p_4)=p_2 \wedge next(p_5)=p_5\\
54 next(m)=4 \wedge & next(p_0)=p_0 \wedge next(p_1)=p_1
55 \wedge next(p_2)=p_2 \wedge\\
56 & next(p_3)=p_4 \wedge next(p_4)=p_5 \wedge next(p_5)=p_3
57 \end{array}$$
58
59 The LTL logic goal state would then be
60 $$\mathcal{G} \neg(p_0=b\wedge p_1=d\wedge p_2=c\wedge
61 p_3=e\wedge p_4=f\wedge p_5=b)$$
62
63 The solution described below is found by
64 \textsc{NuSMV} within $0.01$ seconds. Overline triples are the
65 ones changed in the next.
66 $$\begin{array}{rl}
67 \overline{b,c,d},e,f,b
68 & \rightarrow c,d,\overline{b,e,f},b\\
69 & \rightarrow c,d,e,\overline{f,b,b}\\
70 & \rightarrow c,d,e,\overline{b,b,f}\\
71 & \rightarrow c,\overline{d,e,b},f,b\\
72 & \rightarrow c,\overline{e,b,d},f,b\\
73 & \rightarrow \overline{c,b,d},e,f,b\\
74 & \rightarrow b,\overline{d,c,e},f,b\\
75 & \rightarrow b,c,e,d,f,b\\
76 \end{array}$$
77
78
79
80 \end{enumerate}