Advanced Programming (100032)
Shallow Embedding of a DSL for Sets

Assignment 8

Preparation

The skeleton comes with a project file, you can use if you work on the console. In case
you use the IDE, please create a new project and choose the iTasks environment.

A DSL for Sets

In the previous exercise we implemented a DSL for set manipulations. This set-language
was composed of expressions of type Expression.

:: Expression
= New
| Insert Element Set
| Delete Element Set
| Variable Ident
| Union Set Set
| Difference Set Set
| Intersection Set Set
| Integer Int
| Size Set
| Oper Element Op Element
|

(=.) infixl 2 Ident Expression

:: Op = +. | -. | *
11 Set :== Expression

:: Element :==Expression
: Ident :==String

A limitation of the approach is that sets and elements are both expressions of the same type
Expression. Hence the type system of the host language Clean cannot prevent type errors
in the DSL, like in Insert New (Oper New +. (Union (Integer 7) (Size (Integer 9)))). Part of
these problems can be avoided by introducing two separate types of expressions: a type
Element for integer expressions and a type Set for set expressions.

:: Element
= VariableE Ident
| Integer Int
| Size Set
| Oper Element Op Element
| (=.) infix] 2 Ident Expression
2 Op=+. | -. | *.
11 Set
= New
| Insert Element Set

| Delete Element Set

| VariableS Ident

| Union Set Set

| Difference Set Set

| Intersection Set Set

| (=..) infixl 2 Ident Expression

:: Ident :==String

A drawback of such an approach is that reading a variable from memory and assigning
a variable have to be duplicated since they have to work for integers as well as sets of
integers. So there are VariableE and =. for integers and VariableS and =.. for sets. We
however want to overload Variable and =. to work for both: integers and sets of integers.

In this assignment we do not use any of such data-type, but instead model
the language as a set of functions!

1 State

Use a monad type Sem a very similar to the one used in the previous assignment. (It is
not forbidden to reuse code from the previous assignment.) Note, that there can still be
runtime errors, as variables can be uninitialised or the stored value can be of the wrong
type. There are several choices for the state used here. Some are: Map Ident Dynamic,
(Map Ident Int, Map Ident [Int]) and Map Ident Val, where :: Val=1I Int | S Ints. Choose
one of those types (or another one) to represent the state and motivate your
choice.

2 Integer Expressions

Instead of defining the semantics of all constructs with a value of type Sem Val, we now
want to use Clean’s type system to distinct between integer and set expressions. Use the
following type synonyms:

:: Element :==Sem Int
:: Set :==Sem [Int]

Define functions with result type Element for all alternatives of the Element type
above. For example:

integer :: Element
size :: Set — Element

It is not necessary to define an Oper that is parametrised by the operator to be applied.
You can directly implement instances of the operators +, - and * for Element. Write an eval
function to compute the result of Sem a expressions and test exprl — expr3.

3 Set Expressions

Define functions for the set manipulations in this DSL. Note that you should use
the same variable and =. functions for integers and sets. Hint: you can use the delete
function from Data.List, but as there will be a name-clash with the delete function you
will use for your DSL, use it in a qualified way: ’List’.delete. The same holds for union,
difference, intersect.

Test expr4 and also adapt it to test the other set operations.

4 Statements

In order to make a more serious set manipulation language we add the following language
constructs to our DSL.

(:.) infixl 1 :: (Sem a) (Sem b) — Semb // sequential composition
E=) infix 4 :: (Sem a) (Sem a) — Sem Bool // equality

(<.) infix 4 :: (Sem a) (Sem a) — Sem Bool // less than

IF :: (Sem Bool) THEN (Sem a) ELSE (Sem a) — Sem a // conditional expression
WHILE :: (Sem Bool) DO (Sem a) — Sem Int // repetition

:: THEN = THEN

:: ELSE = ELSE

:: D0 =D0

Implement the functions above. Most likely you need some class constraints to these

DSL-constructs. It is not necessary that the Booleans can be stored, but depending on

your choice of how you defined the state, this extension may be very straightforward.
This allows set-programs like:

expr =
z =. integer 7 :.
X =. new :.
x =. insert (variable z) (variable x) :.
y =. union (variable x) (variable x) :.
WHILE (size (variable x) <. integer 5) DO

(x =. insert (size (variable x)) (variable x)) :.
z =. difference (variable x) (intersection (variable x) (insert (variable z) new))

Also test the other example programs given in the skeleton. Since this program is a
function instead of a data type, it is not possible to make a simulator for our DSL using
iTasks in that same simple way as in previous assignment.

5 Printing

Implement another view on expressions, which is a string representing it. Just
choose some syntax you find suited. Extend the type to represent the semantics of the
language, as in the first part of the lecture. Finally, you have to provide a function
print :: (Sem a) — String.

You do not have to spend too much time on a perfect printing function. It is okay if
there are superfluous brackets and the indentation is not perfect in all cases.

Deadline

The deadline for this assignment is November 16, 13:30h.

