.
[phd-thesis.git] / appx / clean_for_haskell_programmers.tex
1 \documentclass[../thesis.tex]{subfiles}
2
3 \begin{document}
4
5 \ifSubfilesClassLoaded{
6 \pagenumbering{arabic}
7 }{
8 }
9
10 \chapter{\texorpdfstring{\glsentrytext{CLEAN}}{Clean} for \texorpdfstring{\glsentrytext{HASKELL}}{Haskell} Programmers}%
11 \label{chp:clean_for_haskell_programmers}
12
13 This note is meant to give people who are familiar with the \gls{FP} language \gls{HASKELL} a consise overview of \gls{CLEAN} language elements and how they differ from \gls{HASKELL}.
14 The goal is to support the reader when reading \gls{CLEAN} code.
15 \Cref{tbl:syn_clean_haskell} shows frequently occuring \gls{CLEAN} language elements on the left side and their \gls{HASKELL} equivalent on the right side.
16 Obviously, this summary is not exhaustive.
17 Some \gls{CLEAN} language elements that are not easily translatable to \gls{HASKELL} and thus do not occur in the summary following below.
18 We hope you enjoy these notes and that it aids you in reading \gls{CLEAN} programs.
19
20 While \gls{CLEAN} and \gls{HASKELL} were both conceived around 1987 and have similar syntax, there are some subtle differences in syntax and functionality.
21 This section describes some of the history of \gls{CLEAN} and provides a crash course in \gls{CLEAN} pecularities written for \gls{HASKELL} programmers.
22 It is based on the
23
24 \Gls{CLEAN}---acronym for Clean \acrlong{LEAN}~\citep{barendregt_towards_1987}---, was originally designed as a \gls{GRS} core language but quickly served as an intermediate language for other functional languages~\citep{brus_clean_1987}.
25 In the early days it has also been called \emph{Concurrent} \gls{CLEAN}~\citep{nocker_concurrent_1991} but these days the language has no support for this anymore.
26 Fast forward thirty years, \gls{CLEAN} is now a robust language with state-of-the-art features and is actually used in industry as well as academia---albeit in select areas of the world~\citep{plasmeijer_clean_2021}.
27
28 Initially, when it was used mostly as an intermediate language, it had a fairly spartan syntax.
29 However, over the years, the syntax got friendlier and it currently it looks a lot like \gls{HASKELL}.
30 In the past, a \emph{double-edged} fronted even existed that allowed \gls{CLEAN} to be extended with \gls{HASKELL98} syntax and vice versa, however this frontend is no longer maintained~\citep{groningen_exchanging_2010}.
31 This chapter therefore gives a brief syntactical and functional comparison, a complete specification of the \gls{CLEAN} language can be found in the latest language report~\citep{plasmeijer_clean_2021}.
32 Many of this is based on work by Achten although that was based on \gls{CLEAN} 2.1 and \gls{HASKELL98}~\citep{achten_clean_2007}.
33 When \gls{HASKELL} is mentioned we actually mean \gls{GHC}'s \gls{HASKELL}\footnote{If an extension is enabled, a footnote is added stating that \GHCmod{SomeExtension} is required.} this is denoted and by \gls{CLEAN} we mean \gls{CLEAN} 3.1's compiler with the \gls{ITASK} extensions.
34
35 \section{Features}
36 \subsection{Modules}
37 \Gls{CLEAN} has separate implementation and definition modules.
38 The definition module contains the class definitions, instances, function types and type definitions (possibly abstract).
39 Implementation modules contain the function implementations as well.
40 This means that only what is defined in the definition module is exported in \gls{CLEAN}.
41 This differs greatly from \gls{HASKELL}, as there is only a module file there.
42 Choosing what is exported in \gls{HASKELL} is done using the \haskellinline{module Mod(...)} syntax.
43
44 \subsection{Strictness}
45 In \gls{CLEAN}, by default, all expressions are evaluated lazily.
46 Types can be annotated with a strictness attributes (\cleaninline{!}), resulting in the values being evaluated to head-normal form before the function is entered.
47 In \gls{HASKELL}, in patterns, strictness can be enforced using \haskellinline{!}\requiresGHCmod{BangPatterns}.
48 Within functions the strict let (\cleaninline{#!}) can be used to force evaluate an expression, in \gls{HASKELL} \haskellinline{seq} or \haskellinline{\$!} is used for this.
49
50 \subsection{Uniqueness typing}
51 Types in \gls{CLEAN} may be \emph{unique}, which means that they may not be shared~\citep{barendsen_uniqueness_1996}.
52 The uniqueness type system allows the compiler to generate efficient code because unique data structures can be destructively updated.
53 Furthermore, uniqueness typing serves as a model for side effects as well~\citep{achten_high_1993,achten_ins_1995}.
54 \Gls{CLEAN} uses the \emph{world-as-value} paradigm where \cleaninline{World} represents the external environment and is always unique~\citep{backus_introduction_1990}.
55 A program with side effects is characterised by a \cleaninline{Start :: *World -> *World} start function.
56 In \gls{HASKELL}, interaction with the world is done using the \haskellinline{IO} monad~\citep{peyton_jones_imperative_1993}.
57 The \haskellinline{IO} monad could very well be---and actually is---implemented in \gls{CLEAN} using a state monad with the \cleaninline{World} as a state.
58 Besides marking types as unique, it is also possible to mark them with uniqueness attributes variables \cleaninline{u:} and define constraints on them.
59 For example, to make sure that an argument of a function is at least as unique as another argument.
60 Finally, using \cleaninline{.} (a dot), it is possible to state that several variables are equally unique.
61 Uniqueness is propagated automatically in function types but must be marked manually in data types.
62 Examples can be seen in \cref{lst:unique_examples}.
63
64 \begin{lstClean}[label={lst:unique_examples},caption={Examples of uniqueness annotations.}]
65 f :: *a -> *a // f works on unique values only
66 f :: .a -> .a // f works on unique and non-unique values
67 f :: v:a u:b -> u:b, [v<=u] // f works when a is less unique than b
68 \end{lstClean}
69 %f :: (Int, *World) -> *World // The uniqueness is propagated automatically (i.e. *(Int, *World)))
70 %:: T = T *(Int, *World) // Writing :: T = T (Int, *World) won't work
71 %:: T = T (Int -> *(*World -> *World)) // Writing :: T = T (Int *World -> *World) won't work
72
73 \subsection{Expressions}
74 Patterns in \gls{CLEAN} can be used as predicates as well~\citep[\citesection{3.4.3}]{plasmeijer_clean_2021}.
75 Using the \cleaninline{=:} operator, a value can be tested against a pattern.
76 Variable names are not allowed but wildcard patterns \cleaninline{\_} are.
77
78 \begin{lstClean}[label={lst:matches_pattern_expression},caption={Examples of \emph{matches pattern} expressions.}]
79 isNil :: [a] -> Bool
80 isNil l = l=:[]
81
82 :: T = A Int | B Bool
83
84 ifAB :: T a a -> a
85 ifAB x ifa ifb = if (x =: (A _)) ifa ifb
86 \end{lstClean}
87
88 Due to the nature of uniqueness typing, many functions in \gls{CLEAN} are state transition functions with possibly unique states.
89 The \emph{let before} construct allows the programmer to specify sequential actions without having to invent unique names for the different versions of the state.
90 \Cref{lst:let_before} shows an example of the usage of the \emph{let before} construct (adapted from~\citep[\citesection{3.5.4}]{plasmeijer_clean_2021}).
91
92 \begin{lstClean}[label={lst:let_before},caption={Let before expression example.}]
93 readChars :: *File -> ([Char], *File)
94 readChars file
95 # (ok, char, file) = freadc file
96 | not ok = ([], file)
97 # (chars, file) = readChars file
98 = ([char:chars], file)
99 \end{lstClean}
100
101 \subsection{Generics}
102 Polytypic functions~\citep{jeuring_polytypic_1996}---also known as generic or kind-indexed fuctions---are built into \gls{CLEAN}~\citep[\citesection{7.1}]{plasmeijer_clean_2021}\citep{alimarine_generic_2005} whereas in \gls{HASKELL} they are implemented as a library~\citep[\citesection{6.19.1}]{ghc_team_ghc_2021}.
103 The implementation of generics in \gls{CLEAN} is very similar to that of Generic H$\forall$skell~\citep{hinze_generic_2003}.
104 %When calling a generic function, the kind must always be specified and depending on the kind, the function may require more arguments.
105
106 For example, defining a generic equality is done as in \cref{lst:generic_eq}.
107 \lstinputlisting[language=Clean,firstline=4,label={lst:generic_eq},caption={Generic equality function in \gls{CLEAN}.}.]{lst/generic_eq.icl}
108
109 Metadata about the types is available using the \cleaninline{of} syntax that gives the function access to metadata records, as can be seen in \cref{lst:generic_print} showing a generic print function. This abundance of metadata allows for very complex generic functions that near the expression level of template metaprogramming\ifSubfilesClassLoaded{}{ (See \cref{chp:first-class_datatypes})}.
110 \lstinputlisting[language=Clean,firstline=4,label={lst:generic_print},caption={Generic print function in \gls{CLEAN}.}]{lst/generic_print.icl}
111
112 \subsection{\texorpdfstring{\glsentrytext{GADT}}{GADT}s}
113 \Glspl{GADT} are enriched data types that allow the type instantiation of the constructor to be explicitly defined~\citep{cheney_first-class_2003,hinze_fun_2003}.
114 While \glspl{GADT} are not natively supported in \gls{CLEAN}, they can be simulated using embedding-projection pairs or equivalence types~\citep[\citesection{2.2}]{cheney_lightweight_2002}.
115 To illustrate this, \cref{lst:gadt_clean} shows an example \gls{GADT} that would be implemented in \gls{HASKELL} as done in \cref{lst:gadt_haskell}\requiresGHCmod{GADTs}.
116
117 \lstinputlisting[language=Clean,firstline=4,lastline=24,label={lst:gadt_clean},caption={Expression \gls{GADT} using equivalence types in \gls{CLEAN}.}]{lst/expr_gadt.icl}
118 \lstinputlisting[language={[Regular]Haskell},firstline=4,label={lst:gadt_haskell},caption={Expression \gls{GADT} in \gls{HASKELL}.}]{lst/expr_gadt.hs}
119
120 \clearpage
121 \section{Syntax}
122 \lstset{basicstyle=\tt\footnotesize}
123 \begin{longtable}{p{.45\linewidth}p{.5\linewidth}}
124 \caption[]{Syntactical differences between \gls{CLEAN} and \gls{HASKELL}.}%
125 \label{tbl:syn_clean_haskell}\\
126 \toprule
127 \gls{CLEAN} & \gls{HASKELL}\\
128 \midrule
129 \endfirsthead%
130 \caption[]{(continued)}\\
131 \toprule
132 \gls{CLEAN} & \gls{HASKELL}\\
133 \midrule
134 \endhead%
135
136 \midrule
137 \multicolumn{2}{c}{Comments}\\
138 \midrule
139 \cleaninline{// single line} & \haskellinline{-- single line}\\
140 \cleaninline{/* multi line /* nested */ */} & \haskellinline{\{- multi line \{- nested -\} \}}\\
141
142 \midrule
143 \multicolumn{2}{c}{Imports}\\
144 \midrule
145 \cleaninline{import Mod => qualified f1, :: t} & \haskellinline{import qualified Mod (f1, t)}\\
146 & \haskellinline{import Mod hiding (f1, t)}\\
147 \cleaninline{/* multi line /* nested */ */} & \haskellinline{\{- multi line \{- nested -\} \}}\\
148
149 \midrule
150 \multicolumn{2}{c}{Basic types}\\
151 \midrule
152 \cleaninline{42 :: Int} & \haskellinline{42 :: Int}\\
153 \cleaninline{True :: Bool} & \haskellinline{True :: Bool}\\
154 \cleaninline{toInteger 42 :: Integer} & \haskellinline{42 :: Integer}\\
155 \cleaninline{38.0 :: Real} & \haskellinline{38.0 :: Float -- or Double}\\
156 \cleaninline{\"Hello\" +++ \"World\" :: String}\footnote{Strings are represented as unboxed character arrays.}
157 & \haskellinline{\"Hello\" ++ \"World\" :: String}\footnote{Strings are represented as lists of characters by default but may be overloaded as well if \GHCmod{OverloadedStrings} is enabled.}\\
158 \cleaninline{['Hello'] :: [Char]} & \haskellinline{\"Hello\" :: String}\\
159 \cleaninline{?t} & \haskellinline{Maybe t}\\
160 \cleaninline{(?None, ?Just e)} & \haskellinline{(Nothing, Just e)}\\
161
162 \midrule
163 \multicolumn{2}{c}{Type definitions}\\
164 \midrule
165 \cleaninline{:: T a0 ... :== t} & \haskellinline{type T a0 ... = t}\\
166 \cleaninline{:: T a0 ... } & \haskellinline{data T a1 ...}\\
167 \quad\cleaninline{= C1 f0 ... fn \| ... \| Cn f0 ... fn} & \quad\haskellinline{= C1 f0 ... fn \| ... \| Cn f0 ... fn}\\
168 \cleaninline{:: T a0 ...} & \haskellinline{data T a0 ...}\\
169 \quad\cleaninline{= \{ f0 :: t0, ..., fn :: tn \} } & \quad\haskellinline{= T \{ f0 :: t0, ..., fn :: tn \} }\\
170 \cleaninline{:: T a0 ... =: t} & \haskellinline{newtype T a0 ... = t}\\
171 \cleaninline{:: T = E.t: Box t \& C t} & \haskellinline{data T = forall t.C t => Box t}\requiresGHCmod{ExistentialQuantification}\\
172
173 \midrule
174 \multicolumn{2}{c}{Function types}\\
175 \midrule
176 \cleaninline{f0 :: a0 a1 ... -> t}
177 & \haskellinline{f0 :: (c0 v0, c1 v1, c2 v2) =>}\\
178 \quad\cleaninline{\| c0 v0 \& c1, c2 v1}
179 & \quad\haskellinline{a0 -> a1 ... -> t}\\
180 \cleaninline{(+) infixl 6 :: Int Int -> Int} & \haskellinline{infixl 6 +}\\
181 & \haskellinline{(+) :: Int -> Int -> Int}\\
182 \cleaninline{qid :: (A.a: a -> a) -> (Bool, Int)}
183 & \haskellinline{qid :: (forall a: a -> a) -> (Bool, Int)}\requiresGHCmod{RankNTypes}\\
184 \cleaninline{qid id = (id True, id 42)} &
185 \haskellinline{qid id = (id True, id 42)}\\
186
187 \midrule
188 \multicolumn{2}{c}{Type classes}\\
189 \midrule
190 \cleaninline{class f a :: t} & \haskellinline{class f a where f :: t}\\
191 \cleaninline{class C a \| C0, ... , Cn a}\footnote{In contrast to the \gls{HASKELL} variant, this does not require an instance.} & \haskellinline{class (C0 a, ..., Cn, a) => C a}\\
192 \cleaninline{class C s ~m where ...} & \haskellinline{class C s m \| m -> s where ...}\requiresGHCmod{MultiParamTypeClasses}\\
193 \cleaninline{instance C t \| C0, ..., Cn a} & \haskellinline{instance (C0 a, ..., Cn a) => C t}\\
194 \quad\cleaninline{where ...} & \quad\haskellinline{where ...}\\
195
196 \midrule
197 \multicolumn{2}{c}{As pattern}\\
198 \midrule
199 \cleaninline{x=:p} & \haskellinline{x@p}\\
200
201 \midrule
202 \multicolumn{2}{c}{Lists}\\
203 \midrule
204 \cleaninline{[1,2,3]} & \haskellinline{[1,2,3]}\\
205 \cleaninline{[x:xs]} & \haskellinline{x:xs}\\
206 \cleaninline{[e \\\\ e <- xs \| p e]} & \haskellinline{[e \| e <- xs, p e]}\\
207 \cleaninline{[l \\\\ l <- xs, r <- ys]} & \haskellinline{[l \| l <- xs, r <- ys]}\\
208 \cleaninline{[(l, r) \\\\ l <- xs \& r <- ys]} & \haskellinline{[(l, r) \| (l, r) <- zip xs ys]}\\
209 & or \haskellinline{[(l, r) \| l <- xs \| r <- ys]}\requiresGHCmod{ParallelListComp}\\
210
211 \midrule
212 \multicolumn{2}{c}{Lambda expressions}\\
213 \midrule
214 \cleaninline{\\a0 a1 ...->e} or \cleaninline{\\....e} or \cleaninline{\\...=e} & \haskellinline{\\a0 a1 ...->e}\\
215
216 \midrule
217 \multicolumn{2}{c}{Case distinction}\\
218 \midrule
219 \cleaninline{if p e0 e1} & \haskellinline{if p then e0 else e1}\\
220 \cleaninline{case e of p0 -> e0; ...} & \haskellinline{case e of p0 -> e0; ...}\\
221 \quad or \cleaninline{case e of p0 = e0; ...}\\
222 \cleaninline{f p0 ... pn} & \haskellinline{f p0 ... pn}\\
223 \quad\cleaninline{\| c = t} & \quad\haskellinline{\| c = t}\\
224 \quad\cleaninline{\| otherwise = t} or \cleaninline{= t} & \quad\haskellinline{\| otherwise = t}\\
225
226 \midrule
227 \multicolumn{2}{c}{Record expressions}\\
228 \midrule
229 \cleaninline{:: R = \{ f :: t \}} & \haskellinline{data R = R \{ f :: t \}}\\
230 \cleaninline{r = \{ f = e \}} & \haskellinline{r = R \{ f = e \}}\\
231 \cleaninline{r.f} & \haskellinline{f r}\\
232 & \quad or \haskellinline{r.f}\requiresGHCmod[Requires \gls{GHC} version 9.2.0 or higher]{OverloadedRecordDot}\\
233 \cleaninline{r!f}\footnote{This operator allows for field selection from unique records.} & \haskellinline{(\\v->(f v, v)) r}\\
234 \cleaninline{\{r \& f = e \}} & \haskellinline{r \{ f = e \}}\\
235
236 \midrule
237 \multicolumn{2}{c}{Record patterns}\\
238 \midrule
239 \cleaninline{:: R0 = \{ f0 :: R1 \}} & \haskellinline{data R0 = R0 \{ f0 :: R1 \}}\\
240 \cleaninline{:: R1 = \{ f1 :: t \}} & \haskellinline{data R1 = R1 \{ f1 :: t \}}\\
241 \cleaninline{g \{ f0 \} = e f0} & \haskellinline{g (R0 \{f0=x\}) = e x}\\
242 & or \haskellinline{g (R0 \{f0\}) = e f0}\requiresGHCmod{RecordPuns}\\
243 \cleaninline{g \{ f0 = \{f1\} \} = e f1} & \haskellinline{g (R0 \{f0=R1 \{f1=x\}\}) = e x}\\
244
245 \midrule
246 \multicolumn{2}{c}{Arrays}\\
247 \midrule
248 \cleaninline{:: A :== \{t\}} & \haskellinline{type A = Array Int t}\\
249 \cleaninline{a = \{v0, ..., vn\}} & \haskellinline{a = array (0, n+1)}\\
250 & \quad\haskellinline{[(0, v0), ..., (n, vn)]}\\
251 \cleaninline{a = \{e \\\\ p <-: a\}} & \haskellinline{a = array (0, length a-1)}\\
252 & \quad\haskellinline{[e \| (i, a) <- [0..] `zip` a]}\\
253 \cleaninline{a.[i]} & \haskellinline{a!i}\\
254 \cleaninline{a![i]}\footnote{This operator allows for field selection from unique arrays.} & \haskellinline{(\\v->(v!i, v)) a}\\
255 \cleaninline{\{ a \& [i] = e\}} & \haskellinline{a//[(i, e)]}\\
256
257 \midrule
258 \multicolumn{2}{c}{Dynamics}\\
259 \midrule
260 \cleaninline{f :: a -> Dynamic \| TC a} & \haskellinline{f :: Typeable a => a -> Dynamic}\\
261 \cleaninline{f e = dynamic e} & \haskellinline{f e = toDyn (e)}\\
262 \cleaninline{g :: Dynamic -> t} & \haskellinline{g :: Dynamic -> t}\\
263 \cleaninline{g (e :: t) = e0} & \haskellinline{g d = case fromDynamic d}\\
264 \cleaninline{g e = e1} & \quad\haskellinline{Just e -> e0}\\
265 & \quad\haskellinline{Nothing -> e1}\\
266
267 \bottomrule
268 \end{longtable}
269
270 \input{subfilepostamble}
271 \end{document}