Automated reasoning Assignment 1

Mart Lubbers (s4109503)
October 19, 2015

1 Problem 1

Siz trucks have to deliver pallets of obscure building blocks to a magic factory. Ewvery truck has
a capacity of 7800 kg and can carry at most eight pallets. In total, the following has to be delivered:

o Four pallets of nuzzles, each of weight 700 kg.

o A number of pallets of prittles, each of weight 800 kg.
o Fight pallets of skipples, each of weight 1000 kg.

o Ten pallets of crottles, each of weight 1500 kg.

o Five pallets of dupples, each of weight 100 kg.

Prittles and crottles are an explosive combination: they are not allowed to be put in the same
truck.

Skipples need to be cooled; only two of the six trucks have facility for cooling skipples. Dupples are
very valuable; to distribute the risk of loss no two pallets of dupples may be in the same truck.
Investigate what is the mazimum number of pallets of prittles that can be delivered, and show how
for that number all pallets may be divided over the six trucks.

1.1 Formal definition

For every truck ¢; for ¢ € [1...6] in combination with every nuzzle n, prittle p, skipple s, crottle
¢ and dupple d we declare a variable that holds the amount of that type of building block. For
truck 1 we thus have the variables: t1n,t1p,t1s,t1¢,t1d.

To lay a contraint on the weight we declare for every truck the following rule.

T
/\ (t;n % 700 + t;p * 800 + t;s * 1000 + ¢;¢ * 1500 + ¢;d x 100 < 7800)
i=1

To limit the maximum number of pallets in a truck we define.

T

/\ Z tip|] <8

i=1 pE{n,p,s,c,d}

To limit the minimum number of pallets in a truck we define.

T
/\ /\ tip >0

i=1pe{n,p,s,c,d}

[SA B VR R

To describe the number of pallets available we define for every type of pallet a variable that
describes the number available if there is a limited number available.

num, = 4 AN nums = 8 A num, = 10 Anumg =5

To be sure the materials are all delivered we define.

T
/\ ((Z tip> = nump>
pe{n,s,c,d} i=1

The first constraint is that prittles and crottles can not be in the same truck. This is easily

described with. .

/\(tip:()\/tiC:O)

i=1

Skipples need to be cooled and only two trucks have cooling. Therefore we specify.

T
/\ tiS =0
i=3

Dupples can only be in a truck with a maximum of two.

T
/\ tid <1
=1

We can tie this together by putting A symbols between all of the formulas.

1.2 SMT format solution

The formula is easily convertable to SMT format and is listed in Listing 3. A final condition is
added with a special variable named <REP> that we increment to find the maximum amount of
prittles transportable. When running the script in Listing 1 the loop terminates after it echoed
20 meaning that the maximum number of prittles is 20. This iterative solution takes less then 0.1
seconds to calculate.

Listing 1: Iteratively find the largest solution

i=1
while [$(sed ”s/<REP>/8$i/g” al.smt | yices—smt) = ”sat” |
do
echo $((++1));
done

1.3 Solution

Truck | Nuzzles Prittles Skipples Crottles Dupples | Weight | Pallets
1 0 0 4 2 1 7100 7

2 0 3 4 0 1 6500 8

3 0 8 0 0 0 6400 7

4 0 7 0 0 1 5700 8

5 0 0 0 5 1 7600 6

6 4 0 0 3 1 7400 8

total | 4 18 8 10 5

(AT NV R C R

2 Problem 4
Seven integer variables ai;as;as;aq;as;ag;ar are given, for which the initial value of a; is i for
i=1,...,7. The following steps are defined: choose i with 1 < i <7 and execute

Aj = Gj—1 + Qit1

that is, a; gets the sum of the values of its neighbors and all other values remain unchanged. Show
how it is possible that after a number of steps a number of steps a number > 50 occurs at least
twice in ay;as;as; aq; as; ag; G-

2.1 Formal definition

Precondition Say we have I a’s denoted as a; and we have N iterations. i,a; means variable
a; in iteration n. Iteration O is seen as the starting point and can be expressed as in Equation 1

(alzl)/\(ajzl)/\ /\(ioai:i) (1)

Program Every iteration we can choose to do a; = a;—1 + a;41 or nothing. To keep track of
what we do we keep a counter ¢, for every n that holds either the 7 if an a; is chosen or 0 if no
action has been taken. Therefore for all iterations we can express this as in Equation 2

I-1 I-1

N I—-1
/\ \/ (Ci:k:)/\(inaj:in,laj,l+in,1aj+1)/\ /\ ((j;ék:)/\(inaj:in,laj)) V /\ (inak:in,lak)/\(ci:())

n=1 \ k=2 j=2 k=2
(2)

Postcondition Finally the post condition can be described as a; > 50 and some other a; =
a; N i # j for all 7. This is expressed in Equation 3

I—-1 I-1
V | Givaw >=50) A [\/ (inar = inaj) A (k # j) (3)
k=2 Jj=2

Total To tie this all together we just put A in between and that results in:

precondition A program A postcondition

2.2 SMT format solution

Naming the precondition, program and postcondition respectively p1, p2, p3 we can easily convert it
to a SMT format. The converting is tedious and takes a lot of time and therefore an automatization
script has been created that is visible in the appendices in Listing 4. The script automatically
assumes 11 iterations and 7 a; variables but via command line arguments this is easily extendable.
To determine the minimal number of iterations a simple bash script can be made that iteratively
increases the iterations as shown in Listing 2. The shortest solution with length 11 is found in
around 30 seconds. Finding the smallest solution length incrementally takes around 75 seconds.

Listing 2: Iteratively find the shortest solution

i=1
while [”$(python ad.py $i | yices—smt)” = "unsat”]
do
echo 3((++1));
done

2.3 Solution

The bold cells represent the a; after applying the function. After ten iterations cell as and ag both
hold 54 thus satisfying the problem specification.

#|i|ax a3 aqg as ag
0O|—12 3 4) 6
11412 3 8) 6
21512 3 8 14 6
31214 3 8§ 14 6
4 1414 3 17 14 6
51514 3 17 23 6
6 164 3 17 23 30
71514 3 17 47 30
81414 3 50 47 30
91314 54 50 47 30
10| 6 | 4 54 50 47 54

3 Appendix

© 0 N o U A W N e

AR R R R R A A A R W OW W W W W W W WWNNNNNNNNNNE B R oE e e R e e e
© W N AR ® N = O O KON AR BN RE OGO N0 A WN RO O ® N0 AR ®N = O

50

(benchmark al.smt
:logic QF_UFLIA

Int
Int
Int
Int
Int
Int

tln

= t2n
= t3n

t4dn
tHn
t6n

tls
t2s
t3s
tds
t5s
t6s

700
700
700
700
700
700

T

t3n t4n
t3s t4ds
t3c tdc
t3d t4d

\
coococooo

tls
t2s
t3s
tds
t5s
t6s

o~~~ o~

0) (>=
0) (>=

tle t1d)
t2c¢ t2d
t3c t3d
tdc t4d
tsc tbd
t6c t6d

o~ —~

* X X X X ¥
o+
w
T

tlc))
t2c¢))
t3c))
tdc))
t5c))
t6c))

Listing 3: al.smt

o~~~

* ¥ ¥ X X %

4)

10)

5)

tls
t2s
t3s
tds
t5s
t6s

tlc
t2c
t3c
tdc
tb5c
t6c

(t1d
(t2d
(t3d
(t4d
(t5d
(t6d

1000)
1000)
1000)
1000)
1000)
1000)

(+ tlp t2p t3p tdp t5p t6p) <REP>)

rextrafuns
(tlp Int) (tln
(t2p Int) (t2n
(t3p Int) (t3n
(t4p Int) (t4n
(t5p Int) (tbn
(t6p Int) (t6n

)

:formula

(and
(>= tlp 0) (>=
(>= t2p 0) (>=
(>= t3p 0) (>=
(>= t4p 0) (>=
(>= t5p 0) (>=
(>= t6p 0) (>=
(<= (+ tlp tln
(<= (+ t2p t2n
(<= (+ t3p t3n
(<= (+ t4p t4n
(<= (+ t5p tbn
(<= (+ t6p t6n
(<= (+ (x tln
(<= (+ (% t2n
(<= (+ (* t3n
(<= (+ (% t4n
(<= (+ (* tbn
(<= (+ (* t6n
(= (+ tln t2n
(= (+ tls t2s
(= (+ tlc t2c
(= (+ t1d t2d
(or (= 0 tlp)
(or (= 0 t2p)
(or (= 0 t3p)
(or (= 0 tdp)
(or (= 0 t5p)
(or (= 0 t6p)
(= t3s 0)
(= t4s 0)
(= tbs 0)
(= t6s 0)
(<= tld 1)
(<= t2d 1)
(<= t3d 1)
(<= t4d 1)
(<= tbhd 1)
(<= t6d 1)
(>=

)

)

Py

* ¥ X X X %

Int)
Int)
Int)
Int)
Int)
Int)

(>= t1d
(>= t2d
(>= t3d

= t4d
= tbd

(>= t6d

tlc
t2c
t3c
tdc
tbc
t6c

* X X X X X

P T T T Y e

t1ld
t2d
t3d
t4d
t5d
t6d

© 0 N o U A W N e

BOA A A R R R R R R WO W W W W W W W W NNNNNNNNNNR B RS e e E e e
© N O A ® N R O O ® IO AR W R OO XN OA®N RO © ® N U AW NP O

50

Listing 4: ad.py
#!/usr/bin/env python3d
import sys
iterations = int(sys.argv[1l]) if len(sys.argv) > 1 else 11
numa = int(sys.argv[2]) if len(sys.argv) > 2 else 7

##Print preamble
print (” (benchmark a4.smt”)
print(”:logic QF_.UFLIA”)

##Print variables
print (”:extrafuns (7)
print (” (a{} Int)”.format(1l))
print (7 (a{} Int)”.format (numa))
for i in range(iterations):
for v in range(2,numa):
print (" (i{}a{} Int) ”.format(i,v))
print(” (c{} Int)” .format(i))
print(77)”)

##Print preconditions
print (”:formula”)

print (” (and”)

print(”(= c0 0)7)

print(”(= al 1))

print (”(= a{0} {0})”.format (numa, numa))

for i in range(2,numa):
print (7 (= i0a{0} {0})”.format(i))

##Print iterations
for i in range(1l, iterations):
print(” (or”
for v in range(2, numa):
print (” (and”)
print (" (= c{} {})” .format(i, v))

for ov in [k for k in range(2, numa) if k != v]:
print (7 (= i{0}a{1} i{2}a{1})” .format(i, ov, i—1))
iml = ’al’ if v = 2 else ’i{}a{}’ .format(i, v—1)
ipl = ’a{}’.format(numa) if v = numa—1 else ’i{}a{}’ .format(i—1, v+1)

print ("(= i{}a{} (+ {} {}))".format(i, v, iml, ipl))
print(”)”)

print (” (and”)

print (" (= c{} 0)” .format(i))

for ov in range(2, numa):
print (" (= i{0}a{1l} i{2}a{l})”.format(i, ov, i—1))

print(”)”)

print (*)”)

Post conditions
print (” (or”)
for v in range(2, numa):
print (” (and (>= i{}a{} 50)” .format(iterations —1, v))
print (” (or”
for ov in [k for k in range(2, numa) if k != v]:
print (" (= i{0}a{l} i{0}a{2})” .format(iterations —1, v, ov))
print ("))
print(77)”)

Close the and,benchmark parenthesis
print (7))”)

