
Software and Web-Security
Assignment 2, Monday, February 9, 2015

Handing in your answers: Submission via Blackboard (http://blackboard.ru.nl)

Deadline: Monday, February 23, 24:00 (midnight)

1. Unix and Linux sytems use special files in the /dev directory to handle access to devices. Two such
special device files provide a source of random numbers. These files are /dev/random and /dev/urandom.

(a) Find out what the conceptual difference between these two files is. Write your answer to a text file
named exercise1a.txt.

(b) Write a program in a file called exercise1b.c that opens the file /dev/urandom for reading and
then performs a loop which

• reads one byte from /dev/urandom;

• prints one line consisting of the value of this byte as signed decimal integer, as unsigned decimal
integer, and in hexadecimal notation (seperated by space);

• exits (from the loop) if the value of the byte is 42.

The last line of output from the program should thus be

42 42 2a

(c) Run the program and write the output to a file called exercise1c.

(d) Write another program called exercise1d.c, which does the same as exercise1b.c, except for the
following:

• Use 16-bit unsigned integers instead of bytes (datatype uint16_t, you need to include the file
stdint.h).

• In the loop, initialize the 16-bit unsigned integer with two random bytes (16 bits) from /dev/urandom.

• In the loop, print one line containing the value of hte 16-bit unsigned integer as fixed-width
4-character hexadecimal value (padded at the front with leading zeros).

• Again, terminate the loop if the value is 42, the last line of output is thus

002a

• Run the program 10 times and each time count the number of output lines. Write these counts
to a text file called exercise1d.txt.

(e) Write a brief description of how you obtained the line counts in part d) in a text file called
exercise1e.txt.

2. You are given the following code fragment:

int main (void)

{

short i = 0x1234;

char x = -127;

long sn1 = <STUDENT NUMBER OF TEAM MEMBER 1, WITHOUT LEADING S>;

long sn2 = <STUDENT NUMBER OF TEAM MEMBER 2, WITHOUT LEADING S>;

int[2] y = {0x11223344,0x44332211};

...

}

(a) Write this code snippet to a file called exercise2.c.

(b) Set the values of sn1 and sn2 to your student numbers.

(c) Replace the ... by code that prints the size in bytes of each of the local variables.

(d) Extend the functionality of the program to print the memory layout of the local variables, in a
byte-by-byte fashion, so a four-byte integer becomes four lines. More specifically, your program
should print a table of the following form (addresses and data are fictional):

http://blackboard.ru.nl


address content (hex) content (dec)

-------------------------------------------

0x...00 0xFF 255

0x...01 0x12 18

0x...02 ... ...

You do not have to sort the output.

(e) Compile your program with gcc -O3 -Wall and run the program. Write the output of the program
to a file called exercise2.out. Explain which variable is stored at which location in memory and
write this explanation to a file called exercise2.exp.

3. Since the C99 standard, the C programming language has a bool data type. Programs that use this data
type have to include the file stdbool.h. They have to be compiled with the compiler flag -std=c99.
Write a program (in a file called exercise3.c), which finds out about the internal representation of bool.
Specifically, your program shall print the following:

• How many bytes does a bool use?

• What hexadecimal representation does a bool have, if you set it to true?

• What hexadecimal representation does a bool have, if you set it to false?

• Can you assign other hexadecimal values than these two to a bool variable? Are those interpreted
as true or as false or do they cause an error?

4. Place the files

• exercise1a.txt,

• exercise1b.c,

• exercise1c,

• exercise1d.c,

• exercise1d.txt,

• exercise1e.txt,

• exercise2.c,

• exercise2.out,

• exercise2.exp, and

• exercise3.c

in a directory called sws1-assignment2-STUDENTNUMBER1-STUDENTNUMBER2 (again, replace STUDENTNUMBER1
and STUDENTNUMBER2 by your respective student numbers). Write a Makefile that (with a single invo-
cation of make in the sws1-assignment2-STUDENTNUMBER1-STUDENTNUMBER2 directory) builds programs

• exercise1b (from exercise1b.c),

• exercise1d (from exercise1d.c),

• exercise2 (from exercise2.c), and

• exercise3 (from exercise3.c).

Make sure that this Makefile is also in the sws1-assignment2-STUDENTNUMBER1-STUDENTNUMBER2 di-
rectory.
Make a tar.gz archive of the whole sws1-assignment2-STUDENTNUMBER1-STUDENTNUMBER2 directory
and submit this archive in Blackboard.


