
Software and Web-Security
Assignment 5b, Monday, March 9, 2015

Handing in your answers: Submission via Blackboard (http://blackboard.ru.nl)

Deadline: Monday, March 23, 24:00 (midnight)

In this assignment you will perform a remote exploit on an echo server we provide. The echo server echoes
input, and as attackers you can repeatedly supply format strings or long inputs to reveal or corrupt data on
the stack. Please be considerate of your fellow students: If you intentionally break the server, they cannot
complete the exercise this until we fix it. However, do not worry too much about this: we have taken steps to
make it hard to accidentally break the server.

Remember that these exercises do not count to your final grade, however, you should make an effort to at
least partially answer all questions, and if you get stuck on a question, clearly explain why you cannot continue.

The hostname of the echo server is hackme.cs.ru.nl, the port is 2266. If you connect to this address with
e.g. netcat aka nc (nc hackme.cs.ru.nl 2266, man netcat) it will simply print everything you send back to
you. For the purpose of this exercise, we went out of our way to do this insecurely. We have manually disabled
several security mechanisms on the program you connect with. There is no reason to ever do this on modern
systems, so you are unlikely to encounter programs in the wild which are exploited as easily as this one.

Since we consider it relatively easy to exploit, we will not give you the source code or the binary executable
of the program. Rather, you must use the knowledge gained from the previous lectures to figure out how to
exploit this program with the shellcode we provide.

The hexadecimal string representation of the (64-bit) shellcode, in an easy format to use in a C program
or pass to echo -e "<shellcode>", is:

\x48\x31\xd2\x48\xbb\x2f\x2f\x62\x69\x6e\x2f\x73\x68\x48\xc1

\xeb\x08\x53\x48\x89\xe7\x52\x57\x48\x89\xe6\xb0\x3b\x0f\x05

1. For part 1 of this assignment you will analyse the shellcode and determine what it does, by hand. You
should not need to use any computer programs, but you will probably need online resources such as a
system call reference table.

(a) The shellcode translates to AT&T syntax assembly as follows:

"\x48\x31\xd2" // xor %rdx, %rdx

"\x48\xbb\x2f\x2f\x62\x69\x6e\x2f\x73\x68" // mov $0x68732f6e69622f2f, %rbx

"\x48\xc1\xeb\x08" // shr $0x8, %rbx

"\x53" // push %rbx

"\x48\x89\xe7" // mov %rsp, %rdi

"\x52" // push %rdx

"\x57" // push %rdi

"\x48\x89\xe6" // mov %rsp, %rsi

"\xb0\x3b" // mov $0x3b, %al

"\x0f\x05" // syscall

What all of these instructions mean is explained on https://www.cs.uaf.edu/2007/fall/cs301/

support/x86_64/index.html, but note there are some syntactic differences: in our translation, the
source is the first argument, the destination is the second argument. Registers are prefixed with %,
and values with $. Also note that the “smaller” registers simply use the lower bytes of their larger
counterparts, i.e. in the code above %al is the lower 8 bits of %rax.

The syscall at the end indicates that we are doing a system call. System calls are requests to
an operating system’s kernel to provide a service, such as opening a file, reading from an open file
descriptor, exit a program, etc.

Using the above explanation of what the assembly instructions do, and a reference table for sys-
tem calls on 64-bit Linux, such as the one at http://blog.rchapman.org/post/36801038863/

linux-system-call-table-for-x86-64, determine which system call we are trying to use here.
Write your answer to a file called exercise1.

http://blackboard.ru.nl
https://www.cs.uaf.edu/2007/fall/cs301/support/x86_64/index.html
https://www.cs.uaf.edu/2007/fall/cs301/support/x86_64/index.html
http://blog.rchapman.org/post/36801038863/linux-system-call-table-for-x86-64
http://blog.rchapman.org/post/36801038863/linux-system-call-table-for-x86-64

(b) Examine the manpage for that system call with man 2 <system call>. Look at its arguments. Which
arguments are in which registers at the moment the syscall is run? (You can use the reference
table from the previous exercise.) For each register, also give the lines of assembly code which put
the argument there. Add your answer to exercise1.

(c) Considering this, what do you expect this shellcode to do when run? Add your answer to exercise1.

(d) Explain why %rbx is shifted right by 8 bits. (Hint: What does the value in %rbx represent? What is
it missing before the shift? What should shellcode usually not contain, considering one of the most
used ways of exploiting buffer overflows?) Add your answer to exercise1.

2. For part 2 of this exercise you will write and execute an exploit based on the shellcode. Note that the
entire exercise can be done without the use of C, although you may need to write some simple one-
or two-line bash scripts. You can get an actual byte representation of the shellcode in a file using the
command echo -e "<shellcode>" > file

The command netcat takes input from files, commands or scripts if you simply redirect the standard
input, and send them over a network connection. For example, nc hackme.cs.ru.nl 2266 < file will
establish a connection to the echo server and send the contents of file to it. As another example,
./exploit.sh | nc hackme.cs.ru.nl 2266 will send the output of the script exploit.sh to the echo
server. Since you are not giving the input on the command line, all you see is what the server echoes
back.

(a) First you will need to gather information on the target you are attacking. Since it is an insecure
echo server, a buffer overflow is likely to work. Determine the size of the buffer the echo server is
using. Write your answer, and how you obtained it, to a file exercise2.

(b) Since you now know the size of the buffer, you can try to use a format string attack to read the
contents of the memory. Try to do so. Add the memory contents you see, and the format string you
used to obtain them, to exercise2.

(c) Identify the buffer in the memory dump from your answer to part (b). Then, identify the return
address and saved frame pointer. (Hint: the return address will point to the code section of memory,
not the stack.) Add your answer to exercise2.

(d) Try to estimate the start address of the buffer from the information you now have. Also try to
explain what any values between the buffer and the return address might be. Add your answers to
exercise2.

(e) Write a shell script or C program that first sends some stored string to standard output, then
allows you to input text by hand which is sent to standard output. The shell script can consist of
just one or two commands. (Hint: the commands cat or tee may be useful.) Save your script to
exercise2e.sh, or your program to exercise2e.c. Include a Makefile if necessary.

(f) Combine all the information you have into a working exploit using netcat. Remember that you
will need to align your input correctly. (Hint: the shellcode is not a multiple of 8 bytes.) Run the
exploit using the shell script or program from (e).

You will not immediately notice it if your shellcode works, because the shell will not recognize the
network connection as an interactive terminal and therefore will not echo a prompt. You will have
to give a command such as ls to confirm you were successful. Alternatively, edit the shellcode so
that instead of starting a shell, it will start ls directly.

Note: if you want to use a NOP-sled, on the x86 64-architecture you may need to use 0x0f 0x1f

instead of 0x90.

After confirming that your exploit was successful, run the command proof, and follow the instruc-
tions on-screen. Don’t forget to send the e-mail. Please do not attempt to continue exploiting the
server afterwards.

Save all the files you used to exploit the server, and an explanation of how they should be used, to
the directory exercise2f.

3. Place the files exercise1, exercise2, exercise2e.{sh,c}, and the directory exercise2f and all
its contents in a directory called sws1-assignment5-STUDENTNUMBER1-STUDENTNUMBER2 (again, replace
STUDENTNUMBER1 and STUDENTNUMBER2 by your respective student numbers). Make a tar.gz archive of
the whole sws1-assignment5-STUDENTNUMBER1-STUDENTNUMBER2 directory and submit this archive in
Blackboard.

