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ABSTRACT
Small Microcontroller Units (MCUs) drive the omnipresent Internet
of Things (IoT). These devices are small, cheap, and energy efficient.
However, they are not very powerful and lack an Operating Sys-
tem. Hence it is difficult to apply high level abstractions and write
software that stays close to the design.

Task Oriented Programming (TOP) is a paradigm for creating
multi-user collaborative systems. A program consists of tasks—
descriptions of what needs to be done. The tasks represent the actual
work and a task value is observable during execution. Furthermore,
tasks can be combined and transformed using combinators.

mTask is an embedded Domain Specific Language (eDSL) to
program MCUs following the TOP paradigm. Previous work has
described the mTask language, a static C code generator, and how
to integrate mTask with TOP servers. This paper shows that for
dynamic IOT applications, tasks must be sent at runtime to the
devices for interpretation. It describes in detail how to compile
specialized IOT TOP tasks to bytecode and how to interpret them on
devices with very little memory. These additions allow the creation
of complete, dynamic IOT applications arising from a single source
using a mix of iTasks and mTask tasks. Details such as serialization
and communication are captured in simple abstractions.

CCS CONCEPTS
• Computer systems organization → Distributed architec-
tures; • Software and its engineering → Client-server archi-
tectures; Functional languages; Domain specific languages.
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1 INTRODUCTION
IOT consists of tiny devices that sense, act, and communicate with
each other and with the world. The IOT is often visualized as a
layered system [5]. An example of an IOT application that touches
every layer is a smart-home hub. A smart-home hub usually consists
of a coordinating server and several clients. This server coordinates
the devices and offers an interface to the user, e.g. via a display and
buttons or a web interface. Typical clients have hard-coded tasks or
they receive them from a server on demand. Some clients contain
interfaces to interact with the user directly and start tasks as well.

In IOT applications, clients are often heterogeneous collections
of microcontrollers all with their own peculiarities, language of
choice and hardware interfaces. The hardware needs to be cheap,
small and energy efficient. As a result, the MCUs used to power
these devices have little computational power, a tiny amount of
memory, and little communication bandwidth. Typically the devices
do not run a full-fledged OS but statically compiled firmware. This
firmware is often written in an imperative language and needs
to be flashed to the program memory. This greatly reduces the
flexibility for dynamic systems where tasks are created on the
fly and executed on demand. While devices are getting a bit faster,
smaller, and cheaper, they keep these properties to an extent. In this
paper we show how these problems can be solved by dynamically
sending interpreted TOP code to the MCU.

The TOP paradigm is a declarative paradigm where a program
consists of tasks. Tasks represent collaborativework that needs to be
done by people and computer systems. The iTasks framework is the
reference implementation for TOP [20]. Given the task specification,
iTasks generates a multi-user web interface to, guide the work based
on the current state of affairs.

Tasks are generated on the fly and can be combined to form
compound tasks. Moreover, it is possible to tailor-make tasks at
runtime for specific work that needs to be done. A task’s execution
is modelled as an interactive rewriting system. As a consequence,
work is automatically divided into short slices and when interleav-
ing the work is seemingly executed in parallel. When designing a
program for an IOT device, the jobs that need to be performed on
the device fit the TOP paradigm very well [18]. Tasks that devices
need to perform are frequently parallel and adapted to the current
needs of the system. An example of this adaptability and parallel na-
ture for our smart-home hub is a multi-room thermostat. Different
tasks are required to be executed at the same time, e.g. measuring
the temperature in the room, controlling the heater and reacting
to user input both on the client and on the server, for example
when devices in the rooms contain buttons to locally set the target
temperature.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Unfortunately, straightforwardly compiling iTasks to code suit-
able for IOT devices is not possible since the devices are simply not
powerful enough. Furthermore, writing multi-threaded applications
using actual threads is strenuous because of the restricted memory
capacity and lack of an OS. There are ways of simulating threads in
imperative languages on MCUs, but they all have downsides such
as spaghetti code, the lack of local state, and compile-time fixed
thread timings (see Section 7).

Previous work described the TOP language mTask [14]. The
mTask language is an EDSL hosted in Clean that aides writing the
device part of an IOT application using TOP. The mTask language
contains an important subset of TOP such as tasks, task combi-
nators and Shared Data Sources (SDSs). It allows interaction with
peripherals following the TOP paradigm. However, this version
only supported generating static C code and there was no built-in
communication with a server.

In real-life TOP applications, tasks are generated on the fly and
combined at will using combinators. The program memory for an
MCU is not suitable for rapid reprogramming when a task needs
to be executed. We therefore resort to interpretation. With inter-
pretation, tasks are sent at runtime to the device from a server to
be executed on demand. In previous work we have shown how a
simplified imperative version of mTask could be integrated with
iTasks [17]. Small, imperative tasks could be lifted to iTasks tasks
and could access iTasks SDSs. They were compiled to bytecode and
interpreted on the device. However, there was no support for task
oriented programming on the client.

1.1 Research contribution
For dynamic applications, generating code at runtime for interpre-
tation on the device is necessary. In this paper we show in detail
how to compile mTask tasks to bytecode. This bytecode can be in-
terpreted on MCUs with very little memory and processing power.
The programmer does not have to worry about details such as se-
rialization, communication, or rapidly changing programs using
precious write cycles of the program memory. With these additions,
complete, dynamic IOT applications can be constructed from a
single source using a mix of iTasks and mTask tasks.

Our solution accomplishes this by (1) describing mTask’s seman-
tics more formally, (2) providing a concrete compilation scheme for
compiling mTask tasks to bytecode for an abstract machine, and
(3) describing a concrete implementation of this abstract machine.

Section 2 presents an overview of TOP in general while Section 3
introduces the mTask language. Section 4 presents the bytecode
backend infrastructure—i.e. the integration with iTasks, the com-
piler and the Runtime System, and presents a demonstrative ex-
ample. The compilation rules are given in Section 5 followed by
the rewriting rules in Section 6. The paper concludes with related
work, conclusions and future work (Section 7, 8 and 9).

2 TASK ORIENTED PROGRAMMING
TOP is a programming paradigm for specifying distributed sys-
tems modelling collaborations between people and machines. Tasks
are the basic building blocks of the program and behave a bit like
communicating threads. They represent the work that needs to

be done and they can be combined and transformed to form com-
pound tasks. The full set of combinators available in the reference
implementation and their semantics can be found in [21]. Tasks
are event-driven, stateful rewrite functions that yield, after each
step, a three-state task value. Task values are observable by other
tasks and may change over time. The task value is either no value,
unstable or a stable value. The allowed task value transitions are
shown in Figure 1. The events that drive the execution of a task can
be anything ranging from user input to clocks, hardware events or
even the task itself requesting a subsequent execution step.

NoV alue Unstable Stable

Figure 1: A state transition diagram for task values.

Task values can be observed and acted upon by other tasks if
they are combined sequentially or in parallel. Furthermore, data
can be shared using SDSs. SDSs provide a general abstraction over
data. They can be accessed through three tasks that retrieve, store
or modify the data (get, set, and upd respectively). While tasks in
parallel are interleaved, access to SDSs is always atomic, i.e. exactly
one rewrite step. SDSs can be combined and transformed using
combinators similar to those used for tasks.

3 MTASK LANGUAGE
The core of the mTask system is the mTask language—a multi-
backend class-based EDSL. The classes are type-constructor classes
and therefore a backend implementing a class is a type of the form
v t where v is the actual backend. The phantom type t represents
the type of the construction. Not all types are suitable for MCUs:
they have to be serializable and bounded. To enforce this, the type
t must have instances for the type class collection containing these
constraints.

The classes for expressions—i.e. arithmetic functions, conditional
expressions and tuples—are given in Listing 1. Some of the functions
are oddly named (e.g. +.) to avoid name conflicts with existing
functions. There is no need for loop control due to support for tail-
call optimized recursive functions and tasks. The lit function fulfills
a special role of the language: it allows lifting host language values
to the mTask domain. For tuples there is a useful default instance
(topen) to convert a function with an mTask tuple as an argument
to a function with a tuple of mTask values as an argument.
class arith v where

lit :: t � v t | type t

(+.) infixl 6 :: (v t) (v t) � v t | basicType, +, zero t

. . .
class cond v where

If :: (v Bool) (v t) (v t) � v t | type t

class tupl v where
first :: (v (a, b)) � v a | type a & type b

second :: (v (a, b)) � v b | type a & type b

tupl :: (v a) (v b) � v (a, b) | type a & type b

topen :: (v (a, b) � c) (v a, v b) � c

topen f x = f (first x, second x)

Listing 1: The mTask classes for simple expressions.
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3.1 Functions
Functions are supported in the EDSL, albeit with some limitations.
All user-defined mTask functions are typed by Clean expressions
to ensure type safety. All functions are defined using the multi-
parameter typeclass fun (Listing 2). The first parameter (a) of the
typeclass is the shape of the argument and the second parameter
(v) is the backend. Functions may only be defined at the top level
and to constrain this, the Main type is introduced to box a program.

One implementation for the fun class is defined for every arity.
So for a function from a to b, the instance fun (T a) T | type a is used.
The listing gives example instances for arities zero to two for back-
end T. Defining the different arities as tuples of arguments forbids
the use of curried functions. To illustrate the use, the factorial func-
tion is given as an example. The type constraint on the function
arguments forbids the use of higher order functions. This Clean
function will construct the program that will calculate the factorial
of the given argument.

All mTask constructions used in the factorial function must be
defined as class constraints on the backend type variable. This
creates quite a bit of clutter as the number of class constraints
increases rapidly. The class collection mtask can be used to avoid
long lists of constraints.
:: Main a = {main :: a}

:: In a b = In infix 0 a b

class fun a v where
fun :: ((a � v s) � In (a � v s) (Main (v u)))

� Main (v u) | type s & type u

:: T a / / a backend
instance fun () T

instance fun (T a) T | type a

instance fun (T a, T b) T | type a & type b

class mtask v | arith v & cond v & . . . & fun () v & fun (v Int) v & . . .

factorial :: Int � Main (v Int) | mtask v

factorial x =

fun 𝜆fac=(

𝜆i�If (i <=. lit 0)

(lit 1) (i *. fac (i -. lit 1))

) In {main=fac (lit x)}

Listing 2: The mTask classes for function definitions.

3.2 Tasks
Tasks are viewed as trees with leaves and forks. Basic tasks are the
leafs and often represent a side effect such as hardware access. Task
combinators are the forks and transform one or more tasks to a
single transformed task.

Task values in mTask are represented by the same type as in
iTasks (Listing 3). To lift a value in the expression domain to the
task domain, the basic task rtrn is used. The resulting task will yield
the given value as a stable task value.
:: MTask v t :== v (TaskValue t)

class rtrn v where rtrn :: (v t) � MTask v t | type t

Listing 3: The mTask classes for basic tasks.

Interaction with General Purpose Input/Output (GPIO) pins, and
other peripherals for that matter, is also captured in basic tasks. For
each type of pin, there is a read and a write task that, given the

pin, executes the action. The class for analogue GPIO pin access
is shown in Listing 4. The readA task constantly yields the value of
the analogue pin as an unstable task value. The writeA task writes
the given value to the given pin once and returns the written value
as a stable task value.
:: APin = A0 | A1 | A2 | A3 | . . .
:: DPin = D0 | D1 | D2 | D3 | . . .
class aio v where

readA :: (v APin) � MTask v Int

writeA :: (v APin) (v Int) � MTask v Int

Listing 4: The mTask classes for GPIO access.

3.3 Task combinators
There are two flavours of task combinators. With sequential com-
binators, tasks are executed after each other. With parallel combi-
nators, they are executed at the same time and the resulting task
values are combined.

The step combinator (>>*.) is the Swiss army knife of sequen-
tial combination (Listing 5). The value that the left-hand side of
the combinator yields is matched against the task continuations
(Step v t u) on the right-hand side, i.e. the right-hand side tasks
observe the task value. If one of the continuations yields a new task,
the combined task continues with it, pruning the left-hand side. All
other sequential combinators are derived from the step combinator
as default instances but their implementation can be overridden
to provide a more efficient implementation. The >>=. combinator
is very similar to the monadic bind: it continues if and only if a
stable value is yielded. The >>∼. combinator continues when any
value, stable or unstable, is yielded. The >>|. and >>.. combinators
are variants of the aforementioned combinators that do not take
the value into account.
class step v where

(>>*.) infixl 1 :: (MTask v t) [Step v t u] � MTask v u | type u & type t

(>>=.) infixl 1 :: (MTask v t) ((v t) � MTask v u) � MTask v u | . . .
(>>=.) m f = m >>*. [IfStable (𝜆_�lit True) f]

(>>∼.) infixl 1 :: (MTask v t) ((v t) � MTask v u) � MTask v u | . . .
(>>∼.) m f = m >>*. [IfValue (𝜆_�lit True) f]

(>>|.) infixl 1 :: (MTask v t) (MTask v u) � MTask v u | . . .
(>>|.) m f = m >>=. 𝜆_�f

(>>..) infixl 1 :: (MTask v t) (MTask v u) � MTask v u | . . .
(>>..) m f = m >>∼. 𝜆_�f

:: Step v t u

= IfValue ((v t) � v Bool) ((v t) � MTask v u)

| IfStable ((v t) � v Bool) ((v t) � MTask v u)

| IfUnstable ((v t) � v Bool) ((v t) � MTask v u)

| IfNoValue (MTask v u)

| Always (MTask v u)

Listing 5: ThemTask classes for sequential task combinators.

The following listing shows an example of a step in action. The
readPinBin function produces an mTask task that classifies the value
of an analogue pin into four bins. It also shows that the nature of
embedding allows the host language to be used as a macro language.

readPinBin :: Main (MTask v Int) | mtask v

readPinBin = {main=readA A2 >>*.

[ IfValue (𝜆x�x <. lim) 𝜆_�rtrn (lit bin)

\\ lim�[64,128,192,256]
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& bin�[0..]]

Listing 6: An example task using sequential combinators.

In contrast to iTasks—that has one super combinator for all
parallel combinations—there are only two parallel combinators
(Listing 7). The conjunction combinator .&&. combines the task
values to a tuple. The disjunction combinator .||. combines them
into a single task value, giving preference to the most stable value
(see Subsection 6.4). The listing shows an example of querying two
pins at the same time, returning the one with the highest value.
class .&&. v where

(.&&.) infixr 4 v :: (MTask v a) (MTask v b) � MTask v (a, b) | type a . . .
class .||. v where

(.||.) infixr 3 v :: (MTask v a) (MTask v a) � MTask v a | type a

maxPins :: APin APin � Main (MTask v Int) | mtask v

maxPins p1 p2 = {main=

readA p1 .&&. readA p2

>>∼. topen 𝜆(l, r)�rtrn (If (l >. r) l r)}

Listing 7: The mTask classes for parallel task combinators.

Finally there are some miscellaneous combinators. For example,
the rpeat function forever executes the argument task. When the
argument task is stable, it starts all over again. The delay task waits
for the specified amount of time. This task yields no value until the
given time has elapsed, then it will yield the number of milliseconds
it overshot as a stable task value. To demonstrate them, the blink

program is given that toggles the given pin every 500 milliseconds.
The functionality of rpeat can also be simulated using a recursive
function as shown in the blinkFun task.
class rpeat v where

rpeat :: (MTask v a) � MTask v () | type a

class delay v where
delay :: (v Int) � MTask v t | type t

blink :: DPin � Main (MTask v ()) | mtask v

blink p = {main=rpeat (

delay (lit 500) >>|. writeD (lit True) p

>>|. delay (lit 500) >>|. writeD (lit False) p)}

blinkFun :: DPin � Main (MTask v Bool) | mtask v

blinkFun p =

fun 𝜆blink=(

𝜆st�delay (lit 500) >>|. writeD st p >>=. blink o Not

) In {main=blink (lit True)}

Listing 8: The mTask classes for repeat and delay.

3.4 Shared Data Sources
In mTask it is also possible to share data between tasks type safe
using SDSs. Similar to functions, SDSs can only be defined at the
top level. They are well-typed parts of the monadic state.

The sds class contains the functions for defining and accessing
SDSs. With the sds function, local SDSs can be defined. They are
also typed by functions in the host language to ensure type safety.
The other functions in the class are for creating get and set tasks.
The getSds task constantly emits the value of the SDS as an unstable
task value; setSds writes the given value to the SDS and re-emits it
as a stable task value when it is done.

Listing 9 provides the definitions and an artificial example of a
task mirroring a pin value to another pin using an SDS.

class sds v where
sds :: ((v (Sds t)) � In t (Main (MTask v u)))

� Main (MTask v u) | type t & type u

getSds :: (v (Sds t)) � MTask v t | type t

setSds :: (v (Sds t)) (v t) � MTask v t | type t

localvar :: Main (MTask v ()) | mtask v

localvar = sds 𝜆x=42 In {main= rpeat (readA D13 >>∼. setSds x)

.||. rpeat (getSds x >>∼. writeD D1)}

Listing 9: The mTask classes for SDS tasks.

The liftsds class below is used to allow iTasks SDSs to be ac-
cessed from within mTask tasks and vice versa. The function has a
similar type as sds and creates an mTask SDS from an iTasks SDS so
that it can be accessed using the class functions from the sds class.
Listing 10 shows an example of this where an iTasks SDS is used to
control an LED on a device. During task execution, the device gets
notified when the SDS is modified on the server.
:: Shared a / / an iTasks SDS
class liftsds v | sds v where

liftsds :: ((v (Sds t)) � In (Shared t) (Main (MTask v u)))

� Main (MTask v u) | type t & type u

lightSwitch :: (Shared Bool) � Main (MTask v ()) | mtask v & liftsds v

lightSwitch s = liftsds𝜆x=s In {main=rpeat (getSds x >>∼. writeD D13)}

Listing 10: The mTask class for lifting iTasks SDSs.

4 BYTECODE COMPILER INFRASTRUCTURE
This section presents the infrastructure surrounding the bytecode
backend. This is where tasks are compiled, sent, and executed dur-
ing runtime of the iTasks server to a specific device. The supporting
Clean functions for this are given in Listing 11.

The withDevice function offers access to the device. The first argu-
ment of the function, which is a type implementing the channelSync

class, contains the information for maintaining a connection with
the device. At present, there are instances for channelSync for types
representing a TCP or serial connection and a simulator. The re-
sulting task connects the device and ascertains that the connection
is set up, kept up and closed down on completion. After the con-
nection is set up, the second argument—the task doing something
with a device—is executed.

Within the argument task—besides executing iTasks tasks—the
liftmTask task can be used. This function lifts an mTask task to
an iTasks task using the specified device so that the mTask task
can be fully utilized within the iTasks system. The BCInterpret type
houses the backend and therefore implements the mTask classes. It
adheres to the compilation scheme given in Section 5. The mTask
constructions have the form Main (MTask BCInterpret u). Under the
hood, liftmTask creates a task that executes the compiler, sends
the generated bytecode, listens for messages from the device and
watches the lifted SDSs. The task value of the mTask task is observ-
able from iTasks because the task is now a regular iTasks task. Fur-
thermore, lifted SDSs can be accessed and used for communication.
In a traditional setting, all these things—such as communication,
data sharing, task scheduling—would have to be done by hand. In
contrast, liftmTask automatically does it all.
:: MTDevice / /Abstract device representation
:: Channels / /Communication channels
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class channelSync a :: a (Shared Channels) � Task ()

withDevice :: a (MTDevice � Task b) � Task b | iTask b & channelSync a

liftmTask :: (Main (MTask BCInterpret u)) MTDevice � Task u | iTask, type u

Listing 11: Functions integrating mTask with iTasks.

4.1 Example
This subsection presents a toy home automation program (List-
ing 12) to illustrate the language and its integration with an iTasks
server. It consists of a web interface for the user to control, which
tasks may be executed on either of two connected devices: an
Arduino UNO, connected via a serial port and an ESP8266 based
prototyping board called NodeMCU, connected via TCP over WiFi.

Lines 1–2 show the specification for the devices followed by
lines 4–8 containing the actual task. This task first connects the
devices (lines 5–6) followed by a parallel task that is visualized as a
tabbed window with a shutdown button to terminate the program
(lines 7–8). The chooseTask task (lines 10–20) allows the user to pick
a task, sending it to the specified device. Tasks are picked from
the tasks list (lines 22–39). For example, the temperature task might
show the current temperature to the user. When the temperature
changes, the Digital Humidity and Temperature sensor reports it
and the task value for the temperature task changes. This change in
task value is reflected in the iTasks server and the task value of the
liftmTask task changes accordingly. The task is lifted to an iTasks
task and the >&> iTasks combinator transforms the task value into
an SDS that is displayed to the user using viewSharedInformation. A
screenshot of the temperature task is given in Figure 2.

1 arduino = {TTYSettings | zero & devicePath="/dev/ttyACM0"}

2 nodeMCU = {TCPSettings | host="192.168.0.1", port=8123}

3
4 autoHome :: Task ()

5 autoHome = withDevice arduino𝜆dev1�
6 withDevice nodeMCU𝜆dev2�
7 parallel [(Embedded, chooseTask dev1 dev2)] [] <<@ ArrangeWithTabs True

8 >>* [OnAction (Action "Shutdown") (always (shutDown 0))]

9
10 chooseTask :: MTDevice MTDevice (SharedTaskList ()) � Task ()

11 chooseTask dev1 dev2 stl = tune (Title "Choose Task") $ forever

12 $ enterChoice "Choose a task" [] (zip2 [0..] (map fst tasks))

13 >>= 𝜆(i, n)�enterChoice "Which device" [] ["arduino", "node"]

14 >>= 𝜆device�appendTask Embedded (mkTask n i device) stl

15 >>| chooseTask dev1 dev2 stl

16 where
17 mkTask n i device _

18 # dev = if (device == "node") dev2 dev1

19 = ((snd (tasks !! i) $ dev)

20 >>* [OnAction (Action "Close") $ always $ return ()]) <<@ Title n

21
22 tasks :: [(String, MTDevice � Task ())]

23 tasks =

24 [ ("temp", 𝜆dev�
25 liftmTask (DHT D6 DHT22 𝜆dht�{main=temperature dht}) dev

26 >&> viewSharedInformation "Current Temperature"

27 [ViewAs𝜆i�toString (toReal (fromMaybe 0 i) / 10.0) +++ "C"]

28 @! ())

29 , ("lightswitch", 𝜆dev�
30 withShared False 𝜆sh�
31 liftmTask (lightswitch sh) dev

32 -|| updateSharedInformation "Switch" [] sh

33 , ("factorial", 𝜆dev�
34 updateInformation "Factorial of what" [] 5

35 >>= 𝜆i�liftmTask (factorial i) dev

36 >>= viewInformation "result" []

37 @! ())

38 ]

39 , . . . ]

Listing 12: An example of a home automation program.

(a) Select task (b) Select device (c) View result

Figure 2: Screenshots of the example program in action.

4.2 Runtime system
The RTS is designed to run on systems with as little as 2kB of
RAM. Aggressive memory management is therefore vital. Not all
firmwares for MCUs support heaps and—when they do—allocation
often leaves holes when not used in a Last In First Out strategy.
Therefore the RTS uses a chunk of memory in the global data
segment with its own memory manager tailored to the needs of
mTask. The size of this block can be changed in the configuration
of the RTS if necessary. On an Arduino UNO —equipped with 2kB
of RAM— this size can be about 1500 bytes.

In memory, task data grows from the bottom up and an inter-
preter stack is located directly on top of it growing in the same
direction. As a consequence, the stack moves when a new task is
received. This never happens within execution because communica-
tion is always processed before execution. Values in the interpreter
are always stored on the stack, even tuples. Task trees grow from
the top down as in a heap. This approach allows for flexible ratios,
i.e. many tasks and small trees or few tasks and big trees.

The event loop of the RTS is executed repeatedly and consists of
three distinct phases.

4.2.1 Communication. In the first phase, the communication chan-
nels are processed. The messages announcing SDS updates are
applied immediately, the initialization of new tasks is delayed until
the next phase.

4.2.2 Execution. The second phase consists of executing tasks. The
RTS executes all tasks in a round robin fashion. If a task is not ini-
tialized yet, the bytecode of the main function is interpreted to
produce the initial task tree. The rewriting engine uses the inter-
preter when needed, e.g. to calculate the step continuations. The
rewriter and the interpreter use the same stack to store intermedi-
ate values. Rewriting steps are small so that interleaving results in
seemingly parallel execution. In this phase new task tree nodes may
be allocated. Both rewriting and initialization are atomic operations
in the sense that no processing on SDSs is done other than SDS
operations from the task itself. The host is notified if a task value is
changed after a rewrite step.
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4.2.3 Memory management. The third and final phase is memory
management. Stable tasks, and unreachable task tree nodes are
removed. If a task is to be removed, tasks with higher memory
addresses are moved down. For task trees—stored in the heap—the
RTS already marks tasks and task trees as trash during rewriting so
the heap can be compacted in a single pass. This is possible because
there is no sharing or cycles in task trees and nodes contain pointers
pointers to their parent.

4.3 Instruction set
The instruction set is a fairly standard stack machine instruction
set. Listing 13 shows the Clean type representing the instruction
set of which Table 1 gives detailed semantics. Type synonyms are
used to provide insight on the arguments of the instructions. One
notable instruction is the MkTask instruction, it constructs a task tree
node and pushes a pointer to it on the stack.
:: ArgWidth :== UInt8 :: ReturnWidth :== UInt8

:: Depth :== UInt8 :: Num :== UInt8

:: SdsId :== UInt8 :: PerId :== UInt8

:: JumpLabel :== UInt16

:: BCInstr

= BCJumpF JumpLabel | BCJump JumpLabel | BCJumpSR ArgWidth JumpLabel

| BCLabel JumpLabel

| BCReturn ReturnWidth ArgWidth | BCTailcall ArgWidth ArgWidth JumpLabel

| BCArg ArgWidth | BCStepArg UInt16 UInt8

| BCIsStable | BCIsUnstable | BCIsNoValue | BCIsValue

| BCPush String | BCPop Num | BCRot Depth Num | BCDup | BCPushPtrs

| BCAdd | BCSub | BCMult | BCDiv | BCAnd | BCOr | BCNot

| BCEq | BCNeq | BCLe | BCGe | BCLeq | BCGeq

| BCMkTask BCTaskType

:: BCTaskType

= BCStable1 | BCStable2 | . . . | BCUnstable1 | BCUnstable2 | . . .
| BCRepeat | BCDelay | BCTAnd | BCTOr

| BCSdsGet SdsId | BCSdsSet SdsId

| BCStep ArgWidth JumpLabel

/ /Peripherals
| BCReadD | BCWriteD | BCReadA | BCWriteA

| BCDHTTemp PerId | BCDHTHumid PerId

| . . .

Listing 13: The type housing the instruction set.

4.4 Compiler
The bytecode compiler backend for the mTask language is a stateful
writer monad. The state contains the bytecode for the main expres-
sion, the context of arguments, a function dictionary, streams for
fresh labels and SDS identifiers, an SDS dictionary containing both
local (Left) and lifted (Right) SDSs (see Subsection 3.4) and a list
of peripherals. Executing the bytecode compiler does not result in
usable bytecode immediately. After execution of the monad the
following processing steps are applied: all tail call BCReturn instruc-
tions are optimized to BCTailcall; the functions are concatenated
before the main expression1; redundant instructions are removed;
the labels are resolved to actual relative memory addresses; all lifted
SDSs are queried for their initial value. The result—bytecode, SDS
specifications and peripherals specification—can then be sent to
the device for execution.
1In this way the labels are still correct when removing the bytecode for the main
function to save space

:: BCInterpret a :== StateT BCState (WriterT [BCInstr] Identity) a

:: BCState =

{ bcs_mainexpr :: [BCInstr]

, bcs_context :: [BCInstr]

, bcs_functions :: Map JumpLabel BCFunction

, bcs_freshlabel :: JumpLabel

, bcs_freshsds :: UInt8

, bcs_sdses :: Map UInt8 (Either String255 (Shared String255))

, bcs_hardware :: [BCPeripheral]

}

:: BCFunction =

{ bcf_instructions :: [BCInstr]

, bcf_argwidth :: UInt8

, bcf_returnwidth :: UInt8

}

Listing 14: The type for the bytecode backend.

5 COMPILATION RULES
The compilation scheme is divided in three schemes. When some-
thing is surrounded by ∥, e.g. ∥𝑎𝑖 ∥, it denotes the number of stack
cells required to store it. Some schemes have a context 𝑟 as an
argument which contains information about the location of the
arguments in scope. More information is given in the schemes
requiring such arguments.

Scheme Description

EJ𝑒K 𝑟 Produces the value of expression 𝑒 given the context
𝑟 and pushes it on the stack. The result can be a
basic value or a pointer to a task.

F J𝑒K Generates the bytecode for functions.
SJ𝑒K 𝑟 𝑤 Generates the function for the step continuation

given the context 𝑟 and the width𝑤 of the left-hand
side task value.

5.1 Expressions
Almost all expression constructions are compiled using E. The ar-
gument of E is the context (see Subsection 5.2). Values are always
placed on the stack; tuples are unpacked. Function calls, function ar-
guments and tasks are also compiled using E but their compilations
are explained later.

EJlit 𝑒K 𝑟 = BCPush (bytecode e);
EJ𝑒1+.𝑒2K 𝑟 = EJ𝑒1K 𝑟 ; EJ𝑒2K 𝑟 ; BCAdd;

Similar for other binary operators
EJNot 𝑒K 𝑟 = EJ𝑒K 𝑟 ; BCNot;

Similar for other unary operators
EJIf 𝑒1 𝑒2 𝑒3K 𝑟 = EJ𝑒1K 𝑟 ; BCJmpF 𝑙1;

EJ𝑒2K 𝑟 ; BCJmp 𝑙2;
BCLabel 𝑙1;EJ𝑒3K 𝑟 ;
BCLabel 𝑙2;

Where 𝑙1 and 𝑙2 are fresh labels
EJtupl 𝑒1 𝑒2K 𝑟 = EJ𝑒1K 𝑟 ; EJ𝑒2K 𝑟 ;

EJfirst 𝑒K 𝑟 = EJ𝑒K 𝑟 ; BCPop 𝑤 ;
Where𝑤 is the width of the left value

EJsecond 𝑒K 𝑟 = EJ𝑒K 𝑟 ; BCRot 𝑤1 (𝑤1 +𝑤2); BCPop 𝑤2;
Where𝑤1 is the width of the left and
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𝑤2 of the right value

Translating E is very straightforward, it basically means exe-
cuting the monad. Almost always, the type of the backend is not
used, i.e. it is a phantom type. To still have the functions return
the correct type, the tell` helper is used. This function is similar
to the writer monad’s tell function but is casted to the correct
type. Listing 15 shows the implementation for the arithmetic and
conditional expressions. Note that 𝑟 , the context, is not an explicit
argument but stored in the state.

instance arith BCInterpret where
lit t = tell̀ [BCPush $ toByteCode{|*|} t]

(+.) a b = a >>| b >>| tell̀ [BCAdd]

. . .
instance cond BCInterpret where

If c t e = freshlabel >>= 𝜆elselabel�freshlabel >>= 𝜆endiflabel�
c >>| tell̀ [BCJumpF elselabel] >>|

t >>| tell̀ [BCJump endiflabel,BCLabel elselabel] >>|

e >>| tell̀ [BCLabel endiflabel]

Listing 15: Backend implementation for the arithmetic and
conditional classes.

5.2 Functions
Compiling functions occurs in F , which generates bytecode for the
complete program by iterating over the functions and ending with
the main expression. When compiling the body of the function,
the arguments of the function are added to the context so that
the addresses can be determined when referencing arguments. The
main expression is a special case of F since it neither has arguments
nor something to continue. Therefore, it is just compiled using E.

F J𝑚𝑎𝑖𝑛 =𝑚K = EJ𝑚K [];
F J𝑓 𝑎0 . . . 𝑎𝑛 = 𝑏 In 𝑚K = BCLabel 𝑓 ;

EJ𝑏K [⟨𝑓 , 𝑖⟩, 𝑖 ∈ {(Σ𝑛𝑖=0∥𝑎𝑖 ∥) ..0}];
BCReturn ∥𝑏∥ 𝑛;
F J𝑚K;

A function call starts by pushing the stack and frame pointer, and
making space for the program counter (a) followed by evaluating the
arguments in reverse order (b). On executing BCJumpSR, the program
counter is set and the interpreter jumps to the function (c). When
the function returns, the return value overwrites the old pointers
and the arguments. This occurs right after a BCReturn (d). Putting
the arguments on top of pointers and not reserving space for the
return value uses little space and facilitates tail call optimization.

Calling a function and referencing function arguments are an ex-
tension to E as shown below. Arguments may be at different places
on the stack at different times (see Subsection 5.4) and therefore the
exact location always has to be determined from the context using
findarg2. Compiling argument 𝑎𝑓 𝑖 , the 𝑖th argument in function 𝑓 ,
consists of traversing all positions in the current context. Argu-
ments wider than one stack cell are fetched in reverse to preserve
the order.

2findarg [l':r] l = if (l == l`) 0 (1 + findarg r l)

...

fpold

spold

0

...

(a) BCPushPtrs

...

fpold

spold

0

argn

arg.

arg0
...

(b) Arguments

...

fpold

spold

pcold

argn

arg.

arg0
...

(c) BCJumpSR

...

ret0

ret.

retn

...

(d) BCReturn

Figure 3: The stack layout during function calls.

EJ𝑓 (𝑎0, . . . , 𝑎𝑛)K 𝑟 = BCPushPtrs;
EJ𝑎𝑛K 𝑟 ; EJ𝑎...K 𝑟 ; EJ𝑎0K 𝑟 ;
BCJumpSR 𝑛 𝑓 ;

EJ𝑎𝑓 𝑖 K 𝑟 = BCArg findarg(𝑟, 𝑓 , 𝑖) for all 𝑖 ∈ {𝑤 . . . 𝑣};
𝑣 = Σ𝑖−1𝑗=0∥𝑎𝑓 𝑗 ∥
𝑤 = 𝑣 + ∥𝑎𝑓 𝑖 ∥

Translating the compilation schemes for functions to Clean is
not as straightforward as other schemes due to the nature of shal-
low embedding. The fun class has a single function with a single
argument. This argument is a Clean function that—when given
a callable Clean function representing the mTask function—will
produce main and a callable function. To compile this, the argu-
ment must be called with a function representing a function call in
mTask. Listing 16 shows the implementation for this as Clean code.
To uniquely identify the function, a fresh label is generated. The
function is then called with the callFunction helper function that
generates the instructions that correspond to calling the function.
That is, it pushes the pointers, compiles the arguments, and writes
the JumpSR instruction. The resulting structure (g In m) contains a
function representing the mTask function (g) and the main structure
to continue with. To get the actual function, g must be called with
representations for the argument, i.e. using findarg for all argu-
ments. The arguments are added to the context and liftFunction is
called with the label, the argument width and the compiler. This
function executes the compiler, decorates the instructions with a
label and places them in the function dictionary together with the
metadata such as the argument width. After lifting the function,
the context is cleared again and compilation continues with the
rest of the program.
instance fun (BCInterpret a) BCInterpret | type a where

fun def = {main=freshlabel >>= 𝜆funlabel�
let (g In m) = def 𝜆a�callFunction funlabel (byteWidth a) [a]

in addToCtx funlabel zero (argwidth def)

>>| liftFunction funlabel (argwidth def)

(g (findArgs funlabel zero (argwidth def))) Nothing

>>| clearCtx >>| m.main
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}

callFunction :: JumpLabel UInt8 [BCInterpret b] � BCInterpret c | . . .
liftFunction :: JumpLabel UInt8 (BCInterpret a) (Maybe UInt8) � BCInterpret ()

Listing 16: The backend implementation for functions.

5.3 Tasks
Task trees are created with the BCMkTask instruction that allocates a
node and pushes it to the stack. It pops arguments from the stack
according to the given task type. The following extension of E
shows this compilation scheme (except for the step combinator,
explained in Subsection 5.4).

EJrtrn 𝑒K 𝑟 = EJ𝑒K 𝑟 ; BCMkTask BCStable∥𝑒 ∥ ;
EJunstable 𝑒K 𝑟 = EJ𝑒K 𝑟 ; BCMkTask BCUnstable∥𝑒 ∥ ;

EJreadA 𝑒K 𝑟 = EJ𝑒K 𝑟 ; BCMkTask BCReadA;
EJwriteA 𝑒1 𝑒2K 𝑟 = EJ𝑒1K 𝑟 ; EJ𝑒2K 𝑟 ; BCMkTask BCWriteA;

EJreadD 𝑒K 𝑟 = EJ𝑒K 𝑟 ; BCMkTask BCReadD;
EJwriteD 𝑒1 𝑒2K 𝑟 = EJ𝑒1K 𝑟 ; EJ𝑒2K 𝑟 ; BCMkTask BCWriteD;

EJdelay 𝑒K 𝑟 = EJ𝑒K 𝑟 ; BCMkTask BCDelay;
EJrpeat 𝑒K 𝑟 = EJ𝑒K 𝑟 ; BCMkTask BCRepeat;
EJ𝑒1.||.𝑒2K 𝑟 = EJ𝑒1K 𝑟 ; EJ𝑒2K 𝑟 ; BCMkTask BCOr;
EJ𝑒1.&&.𝑒2K 𝑟 = EJ𝑒1K 𝑟 ; EJ𝑒2K 𝑟 ; BCMkTask BCAnd;

This simply translates to Clean code by writing the correct
BCMkTask instruction as exemplified in Listing 17.
instance rtrn BCInterpret where rtrn m = m >>| tell̀ [BCMkTask (bcstable m)]

Listing 17: The backend implementation for rtrn.

5.4 Step combinator
The step construct is a special type of task because the task value
of the left-hand side may change over time. Therefore, the contin-
uation tasks on the right-hand side are observing this task value
and acting upon it. In the compilation scheme, all continuations
are first converted to a single function that has two arguments: the
stability of the task and its value. This function either returns a
pointer to a task tree or fails (denoted by ⊥). It is special because
in the generated function, the task value of a task can actually be
inspected. Furthermore, it is a lazy node in the task tree: the right-
hand side may yield a new task tree after several rewrite steps (i.e.
it is allowed to create infinite task trees using step combinators).
The function is generated using the S scheme that requires two
arguments: the context 𝑟 and the width of the left-hand side so
that it can determine the position of the stability which is added
as an argument to the function. The resulting function is basically
a list of if-then-else constructions to check all predicates one by
one. Some optimization is possible here but has currently not been
implemented.

EJ𝑡1>>*.𝑡2K 𝑟 = EJ𝑎𝑓 𝑖 K 𝑟, ⟨𝑓 , 𝑖⟩ ∈ 𝑟 ; BCMkTask BCStable∥𝑟 ∥ ;
EJ𝑡1K 𝑟 ;
BCMkTask BCAnd;
BCMkTask

(BCStep (SJ𝑡2K (𝑟 + [⟨𝑙𝑠 , 𝑖⟩]) ∥𝑡1∥));

SJ[]K 𝑟 𝑤 = BCPush ⊥;
SJIfValue 𝑓 𝑡 : 𝑐𝑠K 𝑟 𝑤 = BCArg(∥𝑟 ∥ +𝑤); BCIsNoValue;

EJ𝑓 K 𝑟 ; BCAnd;
BCJmpF 𝑙1;
EJ𝑡K 𝑟 ; BCJmp 𝑙2;
BCLabel 𝑙1;SJ𝑐𝑠K 𝑟 𝑤 ;
BCLabel 𝑙2;

Where 𝑙1 and 𝑙2 are fresh labels
Similar for IfStable and IfUnstable

SJIfNoValue 𝑡 : 𝑐𝑠K 𝑟 𝑤 = BCArg(∥𝑟 ∥ +𝑤); BCIsNoValue;
BCJmpF 𝑙1;
EJ𝑡K 𝑟 ; BCJmp 𝑙2;
BCLabel 𝑙1;SJ𝑐𝑠K 𝑟 𝑤 ;
BCLabel 𝑙2;

Where 𝑙1 and 𝑙2 are fresh labels
SJAlways 𝑓 : 𝑐𝑠K 𝑟 𝑤 = EJ𝑓 K 𝑟 ;

First the context is evaluated. The context contains arguments
from functions and steps that need to be preserved after rewriting.
The evaluated context is combined with the left-hand side task
value by means of a .&&. combinator to store it in the task tree so
that it is available after a rewrite. This means that the task tree is
be transformed as follows:
t1 >>= 𝜆v1�t2 >>= 𝜆v2�t3 >>= . . .
/ / is transformed to
t1 >>= 𝜆v1�rtrn v1 .&&. t2 >>= 𝜆v2�rtrn (v1, v2) .&&. t3 >>= . . .

The translation to Clean is given in Listing 18.
instance step BCInterpret where

(>>*.) lhs cont

/ /Fetch a fresh label and fetch the context
= freshlabel >>= 𝜆funlab�gets (𝜆s�s.bcs_context)

/ /Generate code for lhs
>>= 𝜆ctx�lhs

/ /Possibly add the context
>>| tell̀ (if (ctx =: []) []

/ /The context is just the arguments up till now in reverse
( [BCArg (UInt8 i)\\i�reverse (indexList ctx)]

++ map BCMkTask (bcstable (UInt8 (length ctx)))

++ [BCMkTask BCTAnd]

))

/ / Increase the context
>>| addToCtx funlab zero lhswidth

/ /Lift the step function
>>| liftFunction funlab

/ /Width of the arguments is the width of the lhs plus the
//stability plus the context
(one + lhswidth + (UInt8 (length ctx)))

/ /Body label ctx width continuations
(contfun funlab (UInt8 (length ctx)))

/ /Return width (always 1, a task pointer)
(Just one)

>>| modify (𝜆s�{s & bcs_context=ctx})

>>| tell̀ [BCMkTask $ instr rhswidth funlab]

toContFun :: JumpLabel UInt8 � BCInterpret a

toContFun steplabel contextwidth

= foldr tcf (tell̀ [BCPush fail]) cont

where
tcf (IfStable f t)

= If ((stability >>| tell̀ [BCIsStable]) &. f val)

(t val >>| tell̀ [])

. . .
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stability = tell̀ [BCArg $ lhswidth + contextwidth]

val = retrieveArgs steplabel zero lhswidth

Listing 18: Backend implementation for the step class.

5.5 Shared Data Sources
The compilation scheme for SDS definitions is a trivial extension
to F since there is no code generated as seen below.

F Jsds 𝑥 = 𝑖 In 𝑚K = F J𝑚K;
F Jliftsds 𝑥 = 𝑖 In 𝑚K = F J𝑚K;

The SDS access tasks have a compilation scheme similar to other
tasks (see Subsection 5.3). The getSds task just pushes a task tree
node with the SDS identifier embedded. The setSds task evaluates
the value, lifts that value to a task tree node and creates an SDS set
node.

EJgetSds 𝑠K 𝑟 = BCMkTask(BCSdsGet𝑠);
EJsetSds 𝑠 𝑒K 𝑟 = EJ𝑒K 𝑟 ; BCMkTask BCStable∥𝑒 ∥ ;

BCMkTask(BCSdsSet𝑠);

While there is no code generated in the definition, the bytecode
compiler is storing the SDS data in the bcs_sdses field in the compi-
lation state. The SDSs are typed as functions in the host language
so an argument for this function must be created that represents
the SDS on evaluation. For this, an BCInterpret is created that emits
this identifier. When passing it to the function, the initial value
of the SDS is returned. This initial value is stored as a bytecode
encoded value in the state and the compiler continues with the rest
of the program.

Compiling getSds is a matter of executing the BCInterpret repre-
senting the SDS, which yields the identifier that can be embedded in
the instruction. Setting the SDS is similar: the identifier is retrieved
and the value is written to put in a task tree so that the resulting
task can remember the value it has written. Lifted SDSs are com-
piled in a very similar way. The only difference is that there is no
initial value but an iTasks SDS when executing the Clean function.
A lens on this SDS converting a from the Shared a to a String255—a
bytecode encoded version—is stored in the state. The encoding and
decoding itself is unsafe when used directly but the type system of
the language and the abstractions make it safe. Upon sending the
mTask task to the device, the initial values of the lifted SDSs are
fetched to complete the SDS specification.
:: Sds a = Sds Int

instance sds BCInterpret where
sds def = {main = freshsds >>= 𝜆sdsi�

let sds = modify (𝜆s�{s & bcs_sdses=put sdsi

(Left (toByteCode t)) s.bcs_sdses})

>>| pure (Sds sdsi)

(t In e) = def sds

in e.main}

getSds f = f >>= 𝜆(Sds i)� tell̀ [BCMkTask (BCSdsGet (fromInt i))]

setSds f v = f >>= 𝜆(Sds i)�v >>| tell̀

( map BCMkTask (bcstable (byteWidth v))

++ [BCMkTask (BCSdsSet (fromInt i))])

Listing 19: Backend implementation for the SDS classes.

6 TASK REWRITING
Tasks are rewritten every event loop iteration and one rewrite cycle
is generally very fast. This results in seemingly parallel execution
of the tasks because the rewrite steps are interleaved. Rewriting is
a destructive process that actually modifies the task tree nodes in
memory and marks nodes that become garbage. The task value is
stored on the stack and therefore only available during rewriting.

6.1 Basic tasks
The rtrn and unstable tasks always rewrite to themselves and have
no side effects. The GPIO interaction tasks do have side effects. The
readA and readD tasks will query the given pin every rewrite cycle
and emit it as an unstable task value. The writeA and writeD tasks
write the given value to the given pin and immediately rewrite to a
stable task of the written value.

6.2 Delay and repetition
The delay task stabilizes once a certain amount of time has been
passed by storing the finish time on initialization. In every rewrite
step it checks whether the current time is bigger than the finish
time and if so, it rewrites to a rtrn task containing the number of
milliseconds that it overshot the target. The rpeat task combinator
rewrites the argument until it becomes stable. Rewriting is a de-
structive process and therefore the original task tree must be saved.
As a consequence, on installation, the argument is cloned and the
task rewrites the clone.

6.3 Sequential combination
First the left-hand side of the step task is rewritten. The resulting
value is passed to the continuation function. If the continuation
function returns a pointer to a task tree, the task tree rewrites to
that task tree and marks the original left-hand side as trash. If the
function returns⊥, the step is kept unchanged. The step itself never
fields a value.

6.4 Parallel combination
There are two parallel task combinators available. A .&&. task only
becomes stable when both sides are stable. A .||. task becomes
stable when one of the sides is stable. The combinators first rewrite
both sides and then merge the task values according to the seman-
tics given in Listing 20.

(.&&.) :: (TaskValue a) (TaskValue b) � TaskValue (a, b)

(.&&.) (Value lhs stab1) (Value rhs stab2) = Value (lhs, rhs) (stab1 && stab2)

(.&&.) _ _ = NoValue

(.||.) :: (TaskValue a) (TaskValue a) � TaskValue a

(.||.) lhs=:(Value _ True) _ = lhs

(.||.) (Value lhs _) rhs=:(Value _ True) = rhs

(.||.) NoValue rhs = rhs

(.||.) lhs _ = lhs

Listing 20: Task value semantics for the parallel combinators.

6.5 Shared Data Source tasks
The BCSdsGet node always rewrites to itself. It will read the actual
SDS embedded and emit the value as an unstable task value.
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Setting an SDS is a bit more involved because after writing, it
emits the value written as a stable task value. The BCSdsSet node con-
tains the identifier for the SDS and a task tree that, when rewritten,
emits the value to be set as a stable task value. The naive approach
would be to just rewrite the BCSdsSet to a node similar to the BCSdsGet

but only with a stable value. However, after writing the SDS, its
value might have changed due to other tasks writing it, and then
the setSDS’s stable value may change. Therefore, the BCSdsSet node
is rewritten to the argument task tree which always represents
constant stable value. In future rewrites, the constant value node
emits the value that was originally written.

The client only knows whether an SDS is a lifted SDS, not to
which iTasks SDS it is connected. If the SDS is modified on the
device, it sends an update to the server.

7 RELATEDWORK
7.1 Functional Programming on IoT devices
Haenisch et al. showed that Functional Programming (FP) for IOT
leads to less code complexity and better maintainability [12]. For
example, Microscheme is a purely functional programming lan-
guage for the Arduino that runs on the little Arduino UNO [23].
To mitigate memory issues, direct compilation is used and some
elements like garbage collection and first class closures are omitted.
Furthermore it only supports a single thread of execution.

Functional Reactive Programming (FRP) [7] bears similarities to
TOP. Juniper, FRP for MCUs, translates to C++ [13]. In this way
even the small Arduino UNO can be programmed with parallel
tasks. It differs from the mTask approach in the sense that there is
no automatic communication and they do not allow dynamic tasks.

Others have approached FRP on MCUs without the computing
power constraint in mind. For example, many frameworks such as
Kafka and NodeJS, can be used to program sensor networks without
having to know the details of the communication protocols [19].
Also, de Troyer et al. used the FRP language Elixir that runs on the
Erlang virtual machine to create distributed IOT applications with
ease [24]. These approaches allow the creation of multithreaded
IOT applications with automatic communication similar to TOP.
However, a lot more computing power and memory is required to
run them and no approach supports dynamic task sending. Smaller
devices can participate but they become simpler data relay devices
instead.

7.2 Interpretation on IOT devices
Typical MCUs have limited memory which makes interpretation dif-
ficult. However, many solutions for interpreted or tethered control
of the device have been made.

Lightweight scripting languages for MCUs are amply available,
for example micropython, LUA and EveryLite [16]. All these solu-
tions require either a more substantial amount of memory or only
support single threaded operation.

Another example of this is the Firmata protocol that allows
remote control of peripherals via a host machine [22]. Implemen-
tations for this in a functional language are also available such
as hArduino [8]. Grebe et al. created Haskino that —using a re-
mote monad— allows the interpretation of C++ like code on the
Arduino [10]. Later they extended this model to support multi

tasking [11]. The language is still imperative and communication
between the threads has to be defined explicitly. In mTask, the inter-
leaving only happens on the task level, making SDS communication
automatically thread-safe.

Reprogramming MCUs is also possible without interpretation
and even wirelessly using Over-the-Air programming. However,
this wears out the programming memory. For example Bachelli
et al. described such a system in which code can be updated on
demand by writing it in the program memory OTA [1, 2].

7.3 Multitasking on IOT Devices
Multitasking and multithreading generally is difficult on MCUs
because of the limited resources. Solutions using (real time) OSs
are available to support multithreading on MCUs. Examples are
TinyOS [15], Qduino [4] or ERIKA [3]. They all have relatively high
hardware requirements (e.g. 32kB RAM) and often do not support
dynamic tasks or automatic communication with a server.

Multitasking on MCUs is also possible using manual interleav-
ing [9]. It often results in explicitly simulating state machines, is
work-intensive, error-prone and results in hard to maintain code
when using it for more than simple tasks. To mitigate the issues,
protothreads are available [6]. Protothreads allow, by clever use of
macros, automatic interleaving of stackless threads that are defined
in a single function. However, they cannot span multiple functions.

7.4 Multitasking in a functional language
Suspending and resuming calculations in FP programs in general is
possible by using call/CC techniques [25]. The programmer defines
where the code can be suspended and with some wrapper code,
multiple tasks can be interleaved. Tasks in TOP, and hence mTask,
are modelled as rewriting systems and are automatically interleaved
by interleaving the rewriting steps. Furthermore, thread-safe com-
munication is provided out of the box. Many other methods of
multitasking in functional languages rely on the thread support of
the OS which makes them unsuitable for memory-scarce inviron-
ments such as IoT devices.

8 CONCLUSION
The mTask system is a programming environment for develop-
ing all layers of dynamic IOT applications from a single source
following the TOP paradigm. The language is implemented as a
multi-backend, class-based shallowly embedded DSL. Its bytecode
backend offers run-time compilation for tailor-made IOT tasks that
can be executed on tiny microcontrollers. The given compilation
scheme describes exactly how tasks are compiled to bytecode. De-
vices are preparedwith an RTS that takes care of the communication
between the server and the client as it schedules and executes tasks.
It runs on devices with as little as 2kB memory since the RTS only
uses about 500 bytes of memory, leaving the rest for tasks, the stack
and the heap. Due to the nature of rewriting, parallel execution can
be simulated by interleaving the rewrite steps of tasks and subtasks.
Furthermore, mTask tasks can be lifted to iTasks tasks to create
applications with tasks both on the server and the device. An mTask
task can access iTasks SDSs with regular SDS constructs from the
mTask language. Programmers can achieve this without knowledge
about the underlying protocols and communication techniques,
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resulting in very compact code. The iTasks task combinator set
can then be used on mTask tasks mixed with iTasks tasks, albeit
via the server, to create applications spanning all IOT layers. With
the addition of the bytecode backend, the mTask system allows
the creation of complete, dynamic IOT applications. In this type of
application, tasks change rapidly and are constructed using runtime
information while not wearing out the program memory.

9 FUTURE WORK
Executing arbitrary code received from a server is a security con-
cern. While the language is quite general, it is still restricted to
operate solely on the device itself. Communication with the periph-
erals is not spelled out using dynamically sent code which mitigates
the risk a bit. In the current system, the device cannot determine if
it is communicating with a legitimate server. Some IOT communica-
tion protocols such as ZigBee have checks for this built in. Security
by design is often argued to be a much stronger starting point.
Therefore it would be fruitful to investigate the security issues to
identify the weak points and improve thereupon.

Tasks are constructed at runtime, but always with Clean as the
host language. Follow-up research could be to see whether it is
possible to create a type-safe iTasks editor for mTask tasks so that
at run-time truly any task can be created out of thin air.

In terms of language features, SDSs are very powerful in TOP.
In iTasks, lenses can be applied and SDSs can be transformed. The
mTask system would benefit from this as well. It is worth investi-
gating to see which type of lenses and transformations are possible
in the mTask ecosystem. Furthermore, the combinators could be
enriched with more direct interaction with the peripherals. For ex-
ample, the step combinator in iTasks contains options for buttons.

The execution model could also be enriched. The iTasks system
only rewrites tasks when an event occurred that is of interest to it.
It would be interesting to incorporate this as well in the mTask RTS.
Events might arise from interrupts, but also timers or triggers from
the host server. As an extension, interrupts might be caught using
an IfInterrupt continuation in the step combinator. Furthermore,
we would like to investigate how these interrupts can be modeled
in mTask and what the behaviour in the rewriting system would
be. It might be that the semantics for interrupts are similar to those
of exceptions in iTasks.
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Instr. Args Semantics sp pc

Return rw aw st[fp-aw-3+i] = st[fp+i] st[fp-aw-3+rw] st[fp-aw-1]
for all i∈{0..rw}
fp = st[fp-aw-2]

JumpF jl sp-1 st[sp-1] ? pc+1 : jl

Jump jl jl

JumpSR aw jl st[sp-i-1] = pc+2 jl
fp = sp

Tailcall w1 w2 jl rotate (w1+3+w2,w2) fp jl
fp = fp-w1+w2
where w1 is the width of the caller, w2 the width of the callee

Arg a st[sp] = st[fp-1-a] sp+1 pc+2

Push n s st[sp+i] = s[i] sp+n pc+2+n
for all i∈{0..n}

Pop n sp-n pc+2

Rot d n rotate (d, n) sp-n pc+3
for all i∈{0..n}

Dup st[sp] = st[sp-1] sp-1 pc+1

PushPtrs st[sp] = sp sp+3 pc+1
st[sp+1] = fp
st[sp+2] = 0

UnOp st[sp-1] = ⋄ st[sp-1] pc+1

BinOp st[sp-2] = st[sp-2] ⊕ st[sp-1] sp-1 pc+1

MkTask Stablen st[sp-n-1] = node (stable, sp-n+1 pc+2
st[sp-1], . . ., st[sp-n-1])

Unstablen st[sp-n-1] = node (unstable, sp-n+1 pc+2
st[sp-1], . . ., st[sp-n-1])

ReadD st[sp-1] = node (readd, st[sp-1]) pc+2

ReadA st[sp-1] = node (reada, st[sp-1]) pc+2

Repeat st[sp-1] = node (repeat, st[sp-1]) pc+2

Delay st[sp-1] = node (delay, st[sp-1]) pc+2

WriteD st[sp-2] = node (writed, st[sp-1], st[sp-2]) sp-1 pc+2

WriteA st[sp-2] = node (writea, st[sp-1], st[sp-2]) sp-1 pc+2

And st[sp-2] = node (and, st[sp-1], st[sp-2]) sp-1 pc+2

Or st[sp-2] = node (or, st[sp-1], st[sp-2]) sp-1 pc+2

SdsSet i st[sp-1] = node (sdsset,i, st[sp-1]) pc+3

SdsGet i st[sp] = node (sdsget, i) sp+1 pc+3

DHTTemp i st[sp-1] = node (dhttemp, i) sp+1 pc+3

DHTHumid i st[sp-1] = node (dhthumid, i) sp+1 pc+3

Step aw jl st[sp-1] = node (step, aw, jl, st[sp-1]) sp-1 pc+5

Table 1: Semantics for all instructions
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