3984fdb771bdae58b18b87666f6ffd41670041d6
[phd-thesis.git] / top / imp.tex
1 \documentclass[../thesis.tex]{subfiles}
2
3 \input{subfilepreamble}
4
5 \setcounter{chapter}{6}
6
7 \begin{document}
8 \input{subfileprefix}
9 \chapter{The implementation of mTask}%
10 \label{chp:implementation}
11 \begin{chapterabstract}
12 This chapter shows the implementation of the \gls{MTASK} system by:
13 \begin{itemize}
14 \item showing the compilation and execution toolchain;
15 \item showing the implementation of the byte code compiler for the \gls{MTASK} language;
16 \item elaborating on the implementation and architecture of the \gls{RTS} of \gls{MTASK};
17 \item and explaining the machinery used to automatically serialise and deserialise data to and fro the device.
18 \end{itemize}
19 \end{chapterabstract}
20
21 The \gls{MTASK} system targets resource-constrained edge devices that have little memory, processor speed, and communication.
22 Such edge devices are often powered by microcontrollers, tiny computers specifically designed for embedded applications.
23 The microcontrollers usually have flash-based program memory which wears out fairly quickly.
24 For example, the flash memory of the popular atmega328p powering the \gls{ARDUINO} UNO is rated for \num{10000} write cycles.
25 While this sounds like a lot, if new tasks are sent to the device every minute or so, a lifetime of only seven days is guaranteed.
26 Hence, for dynamic applications, storing the program in the \gls{RAM} of the device and thus interpreting this code is necessary in order to save precious write cycles of the program memory.
27 In the \gls{MTASK} system, the \gls{MTASK} \gls{RTS}, a domain-specific \gls{OS}, is responsible for interpreting the programs.
28
29 Programs in \gls{MTASK} are \gls{DSL} terms constructed at run time in an \gls{ITASK} system.
30 \Cref{fig:toolchain} shows the compilation and execution toolchain of such programs.
31 First, the source code is compiled to a byte code specification, this specification contains the compiled main expression, the functions, and the \gls{SDS} and peripheral configuration.
32 How an \gls{MTASK} task is compiled to this specification is shown in \cref{sec:compiler_imp}.
33 This package is then sent to the \gls{RTS} of the device for execution.
34 In order to execute a task, first the main expression is evaluated in the interpreter, resulting in a task tree.
35 Then, using small-step reduction, the task tree is continuously rewritten by the rewrite engine of the \gls{RTS}.
36 At times, the reduction requires the evaluation of expressions, using the interpreter.
37 During every rewrite step, a task value is produced.
38 On the device, the \gls{RTS} may have multiple tasks at the same time active.
39 By interleaving the rewrite steps, parallel operation is achieved.
40 The design, architecture and implementation of the \gls{RTS} is shown in \cref{sec:compiler_rts}.
41
42 \begin{figure}
43 \centering
44 \centerline{\includestandalone{toolchain}}
45 \caption{Compilation and execution toolchain of \gls{MTASK} programs.}%
46 \label{fig:toolchain}
47 \end{figure}
48
49 \section{Compiler}\label{sec:compiler_imp}
50 \todo[inline]{Zou je hier niet een prargraafje schrijven over dat dit een beetje speciale compiler is. Alle type checks worden al door Clean gedaan. Dat is voordat deze compiler ooit uitgevoerd gaat worden. Bovendien kan het Clean programma de te compileren byte code dynamisch maken. Dat staat natuurlijk al eerder een keer, maar je make niet aannemen dat iedereen alles leest (en nu nog weet)}
51 \todo[inline]{Dit gaat wel hard de diepte in. Zou je niet een kort stukje schrijven over hoe je bytecode machine er uit ziet?
52 Heap: voor de huidige task tree die herschreven wordt.
53 Function code: sequence of bytecode instructie.
54 SDSs + Objects
55 Stack om expressies te evelaueren en function calls te doen.
56 Plaatje a la Figure 7.5.
57
58 Om de code te maken heb je een intsantie van alle classen in mTask nodig voor BCInterpret a.
59
60 Voor veel lezers zou het genoeg zijn om alleen dat te snappen, maak het ze eenvoudig.}
61 \subsection{Compiler infrastructure}
62 The byte code compiler interpretation for the \gls{MTASK} language is implemented as a monad stack containing a writer monad and a state monad.
63 The writer monad is used to generate code snippets locally without having to store them in the monadic values.
64 The state monad accumulates the code, and stores the state the compiler requires.
65 \Cref{lst:compiler_state} shows the data type for the state, storing:
66 function the compiler currently is in;
67 code of the main expression;
68 context (see \cref{ssec:step});
69 code for the functions;
70 next fresh label;
71 a list of all the used \glspl{SDS}, either local \glspl{SDS} containing the initial value (\cleaninline{Left}) or lowered \glspl{SDS} (see \cref{sec:liftsds}) containing a reference to the associated \gls{ITASK} \gls{SDS};
72 and finally there is a list of peripherals used.
73
74 \begin{lstClean}[label={lst:compiler_state},caption={The type for the \gls{MTASK} byte code compiler.}]
75 :: BCInterpret a :== StateT BCState (WriterT [BCInstr] Identity) a
76 :: BCState =
77 { bcs_infun :: JumpLabel
78 , bcs_mainexpr :: [BCInstr]
79 , bcs_context :: [BCInstr]
80 , bcs_functions :: Map JumpLabel BCFunction
81 , bcs_freshlabel :: JumpLabel
82 , bcs_sdses :: [Either String255 MTLens]
83 , bcs_hardware :: [BCPeripheral]
84 }
85 :: BCFunction =
86 { bcf_instructions :: [BCInstr]
87 , bcf_argwidth :: UInt8
88 , bcf_returnwidth :: UInt8
89 }
90 \end{lstClean}
91
92 Executing the compiler is done by providing an initial state and running the monad.
93 After compilation, several post-processing steps are applied to make the code suitable for the microprocessor.
94 First, in all tail call \cleaninline{BCReturn} instructions are replaced by \cleaninline{BCTailCall} instructions to optimise the tail calls.
95 Furthermore, all byte code is concatenated, resulting in one big program.
96 Many instructions have commonly used arguments, so shorthands are introduced to reduce the program size.
97 For example, the \cleaninline{BCArg} instruction is often called with argument \numrange{0}{2} and can be replaced by the \numrange[parse-numbers=false]{\cleaninline{BCArg0}}{\cleaninline{BCArg2}} shorthands.
98 Furthermore, redundant instructions such as pop directly after push are removed as well in order not to burden the code generation with these intricacies.
99 Finally, the labels are resolved to represent actual program addresses instead of the freshly generated identifiers.
100 After the byte code is ready, the lowered \glspl{SDS} are resolved to provide an initial value for them.
101 The byte code, \gls{SDS} specification and peripheral specifications are the result of the process, ready to be sent to the device.
102
103 \subsection{Instruction set}
104 The instruction set is a fairly standard stack machine instruction set extended with special \gls{TOP} instructions for creating task tree nodes.
105 All instructions are housed in a \gls{CLEAN} \gls{ADT} and serialised to the byte representation using generic functions (see \cref{sec:ccodegen}).
106 Type synonyms and newtypes are used to provide insight on the arguments of the instructions (\cref{lst:type_synonyms}).
107 Labels are always two bytes long, all other arguments are one byte long.
108
109 \begin{lstClean}[caption={Type synonyms for instructions arguments.},label={lst:type_synonyms}]
110 :: ArgWidth :== UInt8 :: ReturnWidth :== UInt8
111 :: Depth :== UInt8 :: Num :== UInt8
112 :: SdsId :== UInt8 :: JumpLabel =: JL UInt16
113 \end{lstClean}
114
115 \Cref{lst:instruction_type} shows an excerpt of the \gls{CLEAN} type that represents the instruction set.
116 Shorthand instructions such as instructions with inlined arguments are omitted for brevity.
117 Detailed semantics for the instructions are given in \cref{chp:bytecode_instruction_set}.
118 One notable instruction is the \cleaninline{MkTask} instruction, it allocates and initialises a task tree node and pushes a pointer to it on the stack.
119
120 \begin{lstClean}[caption={The type housing the instruction set in \gls{MTASK}.},label={lst:instruction_type}]
121 :: BCInstr
122 //Jumps
123 = BCJumpF JumpLabel | BCLabel JumpLabel | BCJumpSR ArgWidth JumpLabel
124 | BCReturn ReturnWidth ArgWidth
125 | BCTailcall ArgWidth ArgWidth JumpLabel
126 //Arguments
127 | BCArgs ArgWidth ArgWidth
128 //Task node creation and refinement
129 | BCMkTask BCTaskType | BCTuneRateMs | BCTuneRateSec
130 //Stack ops
131 | BCPush String255 | BCPop Num | BCRot Depth Num | BCDup | BCPushPtrs
132 //Casting
133 | BCItoR | BCItoL | BCRtoI | ...
134 // arith
135 | BCAddI | BCSubI | ...
136 ...
137
138 :: BCTaskType
139 = BCStableNode ArgWidth | BCUnstableNode ArgWidth
140 // Pin io
141 | BCReadD | BCWriteD | BCReadA | BCWriteA | BCPinMode
142 // Interrupts
143 | BCInterrupt
144 // Repeat
145 | BCRepeat
146 // Delay
147 | BCDelay | BCDelayUntil
148 // Parallel
149 | BCTAnd | BCTOr
150 //Step
151 | BCStep ArgWidth JumpLabel
152 //Sds ops
153 | BCSdsGet SdsId | BCSdsSet SdsId | BCSdsUpd SdsId JumpLabel
154 // Rate limiter
155 | BCRateLimit
156 ////Peripherals
157 //DHT
158 | BCDHTTemp UInt8 | BCDHTHumid UInt8
159 ...
160 \end{lstClean}
161
162 \section{Compilation rules}
163 This section describes the compilation rules, the translation from \gls{AST} to byte code.
164 The compilation scheme consists of three schemes\slash{}functions.
165 Double vertical bars, e.g.\ $\stacksize{a_i}$, denote the number of stack cells required to store the argument.
166
167 Some schemes have a context $r$ as an argument which contains information about the location of the arguments in scope.
168 More information is given in the schemes requiring such arguments.
169
170 \begin{table}
171 \centering
172 \caption{An overview of the compilation schemes.}
173 \begin{tabularx}{\linewidth}{l X}
174 \toprule
175 Scheme & Description\\
176 \midrule
177 $\cschemeE{e}{r}$ & Produces the value of expression $e$ given the context $r$ and pushes it on the stack.
178 The result can be a basic value or a pointer to a task.\\
179 $\cschemeF{e}$ & Generates the bytecode for functions.\\
180 $\cschemeS{e}{r}{w} $ & Generates the function for the step continuation given the context $r$ and the width $w$ of the left-hand side task value.\\
181 \bottomrule
182 \end{tabularx}
183 \end{table}
184
185 \subsection{Expressions}
186 Almost all expression constructions are compiled using $\mathcal{E}$.
187 The argument of $\mathcal{E}$ is the context (see \cref{ssec:functions}).
188 Values are always placed on the stack; tuples and other compound data types are unpacked.
189 Function calls, function arguments and tasks are also compiled using $\mathcal{E}$ but their compilations is explained later.
190
191 \begin{align*}
192 \cschemeE{\text{\cleaninline{lit}}~e}{r} & = \text{\cleaninline{BCPush (bytecode e)}};\\
193 \cschemeE{e_1\mathbin{\text{\cleaninline{+.}}}e_2}{r} & = \cschemeE{e_1}{r};
194 \cschemeE{e_2}{r};
195 \text{\cleaninline{BCAdd}};\\
196 {} & \text{\emph{Similar for other binary operators}}\\
197 \cschemeE{\text{\cleaninline{Not}}~e}{r} & =
198 \cschemeE{e}{r};
199 \text{\cleaninline{BCNot}};\\
200 {} & \text{\emph{Similar for other unary operators}}\\
201 \cschemeE{\text{\cleaninline{If}}~e_1~e_2~e_3}{r} & =
202 \cschemeE{e_1}{r};
203 \text{\cleaninline{BCJmpF}}\enskip l_{else}; \mathbin{\phantom{=}} \cschemeE{e_2}{r}; \text{\cleaninline{BCJmp}}\enskip l_{endif};\\
204 {} & \mathbin{\phantom{=}} \text{\cleaninline{BCLabel}}\enskip l_{else}; \cschemeE{e_3}{r}; \mathbin{\phantom{=}} \text{\cleaninline{BCLabel}}\enskip l_{endif};\\
205 {} & \text{\emph{Where $l_{else}$ and $l_{endif}$ are fresh labels}}\\
206 \cschemeE{\text{\cleaninline{tupl}}~e_1~e_2}{r} & =
207 \cschemeE{e_1}{r};
208 \cschemeE{e_2}{r};\\
209 {} & \text{\emph{Similar for other unboxed compound data types}}\\
210 \cschemeE{\text{\cleaninline{first}}~e}{r} & =
211 \cschemeE{e}{r};
212 \text{\cleaninline{BCPop}}\enskip w;\\
213 {} & \text{\emph{Where $w$ is the width of the right value and}}\\
214 {} & \text{\emph{similar for other unboxed compound data types}}\\
215 \cschemeE{\text{\cleaninline{second}}\enskip e}{r} & =
216 \cschemeE{e}{r};
217 \text{\cleaninline{BCRot}}\enskip (w_l+w_r)\enskip w_r;
218 \text{\cleaninline{BCPop}}\enskip w_l;\\
219 {} & \text{\emph{Where $w_l$ is the width of the left and, $w_r$ of the right value}}\\
220 {} & \text{\emph{similar for other unboxed compound data types}}\\
221 \end{align*}
222
223 Translating $\mathcal{E}$ to \gls{CLEAN} code is very straightforward, it basically means writing the instructions to the writer monad.
224 Almost always, the type of the interpretation is not used, i.e.\ it is a phantom type.
225 To still have the functions return the correct type, the \cleaninline{tell`}\footnote{\cleaninline{tell` :: [BCInstr] -> BCInterpret a}} helper is used.
226 This function is similar to the writer monad's \cleaninline{tell} function but is cast to the correct type.
227 \Cref{lst:imp_arith} shows the implementation for the arithmetic and conditional expressions.
228 Note that $r$, the context, is not an explicit argument here but stored in the state.
229
230 \begin{lstClean}[caption={Interpretation implementation for the arithmetic and conditional functions.},label={lst:imp_arith}]
231 instance expr BCInterpret where
232 lit t = tell` [BCPush (toByteCode{|*|} t)]
233 (+.) a b = a >>| b >>| tell` [BCAdd]
234 ...
235 If c t e = freshlabel >>= \elselabel->freshlabel >>= \endiflabel->
236 c >>| tell` [BCJumpF elselabel] >>|
237 t >>| tell` [BCJump endiflabel,BCLabel elselabel] >>|
238 e >>| tell` [BCLabel endiflabel]
239 \end{lstClean}
240
241 \subsection{Functions}\label{ssec:functions}
242 Compiling functions and other top-level definitions is done using in $\mathcal{F}$, which generates bytecode for the complete program by iterating over the functions and ending with the main expression.
243 When compiling the body of the function, the arguments of the function are added to the context so that the addresses can be determined when referencing arguments.
244 The main expression is a special case of $\mathcal{F}$ since it neither has arguments nor something to continue.
245 Therefore, it is just compiled using $\mathcal{E}$ with an empty context.
246
247 \begin{align*}
248 \cschemeF{main=m} & =
249 \cschemeE{m}{[]};\\
250 \cschemeF{f~a_0 \ldots a_n = b~\text{\cleaninline{In}}~m} & =
251 \text{\cleaninline{BCLabel}}~f; \cschemeE{b}{[\langle f, i\rangle, i\in \{(\Sigma^n_{i=0}\stacksize{a_i})..0\}]};\\
252 {} & \mathbin{\phantom{=}} \text{\cleaninline{BCReturn}}~\stacksize{b}~n; \cschemeF{m};\\
253 \end{align*}
254
255 A function call starts by pushing the stack and frame pointer, and making space for the program counter (\cref{lst:funcall_pushptrs}) followed by evaluating the arguments in reverse order (\cref{lst:funcall_args}).
256 On executing \cleaninline{BCJumpSR}, the program counter is set, and the interpreter jumps to the function (\cref{lst:funcall_jumpsr}).
257 When the function returns, the return value overwrites the old pointers and the arguments.
258 This occurs right after a \cleaninline{BCReturn} (\cref{lst:funcall_ret}).
259 Putting the arguments on top of pointers and not reserving space for the return value uses little space and facilitates tail call optimisation.
260
261 \begin{figure}
262 \begin{subfigure}{.24\linewidth}
263 \centering
264 \includestandalone{memory1}
265 \caption{\cleaninline{BCPushPtrs}.}\label{lst:funcall_pushptrs}
266 \end{subfigure}
267 \begin{subfigure}{.24\linewidth}
268 \centering
269 \includestandalone{memory2}
270 \caption{Arguments.}\label{lst:funcall_args}
271 \end{subfigure}
272 \begin{subfigure}{.24\linewidth}
273 \centering
274 \includestandalone{memory3}
275 \caption{\cleaninline{BCJumpSR}.}\label{lst:funcall_jumpsr}
276 \end{subfigure}
277 \begin{subfigure}{.24\linewidth}
278 \centering
279 \includestandalone{memory4}
280 \caption{\cleaninline{BCReturn}.}\label{lst:funcall_ret}
281 \end{subfigure}
282 \caption{The stack layout during function calls.}%
283 \end{figure}
284
285 Calling a function and referencing function arguments are an extension to $\mathcal{E}$ as shown below.
286 Arguments may be at different places on the stack at different times (see \cref{ssec:step}) and therefore the exact location is always is determined from the context using \cleaninline{findarg}\footnote{\cleaninline{findarg [l`:r] l = if (l == l`) 0 (1 + findarg r l)}}.
287 Compiling argument $a_{f^i}$, the $i$th argument in function $f$, consists of traversing all positions in the current context.
288 Arguments wider than one stack cell are fetched in reverse to reconstruct the original order.
289
290 \begin{align*}
291 \cschemeE{f(a_0, \ldots, a_n)}{r} & =
292 \text{\cleaninline{BCPushPtrs}}; \cschemeE{a_i}{r}~\text{for all}~i\in\{n\ldots 0\}; \text{\cleaninline{BCJumpSR}}~n~f;\\
293 \cschemeE{a_{f^i}}{r} & =
294 \text{\cleaninline{BCArg}~findarg}(r, f, i)~\text{for all}~i\in\{w\ldots v\};\\
295 {} & v = \Sigma^{i-1}_{j=0}\stacksize{a_{f^j}}~\text{ and }~ w = v + \stacksize{a_{f^i}}\\
296 \end{align*}
297
298 Translating the compilation schemes for functions to \gls{CLEAN} is not as straightforward as other schemes due to the nature of shallow embedding in combination with the use of state.
299 The \cleaninline{fun} class has a single function with a single argument.
300 This argument is a \gls{CLEAN} function that---when given a callable \gls{CLEAN} function representing the \gls{MTASK} function---produces the \cleaninline{main} expression and a callable function.
301 To compile this, the argument must be called with a function representing a function call in \gls{MTASK}.
302 \Cref{lst:fun_imp} shows the implementation for this as \gls{CLEAN} code.
303 To uniquely identify the function, a fresh label is generated.
304 The function is then called with the \cleaninline{callFunction} helper function that generates the instructions that correspond to calling the function.
305 That is, it pushes the pointers, compiles the arguments, and writes the \cleaninline{JumpSR} instruction.
306 The resulting structure (\cleaninline{g In m}) contains a function representing the mTask function (\cleaninline{g}) and the \cleaninline{main} structure to continue with.
307 To get the actual function, \cleaninline{g} must be called with representations for the argument, i.e.\ using \cleaninline{findarg} for all arguments.
308 The arguments are added to the context using \cleaninline{infun} and \cleaninline{liftFunction} is called with the label, the argument width and the compiler.
309 This function executes the compiler, decorates the instructions with a label and places them in the function dictionary together with the metadata such as the argument width.
310 After lifting the function, the context is cleared again and compilation continues with the rest of the program.
311
312 \begin{lstClean}[label={lst:fun_imp},caption={The interpretation implementation for functions.}]
313 instance fun (BCInterpret a) BCInterpret | type a where
314 fun def = {main=freshlabel >>= \funlabel->
315 let (g In m) = def \a->callFunction funlabel (toByteWidth a) [a]
316 argwidth = toByteWidth (argOf g)
317 in addToCtx funlabel zero argwidth
318 >>| infun funlabel
319 (liftFunction funlabel argwidth
320 (g (retrieveArgs funlabel zero argwidth)
321 ) ?None)
322 >>| clearCtx >>| m.main
323 }
324
325 argOf :: ((m a) -> b) a -> UInt8 | toByteWidth a
326 callFunction :: JumpLabel UInt8 [BCInterpret b] -> BCInterpret c | ...
327 liftFunction :: JumpLabel UInt8 (BCInterpret a) (?UInt8) -> BCInterpret ()
328 infun :: JumpLabel (BCInterpret a) -> BCInterpret a
329 \end{lstClean}
330
331 \subsection{Tasks}\label{ssec:scheme_tasks}
332 Task trees are created with the \cleaninline{BCMkTask} instruction that allocates a node and pushes a pointer to it on the stack.
333 It pops arguments from the stack according to the given task type.
334 The following extension of $\mathcal{E}$ shows this compilation scheme (except for the step combinator, explained in \cref{ssec:step}).
335
336 \begin{align*}
337 \cschemeE{\text{\cleaninline{rtrn}}~e}{r} & =
338 \cschemeE{e}{r};
339 \text{\cleaninline{BCMkTask BCStable}}_{\stacksize{e}};\\
340 \cschemeE{\text{\cleaninline{unstable}}~e}{r} & =
341 \cschemeE{e}{r};
342 \text{\cleaninline{BCMkTask BCUnstable}}_{\stacksize{e}};\\
343 \cschemeE{\text{\cleaninline{readA}}~e}{r} & =
344 \cschemeE{e}{r};
345 \text{\cleaninline{BCMkTask BCReadA}};\\
346 \cschemeE{\text{\cleaninline{writeA}}~e_1~e_2}{r} & =
347 \cschemeE{e_1}{r};
348 \cschemeE{e_2}{r};
349 \text{\cleaninline{BCMkTask BCWriteA}};\\
350 \cschemeE{\text{\cleaninline{readD}}~e}{r} & =
351 \cschemeE{e}{r};
352 \text{\cleaninline{BCMkTask BCReadD}};\\
353 \cschemeE{\text{\cleaninline{writeD}}~e_1~e_2}{r} & =
354 \cschemeE{e_1}{r};
355 \cschemeE{e_2}{r};
356 \text{\cleaninline{BCMkTask BCWriteD}};\\
357 \cschemeE{\text{\cleaninline{delay}}~e}{r} & =
358 \cschemeE{e}{r};
359 \text{\cleaninline{BCMkTask BCDelay}};\\
360 \cschemeE{\text{\cleaninline{rpeat}}~e}{r} & =
361 \cschemeE{e}{r};
362 \text{\cleaninline{BCMkTask BCRepeat}};\\
363 \cschemeE{e_1\text{\cleaninline{.\|\|.}}e_2}{r} & =
364 \cschemeE{e_1}{r};
365 \cschemeE{e_2}{r};
366 \text{\cleaninline{BCMkTask BCOr}};\\
367 \cschemeE{e_1\text{\cleaninline{.&&.}}e_2}{r} & =
368 \cschemeE{e_1}{r};
369 \cschemeE{e_2}{r};
370 \text{\cleaninline{BCMkTask BCAnd}};\\
371 \end{align*}
372
373 This translates to Clean code by writing the correct \cleaninline{BCMkTask} instruction as exemplified in \cref{lst:imp_ret}.
374
375 \begin{lstClean}[caption={The byte code interpretation implementation for \cleaninline{rtrn}.},label={lst:imp_ret}]
376 instance rtrn BCInterpret
377 where
378 rtrn m = m >>| tell` [BCMkTask (bcstable m)]
379 \end{lstClean}
380
381 \subsection{Sequential combinator}\label{ssec:step}
382 The \cleaninline{step} construct is a special type of task because the task value of the left-hand side changes over time.
383 Therefore, the task continuations on the right-hand side are \emph{observing} this task value and acting upon it.
384 In the compilation scheme, all continuations are first converted to a single function that has two arguments: the stability of the task and its value.
385 This function either returns a pointer to a task tree or fails (denoted by $\bot$).
386 It is special because in the generated function, the task value of a task is inspected.
387 Furthermore, it is a lazy node in the task tree: the right-hand side may yield a new task tree after several rewrite steps, i.e.\ it is allowed to create infinite task trees using step combinators.
388 The function is generated using the $\mathcal{S}$ scheme that requires two arguments: the context $r$ and the width of the left-hand side so that it can determine the position of the stability which is added as an argument to the function.
389 The resulting function is basically a list of if-then-else constructions to check all predicates one by one.
390 Some optimisation is possible here but has currently not been implemented.
391
392 \begin{align*}
393 \cschemeE{t_1\text{\cleaninline{>>*.}}e_2}{r} & =
394 \cschemeE{a_{f^i}}{r}, \langle f, i\rangle\in r;
395 \text{\cleaninline{BCMkTask}}~\text{\cleaninline{BCStable}}_{\stacksize{r}}; \cschemeE{t_1}{r};\\
396 {} & \mathbin{\phantom{=}} \text{\cleaninline{BCMkTask}}~\text{\cleaninline{BCAnd}}; \text{\cleaninline{BCMkTask}}~(\text{\cleaninline{BCStep}}~(\cschemeS{e_2}{(r + [\langle l_s, i\rangle])}{\stacksize{t_1}}));\\
397 \end{align*}
398
399 \begin{align*}
400 \cschemeS{[]}{r}{w} & =
401 \text{\cleaninline{BCPush}}~\bot;\\
402 \cschemeS{\text{\cleaninline{IfValue}}~f~t:cs}{r}{w} & =
403 \text{\cleaninline{BCArg}} (\stacksize{r} + w);
404 \text{\cleaninline{BCIsNoValue}};\\
405 {} & \mathbin{\phantom{=}} \cschemeE{f}{r};
406 \text{\cleaninline{BCAnd}};\\
407 {} & \mathbin{\phantom{=}} \text{\cleaninline{BCJmpF}}~l_1;\\
408 {} & \mathbin{\phantom{=}} \cschemeE{t}{r};
409 \text{\cleaninline{BCJmp}}~l_2;\\
410 {} & \mathbin{\phantom{=}} \text{\cleaninline{BCLabel}}~l_1;
411 \cschemeS{cs}{r}{w};\\
412 {} & \mathbin{\phantom{=}} \text{\cleaninline{BCLabel}}~l_2;\\
413 {} & \text{\emph{Where $l_1$ and $l_2$ are fresh labels}}\\
414 {} & \text{\emph{Similar for \cleaninline{IfStable} and \cleaninline{IfUnstable}}}\\
415 \end{align*}
416
417 The step combinator has a task as the left-hand side and a list of continuations at the right-hand side.
418 First the context is evaluated ($\cschemeE{a_{f^i}}{r}$).
419 The context contains arguments from functions and steps that need to be preserved after rewriting.
420 The evaluated context is combined with the left-hand side task value by means of a \cleaninline{.&&.} combinator to store it in the task tree so that it is available after a rewrite step.
421 This means that the task tree is transformed as seen in \cref{lst:context_tree}.
422 In this figure, the expression \cleaninline{t1 >>=. \v1->t2 >>=. \v2->...} is shown\footnote{%
423 \cleaninline{t >>=. e} is a shorthand combinator for \cleaninline{t >>* [OnStable (\_->true) e].}}.
424 Then, the right-hand side list of continuations is converted to an expression using $\mathcal{S}$.
425 \todo[inline]{Beter uitleggen?}
426
427 \begin{figure}
428 \begin{subfigure}{.5\textwidth}
429 \includestandalone{contexttree1}
430 \caption{Without the embedded context.}
431 \end{subfigure}%
432 \begin{subfigure}{.5\textwidth}
433 \includestandalone{contexttree2}
434 \caption{With the embedded context.}
435 \end{subfigure}
436 \caption{Context embedded in a task tree.}%
437 \label{lst:context_tree}
438 \end{figure}
439
440 The translation to \gls{CLEAN} is given in \cref{lst:imp_seq}.
441
442 \begin{lstClean}[caption={Byte code compilation interpretation implementation for the step class.},label={lst:imp_seq}]
443 instance step BCInterpret where
444 (>>*.) lhs cont
445 //Fetch a fresh label and fetch the context
446 = freshlabel >>= \funlab->gets (\s->s.bcs_context)
447 //Generate code for lhs
448 >>= \ctx->lhs
449 //Possibly add the context
450 >>| tell` (if (ctx =: []) []
451 //The context is just the arguments up till now in reverse
452 ( [BCArg (UInt8 i)\\i<-reverse (indexList ctx)]
453 ++ map BCMkTask (bcstable (UInt8 (length ctx)))
454 ++ [BCMkTask BCTAnd]
455 ))
456 //Increase the context
457 >>| addToCtx funlab zero lhswidth
458 //Lift the step function
459 >>| liftFunction funlab
460 //Width of the arguments is the width of the lhs plus the
461 //stability plus the context
462 (one + lhswidth + (UInt8 (length ctx)))
463 //Body label ctx width continuations
464 (contfun funlab (UInt8 (length ctx)))
465 //Return width (always 1, a task pointer)
466 (Just one)
467 >>| modify (\s->{s & bcs_context=ctx})
468 >>| tell` [BCMkTask (instr rhswidth funlab)]
469
470 toContFun :: JumpLabel UInt8 -> BCInterpret a
471 toContFun steplabel contextwidth
472 = foldr tcf (tell` [BCPush fail]) cont
473 where
474 tcf (IfStable f t)
475 = If ((stability >>| tell` [BCIsStable]) &. f val)
476 (t val >>| tell` [])
477 ...
478 stability = tell` [BCArg (lhswidth + contextwidth)]
479 val = retrieveArgs steplabel zero lhswidth
480 \end{lstClean}
481
482 \subsection{Shared data sources}\label{lst:imp_sds}
483 The compilation scheme for \gls{SDS} definitions is a trivial extension to $\mathcal{F}$.
484 While there is no code generated, metadata is added to the compiler state identifying the \gls{SDS}, this is seen later in \cref{lst:comp_sds}.
485
486 \begin{align*}
487 \cschemeF{\text{\cleaninline{sds}}~x=i~\text{\cleaninline{In}}~m} & =
488 \cschemeF{m};\\
489 \end{align*}
490
491 The \gls{SDS} access tasks have a compilation scheme similar to other tasks (see \cref{ssec:scheme_tasks}).
492 The \cleaninline{getSds} task just pushes a task tree node with the \gls{SDS} identifier embedded.
493 The \cleaninline{setSds} task evaluates the value, lifts that value to a task tree node and creates \pgls{SDS} set node.
494
495 \begin{align*}
496 \cschemeE{\text{\cleaninline{getSds}}~s}{r} & =
497 \text{\cleaninline{BCMkTask}} (\text{\cleaninline{BCSdsGet}} s);\\
498 \cschemeE{\text{\cleaninline{setSds}}~s~e}{r} & =
499 \cschemeE{e}{r};
500 \text{\cleaninline{BCMkTask BCStable}}_{\stacksize{e}};\\
501 {} & \mathbin{\phantom{=}} \text{\cleaninline{BCMkTask}} (\text{\cleaninline{BCSdsSet}} s);\\
502 \end{align*}
503
504 While there is no code generated in the definition, the byte code compiler is storing all \gls{SDS} data in the \cleaninline{bcs_sdses} field in the compilation state.
505 Regular \glspl{SDS} are stored as \cleaninline{Right String255} values.
506 The \glspl{SDS} are typed as functions in the host language, so an argument for this function must be created that represents the \gls{SDS} on evaluation.
507 For this, an \cleaninline{BCInterpret} is created that emits this identifier.
508 When passing it to the function, the initial value of the \gls{SDS} is returned.
509 In the case of a local \gls{SDS}, this initial value is stored as a byte code encoded value in the state and the compiler continues with the rest of the program.
510
511 \Cref{lst:comp_sds} shows the implementation of the \cleaninline{sds} type class.
512 First, the initial \gls{SDS} value is extracted from the expression by bootstrapping the fixed point with a dummy value.
513 This is safe because the expression on the right-hand side of the \cleaninline{In} is never evaluated.
514 Then, using \cleaninline{addSdsIfNotExist}, the identifier for this particular \gls{SDS} is either retrieved from the compiler state or generated freshly.
515 This identifier is then used to provide a reference to the \cleaninline{def} definition to evaluate the main expression.
516 Compiling \cleaninline{getSds} is a matter of executing the \cleaninline{BCInterpret} representing the \gls{SDS}, which yields the identifier that can be embedded in the instruction.
517 Setting the \gls{SDS} is similar: the identifier is retrieved, and the value is written to put in a task tree so that the resulting task can remember the value it has written.
518
519 % VimTeX: SynIgnore on
520 \begin{lstClean}[caption={Backend implementation for the \gls{SDS} classes.},label={lst:comp_sds}]
521 :: Sds a = Sds Int
522 instance sds BCInterpret where
523 sds def = {main =
524 let (t In e) = def (abort "sds: expression too strict")
525 in addSdsIfNotExist (Left $ String255 (toByteCode{|*|} t))
526 >>= \sdsi-> let (t In e) = def (pure (Sds sdsi))
527 in e.main
528 }
529 getSds f = f >>= \(Sds i)-> tell` [BCMkTask (BCSdsGet (fromInt i))]
530 setSds f v = f >>= \(Sds i)->v >>| tell`
531 ( map BCMkTask (bcstable (byteWidth v))
532 ++ [BCMkTask (BCSdsSet (fromInt i))])
533 \end{lstClean}
534 % VimTeX: SynIgnore off
535
536 Lowered \glspl{SDS} are stored in the compiler state as \cleaninline{Right MTLens} values.
537 The compilation of the code and the serialisation of the data throws away all typing information.
538 The \cleaninline{MTLens} is a type synonym for \pgls{SDS} that represents the typeless serialised value of the underlying \gls{SDS}.
539 This is done so that the \cleaninline{withDevice} task can write the received \gls{SDS} updates to the according \gls{SDS} while the \gls{SDS} is not in scope.
540 The \gls{ITASK} notification mechanism then takes care of the rest.
541 Such \pgls{SDS} is created by using the \cleaninline{mapReadWriteError} which, given a pair of read and write functions with error handling, produces \pgls{SDS} with the lens embedded.
542 The read function transforms converts the typed value to a typeless serialised value.
543 The write function will, given a new serialised value and the old typed value, produce a new typed value.
544 It tries to decode the serialised value, if that succeeds, it is written to the underlying \gls{SDS}, an error is thrown otherwise.
545 \Cref{lst:mtask_itasksds_lens} shows the implementation for this.
546
547 % VimTeX: SynIgnore on
548 \begin{lstClean}[label={lst:mtask_itasksds_lens},caption={Lens applied to lowered \gls{ITASK} \glspl{SDS} in \gls{MTASK}.}]
549 lens :: (Shared sds a) -> MTLens | type a & RWShared sds
550 lens sds = mapReadWriteError
551 ( \r-> Ok (fromString (toByteCode{|*|} r)
552 , \w r-> ?Just <$> iTasksDecode (toString w)
553 ) ?None sds
554 \end{lstClean}
555 % VimTeX: SynIgnore off
556
557 \Cref{lst:mtask_itasksds_lift} shows the code for the implementation of \cleaninline{lowerSds} that uses the \cleaninline{lens} function shown earlier.
558 It is very similar to the \cleaninline{sds} constructor in \cref{lst:comp_sds}, only now a \cleaninline{Right} value is inserted in the \gls{SDS} administration.
559
560 % VimTeX: SynIgnore on
561 \begin{lstClean}[label={lst:mtask_itasksds_lift},caption={The implementation for lowering \glspl{SDS} in \gls{MTASK}.}]
562 instance lowerSds BCInterpret where
563 lowerSds def = {main =
564 let (t In _) = def (abort "lowerSds: expression too strict")
565 in addSdsIfNotExist (Right $ lens t)
566 >>= \sdsi->let (_ In e) = def (pure (Sds sdsi)) in e.main
567 }\end{lstClean}
568 % VimTeX: SynIgnore off
569
570 \section{Run-time system}\label{sec:compiler_rts}
571 The \gls{RTS} is a customisable domain-specific \gls{OS} that takes care of the execution of tasks.
572 Furthermore, it also takes care of low-level mechanisms such as the communication, multitasking, and memory management.
573 Once a device is programmed with the \gls{MTASK} \gls{RTS}, it can continuously receive new tasks without the need for reprogramming.
574 The \gls{OS} is written in portable \ccpp{} and only contains a small device-specific portion.
575 In order to keep the abstraction level high and the hardware requirements low, much of the high-level functionality of the \gls{MTASK} language is implemented not in terms of lower-level constructs from \gls{MTASK} language but in terms of \ccpp{} code.
576
577 Most microcontrollers software consists of a cyclic executive instead of an \gls{OS}, this one loop function is continuously executed and all work is performed there.
578 In the \gls{RTS} of the \gls{MTASK} system, there is also such an event loop function.
579 It is a function with a relatively short execution time that gets called repeatedly.
580 The event loop consists of three distinct phases.
581 After doing the three phases, the devices goes to sleep for as long as possible (see \cref{chp:green_computing_mtask} for more details on task scheduling).
582
583 \subsection{Communication phase}
584 In the first phase, the communication channels are processed.
585 The exact communication method is a customisable device-specific option baked into the \gls{RTS}.
586 The interface is kept deliberately simple and consists of two layers: a link interface and a communication interface.
587 Besides opening, closing and cleaning up, the link interface has three functions that are shown in \cref{lst:link_interface}.
588 Consequently, implementing this link interface is very simple, but it is still possible to implement more advanced link features such as buffering.
589 There are implementations for this interface for serial or \gls{WIFI} connections using \gls{ARDUINO}, and \gls{TCP} connections for Linux.
590
591 \begin{lstArduino}[caption={Link interface of the \gls{MTASK} \gls{RTS}.},label={lst:link_interface}]
592 bool link_input_available(void);
593 uint8_t link_read_byte(void);
594 void link_write_byte(uint8_t b);
595 \end{lstArduino}
596
597 The communication interface abstracts away from this link interface and is typed instead.
598 It contains only two functions as seen in \cref{lst:comm_interface}.
599 There are implementations for direct communication, or communication using an \gls{MQTT} broker.
600 Both use the automatic serialisation and deserialisation shown in \cref{sec:ccodegen}.
601
602 \begin{lstArduino}[caption={Communication interface of the \gls{MTASK} \gls{RTS}.},label={lst:comm_interface}]
603 struct MTMessageTo receive_message(void);
604 void send_message(struct MTMessageFro msg);
605 \end{lstArduino}
606
607 Processing the received messages from the communication channels happens synchronously and the channels are exhausted completely before moving on to the next phase.
608 There are several possible messages that can be received from the server:
609
610 \begin{description}
611 \item[SpecRequest]
612 is a message instructing the device to send its specification.
613 It is received immediately after connecting.
614 The \gls{RTS} responds with a \texttt{Spec} answer containing the specification.
615 \item[TaskPrep]
616 tells the device a task is on its way.
617 Especially on faster connections, it may be the case that the communication buffers overflow because a big message is sent while the \gls{RTS} is busy executing tasks.
618 This message allows the \gls{RTS} to postpone execution for a while, until the larger task has been received.
619 The server sends the task only after the device acknowledged the preparation by sending a \texttt{TaskPrepAck} message.
620 \item[Task]
621 contains a new task, its peripheral configuration, the \glspl{SDS}, and the byte code.
622 The new task is immediately copied to the task storage but is only initialised during the next phase.
623 The device acknowledges the task by sending a \texttt{TaskAck} message.
624 \item[SdsUpdate]
625 notifies the device of the new value for a lowered \gls{SDS}.
626 The old value of the lowered \gls{SDS} is immediately replaced with the new one.
627 There is no acknowledgement required.
628 \item[TaskDel]
629 instructs the device to delete a running task.
630 Tasks are automatically deleted when they become stable.
631 However, a task may also be deleted when the surrounding task on the server is deleted, for example when the task is on the left-hand side of a step combinator and the condition to step holds.
632 The device acknowledges the deletion by sending a \texttt{TaskDelAck}.
633 \item[Shutdown]
634 tells the device to reset.
635 \end{description}
636
637 \subsection{Execution phase}
638 The second phase performs one execution step for all tasks that wish for it.
639 Tasks are ordered in a priority queue ordered by the time a task needs to execute, the \gls{RTS} selects all tasks that can be scheduled, see \cref{sec:scheduling} for more details.
640 Execution of a task is always an interplay between the interpreter and the rewriter.
641 \todo[inline]{ik denk dat die rewriter een paar woorden uitleg kan gebruiken.
642 The rewriter scans the current task tree and tries to reqrite it. Expressions in the tree are evaluated by the interpreter.\ o.i.d.}
643
644 When a new task is received, the main expression is evaluated to produce a task tree.
645 A task tree is a tree structure in which each node represents a task combinator and the leaves are basic tasks.
646 If a task is not initialised yet, i.e.\ the pointer to the current task tree is still null, the byte code of the main function is interpreted.
647 The main expression of \gls{MTASK} programs always produces a task tree.\todo[inline]{note dat mtask programmas altijd taken zijn, je kunt niet een niet-taak expressie opsturen naar een device}
648 Execution of a task consists of continuously rewriting the task until its value is stable.
649
650 Rewriting is a destructive process, i.e.\ the rewriting is done in place.
651 The rewriting engine uses the interpreter when needed, e.g.\ to calculate the step continuations.
652 The rewriter and the interpreter use the same stack to store intermediate values.
653 Rewriting steps are small so that interleaving results in seemingly parallel execution.
654 In this phase new task tree nodes may be allocated.
655 Both rewriting and initialization are atomic operations in the sense that no processing on \glspl{SDS} is done other than \gls{SDS} operations from the task itself.
656 The host is notified if a task value is changed after a rewrite step by sending a \texttt{TaskReturn} message.
657
658 Take for example a blink task for which the code is shown in \cref{lst:blink_code}.
659
660 \begin{lstClean}[caption={Code for a blink program.},label={lst:blink_code}]
661 declarePin D13 PMOutput \ledPin->
662 fun \blink=(\st->delay (lit 500) >>|. writeD ledPin st >>=. blink o Not)
663 In {main = blink true}
664 \end{lstClean}
665
666 On receiving this task, the task tree is still null and the initial expression \cleaninline{blink true} is evaluated by the interpreter.
667 This results in the task tree shown in \cref{fig:blink_tree}.
668 Rewriting always starts at the top of the tree and traverses to the leaves, the basic tasks that do the actual work.
669 The first basic task encountered is the \cleaninline{delay} task, that yields no value until the time, \qty{500}{\ms} in this case, has passed.
670 When the \cleaninline{delay} task yielded a stable value after a number of rewrites, the task continues with the right-hand side of the \cleaninline{>>\|.} combinator.
671 This combinator has a \cleaninline{writeD} task at the left-hand side that becomes stable after one rewrite step in which it writes the value to the given pin.
672 When \cleaninline{writeD} becomes stable, the written value is the task value that is observed by the right-hand side of the \cleaninline{>>=.} combinator.
673 This will call the interpreter to evaluate the expression, now that the argument of the function is known.
674 The result of the function is again a task tree, but now with different arguments to the tasks, e.g.\ the state in \cleaninline{writeD} is inversed.
675 \todo[inline]{Beter uitleggen dat \cleaninline{>>\|.} eigenlijk een step is en dat het natuurlijk eigenlijk twee trees zijn.}
676
677 \begin{figure}
678 \centering
679 \includestandalone{blinktree}
680 \caption{The task tree for a blink task in \cref{lst:blink_code} in \gls{MTASK}.}%
681 \label{fig:blink_tree}
682 \end{figure}
683
684 \subsection{Memory management}
685 The third and final phase is memory management.
686 The \gls{MTASK} \gls{RTS} is designed to run on systems with as little as \qty{2}{\kibi\byte} of \gls{RAM}.
687 Aggressive memory management is therefore vital.
688 Not all firmwares for microprocessors support heaps and---when they do---allocation often leaves holes when not used in a \emph{last in first out} strategy.
689 The \gls{RTS} uses a chunk of memory in the global data segment with its own memory manager tailored to the needs of \gls{MTASK}.
690 The size of this block can be changed in the configuration of the \gls{RTS} if necessary.
691 On an \gls{ARDUINO} UNO---equipped with \qty{2}{\kibi\byte} of \gls{RAM}---the maximum viable size is about \qty{1500}{\byte}.
692 The self-managed memory uses a similar layout as the memory layout for \gls{C} programs only the heap and the stack are switched (see \cref{fig:memory_layout}).
693
694 \begin{figure}
695 \centering
696 \includestandalone{memorylayout}
697 \caption{Memory layout in the \gls{MTASK} \gls{RTS}.}\label{fig:memory_layout}
698 \end{figure}
699
700 A task is stored below the stack and its complete state is a \gls{CLEAN} record contain most importantly the task id, a pointer to the task tree in the heap (null if not initialised yet), the current task value, the configuration of \glspl{SDS}, the configuration of peripherals, the byte code and some scheduling information.
701
702 In memory, task data grows from the bottom up and the interpreter stack is located directly on top of it growing in the same direction.
703 As a consequence, the stack moves when a new task is received.
704 This never happens within execution because communication is always processed before execution.
705 Values in the interpreter are always stored on the stack.
706 Compound data types are stored unboxed and flattened.
707 Task trees grow from the top down as in a heap.
708 This approach allows for flexible ratios, i.e.\ many tasks and small trees or few tasks and big trees.
709
710 Stable tasks, and unreachable task tree nodes are removed.
711 If a task is to be removed, tasks with higher memory addresses are moved down.
712 For task trees---stored in the heap---the \gls{RTS} already marks tasks and task trees as trash during rewriting, so the heap can be compacted in a single pass.
713 This is possible because there is no sharing or cycles in task trees and nodes contain pointers to their parent.
714
715
716 \section{C code generation}\label{sec:ccodegen}
717 All communication between the \gls{ITASK} server and the \gls{MTASK} server is type parametrised.
718 From the structural representation of the type, a \gls{CLEAN} parser and printer is constructed using generic programming.
719 Furthermore, a \ccpp{} parser and printer is generated for use on the \gls{MTASK} device.
720 The technique for generating the \ccpp{} parser and printer is very similar to template metaprogramming and requires a rich generic programming library or compiler support that includes a lot of metadata in the record and constructor nodes.
721 Using generic programming in the \gls{MTASK} system, both serialisation and deserialisation on the microcontroller and the server is automatically generated.
722
723 \subsection{Server}
724 On the server, off-the-shelve generic programming techniques are used to make the serialisation and deserialisation functions (see \cref{lst:ser_deser_server}).
725 Serialisation is a simple conversion from a value of the type to a string.
726 Deserialisation is a bit different in order to support streaming\footnotemark.
727 \footnotetext{%
728 Here the \cleaninline{*!} variant of the generic interface is chosen that has less uniqueness constraints for the compiler-generated adaptors \citep{alimarine_generic_2005,hinze_derivable_2001}.%
729 }
730 Given a list of available characters, a tuple is always returned.
731 The right-hand side of the tuple contains the remaining characters, the unparsed input.
732 The left-hand side contains either an error or a maybe value.
733 If the value is a \cleaninline{?None}, there was no full value to parse.
734 If the value is a \cleaninline{?Just}, the data field contains a value of the requested type.
735
736 \begin{lstClean}[caption={Serialisation and deserialisation functions in \gls{CLEAN}.},label={lst:ser_deser_server}]
737 generic toByteCode a :: a -> String
738 generic fromByteCode a *! :: [Char] -> (Either String (? a), [Char])
739 \end{lstClean}
740
741 \subsection{Client}
742 The \gls{RTS} of the \gls{MTASK} system runs on resource-constrained microcontrollers and is implemented in portable \ccpp{}.
743 In order to achieve more interoperation safety, the communication between the server and the client is automated, i.e.\ the serialisation and deserialisation code in the \gls{RTS} is generated.
744 The technique used for this is very similar to the technique shown in \cref{chp:first-class_datatypes}.
745 However, instead of using template metaprogramming, a feature \gls{CLEAN} lacks, generic programming is used also as a two-stage rocket.
746 In contrast to many other generic programming systems, \gls{CLEAN} allows for access to much of the metadata of the compiler.
747 For example, \cleaninline{Cons}, \cleaninline{Object}, \cleaninline{Field}, and \cleaninline{Record} generic constructors are enriched with their arity, names, types, \etc.
748 Furthermore, constructors can access the metadata of the objects and fields of their parent records.
749 Using this metadata, generic functions are created that generate \ccpp{} type definitions, parsers and printers for any first-order \gls{CLEAN} type.
750 The exact details of this technique can be found in the future in a paper that is in preparation.
751
752 \Glspl{ADT} are converted to tagged unions, newtypes to typedefs, records to structs, and arrays to dynamic size-parametrised allocated arrays.
753 For example, the \gls{CLEAN} types in \cref{lst:ser_clean} are translated to the \ccpp{} types seen in \cref{lst:ser_c}
754
755 \begin{lstClean}[caption={Simple \glspl{ADT} in \gls{CLEAN}.},label={lst:ser_clean}]
756 :: T a = A a | B NT {#Char}
757 :: NT =: NT Real
758 \end{lstClean}
759
760 \begin{lstArduino}[caption={Generated \ccpp{} type definitions for the simple \glspl{ADT}.},label={lst:ser_c}]
761 typedef double Real;
762 typedef char Char;
763
764 typedef Real NT;
765 enum T_c {A_c, B_c};
766
767 struct Char_HshArray { uint32_t size; Char *elements; };
768 struct T {
769 enum T_c cons;
770 struct { void *A;
771 struct { NT f0; struct Char_HshArray f1; } B;
772 } data;
773 };
774 \end{lstArduino}
775
776 For each of these generated types, two functions are created, a typed printer, and a typed parser (see \cref{lst:ser_pp}).
777 The parser functions are parametrised by a read function, an allocation function and parse functions for all type variables.
778 This allows for the use of these functions in environments where the communication is parametrised and the memory management is self-managed such as in the \gls{MTASK} \gls{RTS}.
779
780 \begin{lstArduino}[caption={Printer and parser for the \glspl{ADT} in \ccpp{}.},label={lst:ser_pp}]
781 struct T parse_T(uint8_t (*get)(), void *(*alloc)(size_t),
782 void *(*parse_0)(uint8_t (*)(), void *(*)(size_t)));
783
784 void print_T(void (*put)(uint8_t), struct T r,
785 void (*print_0)(void (*)(uint8_t), void *));
786 \end{lstArduino}
787
788 \section{Conclusion}
789 This chapter showed the implementation of the \gls{MTASK} byte code compiler, the \gls{RTS}, and the internals of their communication.
790 It is not straightforward to execute \gls{MTASK} tasks on resources-constrained \gls{IOT} edge devices.
791 To achieve this, the terms in the \gls{DSL} are compiled to compact domain-specific byte code.
792 This byte code is sent for interpretation to the light-weight \gls{RTS} of the edge device.
793 The \gls{RTS} first evaluates the main expression in the interpreter.
794 The result of this evaluation, a run time representation of the task, is a task tree.
795 This task tree is rewritten according to small-step reduction rules until a stable value is observed.
796 Rewriting multiple tasks at the same time is achieved by interleaving the rewrite steps, resulting in seemingly parallel execution of the tasks.
797 All communication, including the serialisation and deserialisation, between the server and the \gls{RTS} is automated.
798 From the structural representation of the types, printers and parsers are generated for the server and the client.
799
800 \input{subfilepostamble}
801 \end{document}