5fc3c227b9e5b7e4d5a739c6fa90e1f553961d46
[phd-thesis.git] / top / imp.tex
1 \documentclass[../thesis.tex]{subfiles}
2
3 \input{subfilepreamble}
4
5 \setcounter{chapter}{6}
6
7 \begin{document}
8 \input{subfileprefix}
9 \chapter{The implementation of mTask}%
10 \label{chp:implementation}
11 \begin{chapterabstract}
12 This chapter shows the implementation of the \gls{MTASK} system by:
13 \begin{itemize}
14 \item showing the compilation and execution toolchain;
15 \item showing the implementation of the byte code compiler for the \gls{MTASK} language;
16 \item elaborating on the implementation and architecture of the \gls{RTS} of \gls{MTASK};
17 \item and explaining the machinery used to automatically serialise and deserialise data to and fro the device.
18 \end{itemize}
19 \end{chapterabstract}
20
21 The \gls{MTASK} system targets resource-constrained edge devices that have little memory, processor speed, and communication.
22 Such edge devices are often powered by microcontrollers, tiny computers specifically designed for embedded applications.
23 The microcontrollers usually have flash-based program memory which wears out fairly quickly.
24 For example, the flash memory of the popular atmega328p powering the \gls{ARDUINO} UNO is rated for \num{10000} write cycles.
25 While this sounds like a lot, if new tasks are sent to the device every minute or so, a lifetime of only seven days is guaranteed.
26 Hence, for dynamic applications, storing the program in the \gls{RAM} of the device and thus interpreting this code is necessary in order to save precious write cycles of the program memory.
27 In the \gls{MTASK} system, the \gls{MTASK} \gls{RTS}, a domain-specific \gls{OS}, is responsible for interpreting the programs.
28
29 Programs in \gls{MTASK} are \gls{DSL} terms constructed at run time in an \gls{ITASK} system.
30 \Cref{fig:toolchain} shows the compilation and execution toolchain of such programs.
31 First, the source code is compiled to a byte code specification, this specification contains the compiled main expression, the functions, and the \gls{SDS} and peripheral configuration.
32 How an \gls{MTASK} task is compiled to this specification is shown in \cref{sec:compiler_imp}.
33 This package is then sent to the \gls{RTS} of the device for execution.
34 In order to execute a task, first the main expression is evaluated in the interpreter, resulting in a task tree.
35 Then, using small-step reduction, the task tree is continuously rewritten by the rewrite engine of the \gls{RTS}.
36 At times, the reduction requires the evaluation of expressions, using the interpreter.
37 During every rewrite step, a task value is produced.
38 On the device, the \gls{RTS} may have multiple tasks at the same time active.
39 By interleaving the rewrite steps, parallel operation is achieved.
40 The design, architecture and implementation of the \gls{RTS} is shown in \cref{sec:compiler_rts}.
41
42 \begin{figure}
43 \centering
44 \centerline{\includestandalone{toolchain}}
45 \caption{Compilation and execution toolchain of \gls{MTASK} programs.}%
46 \label{fig:toolchain}
47 \end{figure}
48
49 \section{Compiler}\label{sec:compiler_imp}
50 \todo[inline]{Zou je hier niet een prargraafje schrijven over dat dit een beetje speciale compiler is. Alle type checks worden al door Clean gedaan. Dat is voordat deze compiler ooit uitgevoerd gaat worden. Bovendien kan het Clean programma de te compileren byte code dynamisch maken. Dat staat natuurlijk al eerder een keer, maar je make niet aannemen dat iedereen alles leest (en nu nog weet)}
51 \todo[inline]{Dit gaat wel hard de diepte in. Zou je niet een kort stukje schrijven over hoe je bytecode machine er uit ziet?
52 Heap: voor de huidige task tree die herschreven wordt.
53 Function code: sequence of bytecode instructie.
54 SDSs + Objects
55 Stack om expressies te evelaueren en function calls te doen.
56 Plaatje a la Figure 7.5.
57
58 Om de code te maken heb je een intsantie van alle classen in mTask nodig voor BCInterpret a.
59
60 Voor veel lezers zou het genoeg zijn om alleen dat te snappen, maak het ze eenvoudig.}
61 \subsection{Compiler infrastructure}
62 The byte code compiler interpretation for the \gls{MTASK} language is implemented as a monad stack containing a writer monad and a state monad.
63 The writer monad is used to generate code snippets locally without having to store them in the monadic values.
64 The state monad accumulates the code, and stores the state the compiler requires.
65 \Cref{lst:compiler_state} shows the data type for the state, storing:
66 function the compiler currently is in;
67 code of the main expression;
68 context (see \cref{ssec:step});
69 code for the functions;
70 next fresh label;
71 a list of all the used \glspl{SDS}, either local \glspl{SDS} containing the initial value (\cleaninline{Left}) or lowered \glspl{SDS} (see \cref{sec:liftsds}) containing a reference to the associated \gls{ITASK} \gls{SDS};
72 and finally there is a list of peripherals used.
73
74 \begin{lstClean}[label={lst:compiler_state},caption={The type for the \gls{MTASK} byte code compiler.}]
75 :: BCInterpret a :== StateT BCState (WriterT [BCInstr] Identity) a
76 :: BCState =
77 { bcs_infun :: JumpLabel
78 , bcs_mainexpr :: [BCInstr]
79 , bcs_context :: [BCInstr]
80 , bcs_functions :: Map JumpLabel BCFunction
81 , bcs_freshlabel :: JumpLabel
82 , bcs_sdses :: [Either String255 MTLens]
83 , bcs_hardware :: [BCPeripheral]
84 }
85 :: BCFunction =
86 { bcf_instructions :: [BCInstr]
87 , bcf_argwidth :: UInt8
88 , bcf_returnwidth :: UInt8
89 }
90 \end{lstClean}
91
92 Executing the compiler is done by providing an initial state and running the monad.
93 After compilation, several post-processing steps are applied to make the code suitable for the microprocessor.
94 First, in all tail call \cleaninline{BCReturn} instructions are replaced by \cleaninline{BCTailCall} instructions to optimise the tail calls.
95 Furthermore, all byte code is concatenated, resulting in one big program.
96 Many instructions have commonly used arguments, so shorthands are introduced to reduce the program size.
97 For example, the \cleaninline{BCArg} instruction is often called with argument \numrange{0}{2} and can be replaced by the \cleaninline{BCArg0} to \cleaninline{BCArg2} shorthands.
98 Furthermore, redundant instructions such as pop directly after push are removed as well in order not to burden the code generation with these intricacies.
99 Finally, the labels are resolved to represent actual program addresses instead of the freshly generated identifiers.
100 After the byte code is ready, the lowered \glspl{SDS} are resolved to provide an initial value for them.
101 The byte code, \gls{SDS} specification and peripheral specifications are the result of the process, ready to be sent to the device.
102
103 \subsection{Instruction set}
104 The instruction set is a fairly standard stack machine instruction set extended with special \gls{TOP} instructions for creating task tree nodes.
105 All instructions are housed in a \gls{CLEAN} \gls{ADT} and serialised to the byte representation using generic functions (see \cref{sec:ccodegen}).
106 Type synonyms and newtypes are used to provide insight on the arguments of the instructions (\cref{lst:type_synonyms}).
107 Labels are always two bytes long, all other arguments are one byte long.
108
109 \begin{lstClean}[caption={Type synonyms for instructions arguments.},label={lst:type_synonyms}]
110 :: ArgWidth :== UInt8 :: ReturnWidth :== UInt8
111 :: Depth :== UInt8 :: Num :== UInt8
112 :: SdsId :== UInt8 :: JumpLabel =: JL UInt16
113 \end{lstClean}
114
115 \Cref{lst:instruction_type} shows an excerpt of the \gls{CLEAN} type that represents the instruction set.
116 Shorthand instructions such as instructions with inlined arguments are omitted for brevity.
117 Detailed semantics for the instructions are given in \cref{chp:bytecode_instruction_set}.
118 One notable instruction is the \cleaninline{MkTask} instruction, it allocates and initialises a task tree node and pushes a pointer to it on the stack.
119
120 \begin{lstClean}[caption={The type housing the instruction set in \gls{MTASK}.},label={lst:instruction_type}]
121 :: BCInstr
122 //Jumps
123 = BCJumpF JumpLabel | BCLabel JumpLabel | BCJumpSR ArgWidth JumpLabel
124 | BCReturn ReturnWidth ArgWidth
125 | BCTailcall ArgWidth ArgWidth JumpLabel
126 //Arguments
127 | BCArgs ArgWidth ArgWidth
128 //Task node creation and refinement
129 | BCMkTask BCTaskType | BCTuneRateMs | BCTuneRateSec
130 //Stack ops
131 | BCPush String255 | BCPop Num | BCRot Depth Num | BCDup | BCPushPtrs
132 //Casting
133 | BCItoR | BCItoL | BCRtoI | ...
134 // arith
135 | BCAddI | BCSubI | ...
136 ...
137
138 :: BCTaskType
139 = BCStableNode ArgWidth | BCUnstableNode ArgWidth
140 // Pin io
141 | BCReadD | BCWriteD | BCReadA | BCWriteA | BCPinMode
142 // Interrupts
143 | BCInterrupt
144 // Repeat
145 | BCRepeat
146 // Delay
147 | BCDelay | BCDelayUntil
148 // Parallel
149 | BCTAnd | BCTOr
150 //Step
151 | BCStep ArgWidth JumpLabel
152 //Sds ops
153 | BCSdsGet SdsId | BCSdsSet SdsId | BCSdsUpd SdsId JumpLabel
154 // Rate limiter
155 | BCRateLimit
156 ////Peripherals
157 //DHT
158 | BCDHTTemp UInt8 | BCDHTHumid UInt8
159 ...
160 \end{lstClean}
161
162 \section{Compilation rules}
163 This section describes the compilation rules, the translation from \gls{AST} to byte code.
164 The compilation scheme consists of three schemes\slash{}functions.
165 Double vertical bars, e.g.\ $\stacksize{a_i}$, denote the number of stack cells required to store the argument.
166
167 Some schemes have a context $r$ as an argument which contains information about the location of the arguments in scope.
168 More information is given in the schemes requiring such arguments.
169
170 \begin{table}
171 \centering
172 \caption{An overview of the compilation schemes.}
173 \begin{tabularx}{\linewidth}{l X}
174 \toprule
175 Scheme & Description\\
176 \midrule
177 $\cschemeE{e}{r}$ & Produces the value of expression $e$ given the context $r$ and pushes it on the stack.
178 The result can be a basic value or a pointer to a task.\\
179 $\cschemeF{e}$ & Generates the bytecode for functions.\\
180 $\cschemeS{e}{r}{w} $ & Generates the function for the step continuation given the context $r$ and the width $w$ of the left-hand side task value.\\
181 \bottomrule
182 \end{tabularx}
183 \end{table}
184
185 \subsection{Expressions}
186 Almost all expression constructions are compiled using $\mathcal{E}$.
187 The argument of $\mathcal{E}$ is the context (see \cref{ssec:functions}).
188 Values are always placed on the stack; tuples and other compound data types are unpacked.
189 Function calls, function arguments and tasks are also compiled using $\mathcal{E}$ but their compilations is explained later.
190
191 \begin{align*}
192 \cschemeE{\text{\cleaninline{lit}}~e}{r} & = \text{\cleaninline{BCPush (bytecode e)}};\\
193 \cschemeE{e_1\mathbin{\text{\cleaninline{+.}}}e_2}{r} & = \cschemeE{e_1}{r};
194 \cschemeE{e_2}{r};
195 \text{\cleaninline{BCAdd}};\\
196 {} & \text{\emph{Similar for other binary operators}}\\
197 \cschemeE{\text{\cleaninline{Not}}~e}{r} & =
198 \cschemeE{e}{r};
199 \text{\cleaninline{BCNot}};\\
200 {} & \text{\emph{Similar for other unary operators}}\\
201 \cschemeE{\text{\cleaninline{If}}~e_1~e_2~e_3}{r} & =
202 \cschemeE{e_1}{r};
203 \text{\cleaninline{BCJmpF}}\enskip l_{else}; \mathbin{\phantom{=}} \cschemeE{e_2}{r}; \text{\cleaninline{BCJmp}}\enskip l_{endif};\\
204 {} & \mathbin{\phantom{=}} \text{\cleaninline{BCLabel}}\enskip l_{else}; \cschemeE{e_3}{r}; \mathbin{\phantom{=}} \text{\cleaninline{BCLabel}}\enskip l_{endif};\\
205 {} & \text{\emph{Where $l_{else}$ and $l_{endif}$ are fresh labels}}\\
206 \cschemeE{\text{\cleaninline{tupl}}~e_1~e_2}{r} & =
207 \cschemeE{e_1}{r};
208 \cschemeE{e_2}{r};\\
209 {} & \text{\emph{Similar for other unboxed compound data types}}\\
210 \cschemeE{\text{\cleaninline{first}}~e}{r} & =
211 \cschemeE{e}{r};
212 \text{\cleaninline{BCPop}}\enskip w;\\
213 {} & \text{\emph{Where $w$ is the width of the right value and}}\\
214 {} & \text{\emph{similar for other unboxed compound data types}}\\
215 \cschemeE{\text{\cleaninline{second}}\enskip e}{r} & =
216 \cschemeE{e}{r};
217 \text{\cleaninline{BCRot}}\enskip (w_l+w_r)\enskip w_r;
218 \text{\cleaninline{BCPop}}\enskip w_l;\\
219 {} & \text{\emph{Where $w_l$ is the width of the left and, $w_r$ of the right value}}\\
220 {} & \text{\emph{similar for other unboxed compound data types}}\\
221 \end{align*}
222
223 Translating $\mathcal{E}$ to \gls{CLEAN} code is very straightforward, it basically means writing the instructions to the writer monad.
224 Almost always, the type of the interpretation is not used, i.e.\ it is a phantom type.
225 To still have the functions return the correct type, the \cleaninline{tell`}\footnote{\cleaninline{tell` :: [BCInstr] -> BCInterpret a}} helper is used.
226 This function is similar to the writer monad's \cleaninline{tell} function but is cast to the correct type.
227 \Cref{lst:imp_arith} shows the implementation for the arithmetic and conditional expressions.
228 Note that $r$, the context, is not an explicit argument here but stored in the state.
229
230 \begin{lstClean}[caption={Interpretation implementation for the arithmetic and conditional functions.},label={lst:imp_arith}]
231 instance expr BCInterpret where
232 lit t = tell` [BCPush (toByteCode{|*|} t)]
233 (+.) a b = a >>| b >>| tell` [BCAdd]
234 ...
235 If c t e = freshlabel >>= \elselabel->freshlabel >>= \endiflabel->
236 c >>| tell` [BCJumpF elselabel] >>|
237 t >>| tell` [BCJump endiflabel,BCLabel elselabel] >>|
238 e >>| tell` [BCLabel endiflabel]
239 \end{lstClean}
240
241 \subsection{Functions}\label{ssec:functions}
242 Compiling functions and other top-level definitions is done using in $\mathcal{F}$, which generates bytecode for the complete program by iterating over the functions and ending with the main expression.
243 When compiling the body of the function, the arguments of the function are added to the context so that the addresses can be determined when referencing arguments.
244 The main expression is a special case of $\mathcal{F}$ since it neither has arguments nor something to continue.
245 Therefore, it is just compiled using $\mathcal{E}$ with an empty context.
246
247 \begin{align*}
248 \cschemeF{main=m} & =
249 \cschemeE{m}{[]};\\
250 \cschemeF{f~a_0 \ldots a_n = b~\text{\cleaninline{In}}~m} & =
251 \text{\cleaninline{BCLabel}}~f; \cschemeE{b}{[\langle f, i\rangle, i\in \{(\Sigma^n_{i=0}\stacksize{a_i})..0\}]};\\
252 {} & \mathbin{\phantom{=}} \text{\cleaninline{BCReturn}}~\stacksize{b}~n; \cschemeF{m};\\
253 \end{align*}
254
255 A function call starts by pushing the stack and frame pointer, and making space for the program counter (\cref{lst:funcall_pushptrs}) followed by evaluating the arguments in reverse order (\cref{lst:funcall_args}).
256 On executing \cleaninline{BCJumpSR}, the program counter is set, and the interpreter jumps to the function (\cref{lst:funcall_jumpsr}).
257 When the function returns, the return value overwrites the old pointers and the arguments.
258 This occurs right after a \cleaninline{BCReturn} (\cref{lst:funcall_ret}).
259 Putting the arguments on top of pointers and not reserving space for the return value uses little space and facilitates tail call optimisation.
260
261 \begin{figure}
262 \begin{subfigure}{.24\linewidth}
263 \centering
264 \includestandalone{memory1}
265 \caption{\cleaninline{BCPushPtrs}.}\label{lst:funcall_pushptrs}
266 \end{subfigure}
267 \begin{subfigure}{.24\linewidth}
268 \centering
269 \includestandalone{memory2}
270 \caption{Arguments.}\label{lst:funcall_args}
271 \end{subfigure}
272 \begin{subfigure}{.24\linewidth}
273 \centering
274 \includestandalone{memory3}
275 \caption{\cleaninline{BCJumpSR}.}\label{lst:funcall_jumpsr}
276 \end{subfigure}
277 \begin{subfigure}{.24\linewidth}
278 \centering
279 \includestandalone{memory4}
280 \caption{\cleaninline{BCReturn}.}\label{lst:funcall_ret}
281 \end{subfigure}
282 \caption{The stack layout during function calls.}%
283 \end{figure}
284
285 Calling a function and referencing function arguments are an extension to $\mathcal{E}$ as shown below.
286 Arguments may be at different places on the stack at different times (see \cref{ssec:step}) and therefore the exact location is always is determined from the context using \cleaninline{findarg}\footnote{\cleaninline{findarg [l`:r] l = if (l == l`) 0 (1 + findarg r l)}}.
287 Compiling argument $a_{f^i}$, the $i$th argument in function $f$, consists of traversing all positions in the current context.
288 Arguments wider than one stack cell are fetched in reverse to reconstruct the original order.
289
290 \begin{align*}
291 \cschemeE{f(a_0, \ldots, a_n)}{r} & =
292 \text{\cleaninline{BCPushPtrs}}; \cschemeE{a_i}{r}~\text{for all}~i\in\{n\ldots 0\}; \text{\cleaninline{BCJumpSR}}~n~f;\\
293 \cschemeE{a_{f^i}}{r} & =
294 \text{\cleaninline{BCArg}~findarg}(r, f, i)~\text{for all}~i\in\{w\ldots v\};\\
295 {} & v = \Sigma^{i-1}_{j=0}\stacksize{a_{f^j}}~\text{ and }~ w = v + \stacksize{a_{f^i}}\\
296 \end{align*}
297
298 Translating the compilation schemes for functions to \gls{CLEAN} is not as straightforward as other schemes due to the nature of shallow embedding in combination with the use of state.
299 The \cleaninline{fun} class has a single function with a single argument.
300 This argument is a \gls{CLEAN} function that---when given a callable \gls{CLEAN} function representing the \gls{MTASK} function---produces the \cleaninline{main} expression and a callable function.
301 To compile this, the argument must be called with a function representing a function call in \gls{MTASK}.
302 \Cref{lst:fun_imp} shows the implementation for this as \gls{CLEAN} code.
303 To uniquely identify the function, a fresh label is generated.
304 The function is then called with the \cleaninline{callFunction} helper function that generates the instructions that correspond to calling the function.
305 That is, it pushes the pointers, compiles the arguments, and writes the \cleaninline{JumpSR} instruction.
306 The resulting structure (\cleaninline{g In m}) contains a function representing the mTask function (\cleaninline{g}) and the \cleaninline{main} structure to continue with.
307 To get the actual function, \cleaninline{g} must be called with representations for the argument, i.e.\ using \cleaninline{findarg} for all arguments.
308 The arguments are added to the context using \cleaninline{infun} and \cleaninline{liftFunction} is called with the label, the argument width and the compiler.
309 This function executes the compiler, decorates the instructions with a label and places them in the function dictionary together with the metadata such as the argument width.
310 After lifting the function, the context is cleared again and compilation continues with the rest of the program.
311
312 \begin{lstClean}[label={lst:fun_imp},caption={The interpretation implementation for functions.}]
313 instance fun (BCInterpret a) BCInterpret | type a where
314 fun def = {main=freshlabel >>= \funlabel->
315 let (g In m) = def \a->callFunction funlabel (toByteWidth a) [a]
316 argwidth = toByteWidth (argOf g)
317 in addToCtx funlabel zero argwidth
318 >>| infun funlabel
319 (liftFunction funlabel argwidth
320 (g (retrieveArgs funlabel zero argwidth)
321 ) ?None)
322 >>| clearCtx >>| m.main
323 }
324
325 argOf :: ((m a) -> b) a -> UInt8 | toByteWidth a
326 callFunction :: JumpLabel UInt8 [BCInterpret b] -> BCInterpret c | ...
327 liftFunction :: JumpLabel UInt8 (BCInterpret a) (?UInt8) -> BCInterpret ()
328 infun :: JumpLabel (BCInterpret a) -> BCInterpret a
329 \end{lstClean}
330
331 \subsection{Tasks}\label{ssec:scheme_tasks}
332 Task trees are created with the \cleaninline{BCMkTask} instruction that allocates a node and pushes a pointer to it on the stack.
333 It pops arguments from the stack according to the given task type.
334 The following extension of $\mathcal{E}$ shows this compilation scheme (except for the step combinator, explained in \cref{ssec:step}).
335
336 \begin{align*}
337 \cschemeE{\text{\cleaninline{rtrn}}~e}{r} & =
338 \cschemeE{e}{r};
339 \text{\cleaninline{BCMkTask BCStable}}_{\stacksize{e}};\\
340 \cschemeE{\text{\cleaninline{unstable}}~e}{r} & =
341 \cschemeE{e}{r};
342 \text{\cleaninline{BCMkTask BCUnstable}}_{\stacksize{e}};\\
343 \cschemeE{\text{\cleaninline{readA}}~e}{r} & =
344 \cschemeE{e}{r};
345 \text{\cleaninline{BCMkTask BCReadA}};\\
346 \cschemeE{\text{\cleaninline{writeA}}~e_1~e_2}{r} & =
347 \cschemeE{e_1}{r};
348 \cschemeE{e_2}{r};
349 \text{\cleaninline{BCMkTask BCWriteA}};\\
350 \cschemeE{\text{\cleaninline{readD}}~e}{r} & =
351 \cschemeE{e}{r};
352 \text{\cleaninline{BCMkTask BCReadD}};\\
353 \cschemeE{\text{\cleaninline{writeD}}~e_1~e_2}{r} & =
354 \cschemeE{e_1}{r};
355 \cschemeE{e_2}{r};
356 \text{\cleaninline{BCMkTask BCWriteD}};\\
357 \cschemeE{\text{\cleaninline{delay}}~e}{r} & =
358 \cschemeE{e}{r};
359 \text{\cleaninline{BCMkTask BCDelay}};\\
360 \cschemeE{\text{\cleaninline{rpeat}}~e}{r} & =
361 \cschemeE{e}{r};
362 \text{\cleaninline{BCMkTask BCRepeat}};\\
363 \cschemeE{e_1\text{\cleaninline{.\|\|.}}e_2}{r} & =
364 \cschemeE{e_1}{r};
365 \cschemeE{e_2}{r};
366 \text{\cleaninline{BCMkTask BCOr}};\\
367 \cschemeE{e_1\text{\cleaninline{.&&.}}e_2}{r} & =
368 \cschemeE{e_1}{r};
369 \cschemeE{e_2}{r};
370 \text{\cleaninline{BCMkTask BCAnd}};\\
371 \end{align*}
372
373 This translates to Clean code by writing the correct \cleaninline{BCMkTask} instruction as exemplified in \cref{lst:imp_ret}.
374
375 \begin{lstClean}[caption={The byte code interpretation implementation for \cleaninline{rtrn}.},label={lst:imp_ret}]
376 instance rtrn BCInterpret
377 where
378 rtrn m = m >>| tell` [BCMkTask (bcstable m)]
379 \end{lstClean}
380
381 \subsection{Sequential combinator}\label{ssec:step}
382 The \cleaninline{step} construct is a special type of task because the task value of the left-hand side changes over time.
383 Therefore, the task continuations on the right-hand side are \emph{observing} this task value and acting upon it.
384 In the compilation scheme, all continuations are first converted to a single function that has two arguments: the stability of the task and its value.
385 This function either returns a pointer to a task tree or fails (denoted by $\bot$).
386 It is special because in the generated function, the task value of a task is inspected.
387 Furthermore, it is a lazy node in the task tree: the right-hand side may yield a new task tree after several rewrite steps, i.e.\ it is allowed to create infinite task trees using step combinators.
388 The function is generated using the $\mathcal{S}$ scheme that requires two arguments: the context $r$ and the width of the left-hand side so that it can determine the position of the stability which is added as an argument to the function.
389 The resulting function is basically a list of if-then-else constructions to check all predicates one by one.
390 Some optimisation is possible here but has currently not been implemented.
391
392 \begin{align*}
393 \cschemeE{t_1\text{\cleaninline{>>*.}}e_2}{r} & =
394 \cschemeE{a_{f^i}}{r}, \langle f, i\rangle\in r;
395 \text{\cleaninline{BCMkTask}}~\text{\cleaninline{BCStable}}_{\stacksize{r}}; \cschemeE{t_1}{r};\\
396 {} & \mathbin{\phantom{=}} \text{\cleaninline{BCMkTask}}~\text{\cleaninline{BCAnd}}; \text{\cleaninline{BCMkTask}}~(\text{\cleaninline{BCStep}}~(\cschemeS{e_2}{(r + [\langle l_s, i\rangle])}{\stacksize{t_1}}));\\
397 \end{align*}
398
399 \begin{align*}
400 \cschemeS{[]}{r}{w} & =
401 \text{\cleaninline{BCPush}}~\bot;\\
402 \cschemeS{\text{\cleaninline{IfValue}}~f~t:cs}{r}{w} & =
403 \text{\cleaninline{BCArg}} (\stacksize{r} + w);
404 \text{\cleaninline{BCIsNoValue}};\\
405 {} & \mathbin{\phantom{=}} \cschemeE{f}{r};
406 \text{\cleaninline{BCAnd}};\\
407 {} & \mathbin{\phantom{=}} \text{\cleaninline{BCJmpF}}~l_1;\\
408 {} & \mathbin{\phantom{=}} \cschemeE{t}{r};
409 \text{\cleaninline{BCJmp}}~l_2;\\
410 {} & \mathbin{\phantom{=}} \text{\cleaninline{BCLabel}}~l_1;
411 \cschemeS{cs}{r}{w};\\
412 {} & \mathbin{\phantom{=}} \text{\cleaninline{BCLabel}}~l_2;\\
413 {} & \text{\emph{Where $l_1$ and $l_2$ are fresh labels}}\\
414 {} & \text{\emph{Similar for \cleaninline{IfStable} and \cleaninline{IfUnstable}}}\\
415 \end{align*}
416
417 The step combinator has a task as the left-hand side and a list of continuations at the right-hand side.
418 First the context is evaluated ($\cschemeE{a_{f^i}}{r}$).
419 The context contains arguments from functions and steps that need to be preserved after rewriting.
420 The evaluated context is combined with the left-hand side task value by means of a \cleaninline{.&&.} combinator to store it in the task tree so that it is available after a rewrite step.
421 This means that the task tree is transformed as seen in \cref{lst:context_tree}.
422 In this figure, the expression \cleaninline{t1 >>=. \v1->t2 >>=. \v2->...} is shown\footnote{%
423 \cleaninline{t >>=. e} is a shorthand combinator for \cleaninline{t >>* [OnStable (\_->true) e].}}.
424 Then, the right-hand side list of continuations is converted to an expression using $\mathcal{S}$.
425 \todo[inline]{Beter uitleggen?}
426
427 \begin{figure}
428 \begin{subfigure}{.5\textwidth}
429 \includestandalone{contexttree1}
430 \caption{Without the embedded context.}
431 \end{subfigure}%
432 \begin{subfigure}{.5\textwidth}
433 \includestandalone{contexttree2}
434 \caption{With the embedded context.}
435 \end{subfigure}
436 \caption{Context embedded in a task tree.}%
437 \label{lst:context_tree}
438 \end{figure}
439
440 The translation to \gls{CLEAN} is given in \cref{lst:imp_seq}.
441
442 \begin{lstClean}[caption={Byte code compilation interpretation implementation for the step class.},label={lst:imp_seq}]
443 instance step BCInterpret where
444 (>>*.) lhs cont
445 //Fetch a fresh label and fetch the context
446 = freshlabel >>= \funlab->gets (\s->s.bcs_context)
447 //Generate code for lhs
448 >>= \ctx->lhs
449 //Possibly add the context
450 >>| tell` (if (ctx =: []) []
451 //The context is just the arguments up till now in reverse
452 ( [BCArg (UInt8 i)\\i<-reverse (indexList ctx)]
453 ++ map BCMkTask (bcstable (UInt8 (length ctx)))
454 ++ [BCMkTask BCTAnd]
455 ))
456 //Increase the context
457 >>| addToCtx funlab zero lhswidth
458 //Lift the step function
459 >>| liftFunction funlab
460 //Width of the arguments is the width of the lhs plus the
461 //stability plus the context
462 (one + lhswidth + (UInt8 (length ctx)))
463 //Body label ctx width continuations
464 (contfun funlab (UInt8 (length ctx)))
465 //Return width (always 1, a task pointer)
466 (Just one)
467 >>| modify (\s->{s & bcs_context=ctx})
468 >>| tell` [BCMkTask (instr rhswidth funlab)]
469
470 toContFun :: JumpLabel UInt8 -> BCInterpret a
471 toContFun steplabel contextwidth
472 = foldr tcf (tell` [BCPush fail]) cont
473 where
474 tcf (IfStable f t)
475 = If ((stability >>| tell` [BCIsStable]) &. f val)
476 (t val >>| tell` [])
477 ...
478 stability = tell` [BCArg (lhswidth + contextwidth)]
479 val = retrieveArgs steplabel zero lhswidth
480 \end{lstClean}
481
482 \subsection{Shared data sources}\label{lst:imp_sds}
483 The compilation scheme for \gls{SDS} definitions is a trivial extension to $\mathcal{F}$.
484 While there is no code generated in the definition, the byte code compiler is storing all \gls{SDS} data in the \cleaninline{bcs_sdses} field in the compilation state.
485 Regular \glspl{SDS} are stored as \cleaninline{Right String255} values.
486 The \glspl{SDS} are typed as functions in the host language, so an argument for this function must be created that represents the \gls{SDS} on evaluation.
487 For this, an \cleaninline{BCInterpret} is created that emits this identifier.
488 When passing it to the function, the initial value of the \gls{SDS} is returned.
489 In the case of a local \gls{SDS}, this initial value is stored as a byte code encoded value in the state and the compiler continues with the rest of the program.
490
491 \begin{align*}
492 \cschemeF{\text{\cleaninline{sds}}~x=i~\text{\cleaninline{In}}~m} & =
493 \cschemeF{m};\\
494 \end{align*}
495
496 The \gls{SDS} access tasks have a compilation scheme similar to other tasks (see \cref{ssec:scheme_tasks}).
497 The \cleaninline{getSds} task just pushes a task tree node with the \gls{SDS} identifier embedded.
498 The \cleaninline{setSds} task evaluates the value, lifts that value to a task tree node and creates \pgls{SDS} set node.
499
500 \begin{align*}
501 \cschemeE{\text{\cleaninline{getSds}}~s}{r} & =
502 \text{\cleaninline{BCMkTask}} (\text{\cleaninline{BCSdsGet}} s);\\
503 \cschemeE{\text{\cleaninline{setSds}}~s~e}{r} & =
504 \cschemeE{e}{r};
505 \text{\cleaninline{BCMkTask BCStable}}_{\stacksize{e}};\\
506 {} & \mathbin{\phantom{=}} \text{\cleaninline{BCMkTask}} (\text{\cleaninline{BCSdsSet}} s);\\
507 \end{align*}
508
509 \Cref{lst:comp_sds} shows the implementation of the \cleaninline{sds} type class.
510 First, the initial \gls{SDS} value is extracted from the expression by bootstrapping the fixed point with a dummy value.
511 This is safe because the expression on the right-hand side of the \cleaninline{In} is never evaluated.
512 Then, using \cleaninline{addSdsIfNotExist}, the identifier for this particular \gls{SDS} is either retrieved from the compiler state or generated freshly.
513 This identifier is then used to provide a reference to the \cleaninline{def} definition to evaluate the main expression.
514 Compiling \cleaninline{getSds} is a matter of executing the \cleaninline{BCInterpret} representing the \gls{SDS}, which yields the identifier that can be embedded in the instruction.
515 Setting the \gls{SDS} is similar: the identifier is retrieved, and the value is written to put in a task tree so that the resulting task can remember the value it has written.
516
517 % VimTeX: SynIgnore on
518 \begin{lstClean}[caption={Backend implementation for the \gls{SDS} classes.},label={lst:comp_sds}]
519 :: Sds a = Sds Int
520 instance sds BCInterpret where
521 sds def = {main =
522 let (t In e) = def (abort "sds: expression too strict")
523 in addSdsIfNotExist (Left $ String255 (toByteCode{|*|} t))
524 >>= \sdsi-> let (t In e) = def (pure (Sds sdsi))
525 in e.main
526 }
527 getSds f = f >>= \(Sds i)-> tell` [BCMkTask (BCSdsGet (fromInt i))]
528 setSds f v = f >>= \(Sds i)->v >>| tell`
529 ( map BCMkTask (bcstable (byteWidth v))
530 ++ [BCMkTask (BCSdsSet (fromInt i))])
531 \end{lstClean}
532 % VimTeX: SynIgnore off
533
534 Lowered \glspl{SDS} are stored in the compiler state as \cleaninline{Right MTLens} values.
535 The compilation of the code and the serialisation of the data throws away all typing information.
536 The \cleaninline{MTLens} is a type synonym for \pgls{SDS} that represents the typeless serialised value of the underlying \gls{SDS}.
537 This is done so that the \cleaninline{withDevice} task can write the received \gls{SDS} updates to the according \gls{SDS} while the \gls{SDS} is not in scope.
538 The \gls{ITASK} notification mechanism then takes care of the rest.
539 Such \pgls{SDS} is created by using the \cleaninline{mapReadWriteError} which, given a pair of read and write functions with error handling, produces \pgls{SDS} with the lens embedded.
540 The read function transforms converts the typed value to a typeless serialised value.
541 The write function will, given a new serialised value and the old typed value, produce a new typed value.
542 It tries to decode the serialised value, if that succeeds, it is written to the underlying \gls{SDS}, an error is thrown otherwise.
543 \Cref{lst:mtask_itasksds_lens} shows the implementation for this.
544
545 % VimTeX: SynIgnore on
546 \begin{lstClean}[label={lst:mtask_itasksds_lens},caption={Lens applied to lowered \gls{ITASK} \glspl{SDS} in \gls{MTASK}.}]
547 lens :: (Shared sds a) -> MTLens | type a & RWShared sds
548 lens sds = mapReadWriteError
549 ( \r-> Ok (fromString (toByteCode{|*|} r)
550 , \w r-> ?Just <$> iTasksDecode (toString w)
551 ) ?None sds
552 \end{lstClean}
553 % VimTeX: SynIgnore off
554
555 \Cref{lst:mtask_itasksds_lift} shows the code for the implementation of \cleaninline{lowerSds} that uses the \cleaninline{lens} function shown earlier.
556 It is very similar to the \cleaninline{sds} constructor in \cref{lst:comp_sds}, only now a \cleaninline{Right} value is inserted in the \gls{SDS} administration.
557
558 % VimTeX: SynIgnore on
559 \begin{lstClean}[label={lst:mtask_itasksds_lift},caption={The implementation for lowering \glspl{SDS} in \gls{MTASK}.}]
560 instance lowerSds BCInterpret where
561 lowerSds def = {main =
562 let (t In _) = def (abort "lowerSds: expression too strict")
563 in addSdsIfNotExist (Right $ lens t)
564 >>= \sdsi->let (_ In e) = def (pure (Sds sdsi)) in e.main
565 }\end{lstClean}
566 % VimTeX: SynIgnore off
567
568 \section{Run-time system}\label{sec:compiler_rts}
569 The \gls{RTS} is a customisable domain-specific \gls{OS} that takes care of the execution of tasks.
570 Furthermore, it also takes care of low-level mechanisms such as the communication, multitasking, and memory management.
571 Once a device is programmed with the \gls{MTASK} \gls{RTS}, it can continuously receive new tasks without the need for reprogramming.
572 The \gls{OS} is written in portable \ccpp{} and only contains a small device-specific portion.
573 In order to keep the abstraction level high and the hardware requirements low, much of the high-level functionality of the \gls{MTASK} language is implemented not in terms of lower-level constructs from \gls{MTASK} language but in terms of \ccpp{} code.
574
575 Most microcontrollers software consists of a cyclic executive instead of an \gls{OS}, this one loop function is continuously executed and all work is performed there.
576 In the \gls{RTS} of the \gls{MTASK} system, there is also such an event loop function.
577 It is a function with a relatively short execution time that gets called repeatedly.
578 The event loop consists of three distinct phases.
579 After doing the three phases, the devices goes to sleep for as long as possible (see \cref{chp:green_computing_mtask} for more details on task scheduling).
580
581 \subsection{Communication phase}
582 In the first phase, the communication channels are processed.
583 The exact communication method is a customisable device-specific option baked into the \gls{RTS}.
584 The interface is kept deliberately simple and consists of two layers: a link interface and a communication interface.
585 Besides opening, closing and cleaning up, the link interface has three functions that are shown in \cref{lst:link_interface}.
586 Consequently, implementing this link interface is very simple, but it is still possible to implement more advanced link features such as buffering.
587 There are implementations for this interface for serial or \gls{WIFI} connections using \gls{ARDUINO}, and \gls{TCP} connections for Linux.
588
589 \begin{lstArduino}[caption={Link interface of the \gls{MTASK} \gls{RTS}.},label={lst:link_interface}]
590 bool link_input_available(void);
591 uint8_t link_read_byte(void);
592 void link_write_byte(uint8_t b);
593 \end{lstArduino}
594
595 The communication interface abstracts away from this link interface and is typed instead.
596 It contains only two functions as seen in \cref{lst:comm_interface}.
597 There are implementations for direct communication, or communication using an \gls{MQTT} broker.
598 Both use the automatic serialisation and deserialisation shown in \cref{sec:ccodegen}.
599
600 \begin{lstArduino}[caption={Communication interface of the \gls{MTASK} \gls{RTS}.},label={lst:comm_interface}]
601 struct MTMessageTo receive_message(void);
602 void send_message(struct MTMessageFro msg);
603 \end{lstArduino}
604
605 Processing the received messages from the communication channels happens synchronously and the channels are exhausted completely before moving on to the next phase.
606 There are several possible messages that can be received from the server:
607
608 \begin{description}
609 \item[SpecRequest]
610 is a message instructing the device to send its specification.
611 It is received immediately after connecting.
612 The \gls{RTS} responds with a \texttt{Spec} answer containing the specification.
613 \item[TaskPrep]
614 tells the device a task is on its way.
615 Especially on faster connections, it may be the case that the communication buffers overflow because a big message is sent while the \gls{RTS} is busy executing tasks.
616 This message allows the \gls{RTS} to postpone execution for a while, until the larger task has been received.
617 The server sends the task only after the device acknowledged the preparation by sending a \texttt{TaskPrepAck} message.
618 \item[Task]
619 contains a new task, its peripheral configuration, the \glspl{SDS}, and the byte code.
620 The new task is immediately copied to the task storage but is only initialised during the next phase.
621 The device acknowledges the task by sending a \texttt{TaskAck} message.
622 \item[SdsUpdate]
623 notifies the device of the new value for a lowered \gls{SDS}.
624 The old value of the lowered \gls{SDS} is immediately replaced with the new one.
625 There is no acknowledgement required.
626 \item[TaskDel]
627 instructs the device to delete a running task.
628 Tasks are automatically deleted when they become stable.
629 However, a task may also be deleted when the surrounding task on the server is deleted, for example when the task is on the left-hand side of a step combinator and the condition to step holds.
630 The device acknowledges the deletion by sending a \texttt{TaskDelAck}.
631 \item[Shutdown]
632 tells the device to reset.
633 \end{description}
634
635 \subsection{Execution phase}
636 The second phase performs one execution step for all tasks that wish for it.
637 Tasks are ordered in a priority queue ordered by the time a task needs to execute, the \gls{RTS} selects all tasks that can be scheduled, see \cref{sec:scheduling} for more details.
638 Execution of a task is always an interplay between the interpreter and the rewriter.
639 \todo[inline]{ik denk dat die rewriter een paar woorden uitleg kan gebruiken.
640 The rewriter scans the current task tree and tries to reqrite it. Expressions in the tree are evaluated by the interpreter.\ o.i.d.}
641
642 When a new task is received, the main expression is evaluated to produce a task tree.
643 A task tree is a tree structure in which each node represents a task combinator and the leaves are basic tasks.
644 If a task is not initialised yet, i.e.\ the pointer to the current task tree is still null, the byte code of the main function is interpreted.
645 The main expression of \gls{MTASK} programs always produces a task tree.\todo[inline]{note dat mtask programmas altijd taken zijn, je kunt niet een niet-taak expressie opsturen naar een device}
646 Execution of a task consists of continuously rewriting the task until its value is stable.
647
648 Rewriting is a destructive process, i.e.\ the rewriting is done in place.
649 The rewriting engine uses the interpreter when needed, e.g.\ to calculate the step continuations.
650 The rewriter and the interpreter use the same stack to store intermediate values.
651 Rewriting steps are small so that interleaving results in seemingly parallel execution.
652 In this phase new task tree nodes may be allocated.
653 Both rewriting and initialization are atomic operations in the sense that no processing on \glspl{SDS} is done other than \gls{SDS} operations from the task itself.
654 The host is notified if a task value is changed after a rewrite step by sending a \texttt{TaskReturn} message.
655
656 Take for example a blink task for which the code is shown in \cref{lst:blink_code}.
657
658 \begin{lstClean}[caption={Code for a blink program.},label={lst:blink_code}]
659 declarePin D13 PMOutput \ledPin->
660 fun \blink=(\st->delay (lit 500) >>|. writeD ledPin st >>=. blink o Not)
661 In {main = blink true}
662 \end{lstClean}
663
664 On receiving this task, the task tree is still null and the initial expression \cleaninline{blink true} is evaluated by the interpreter.
665 This results in the task tree shown in \cref{fig:blink_tree}.
666 Rewriting always starts at the top of the tree and traverses to the leaves, the basic tasks that do the actual work.
667 The first basic task encountered is the \cleaninline{delay} task, that yields no value until the time, \qty{500}{\ms} in this case, has passed.
668 When the \cleaninline{delay} task yielded a stable value after a number of rewrites, the task continues with the right-hand side of the \cleaninline{>>\|.} combinator.
669 This combinator has a \cleaninline{writeD} task at the left-hand side that becomes stable after one rewrite step in which it writes the value to the given pin.
670 When \cleaninline{writeD} becomes stable, the written value is the task value that is observed by the right-hand side of the \cleaninline{>>=.} combinator.
671 This will call the interpreter to evaluate the expression, now that the argument of the function is known.
672 The result of the function is again a task tree, but now with different arguments to the tasks, e.g.\ the state in \cleaninline{writeD} is inversed.
673 \todo[inline]{Beter uitleggen dat \cleaninline{>>\|.} eigenlijk een step is en dat het natuurlijk eigenlijk twee trees zijn.}
674
675 \begin{figure}
676 \centering
677 \includestandalone{blinktree}
678 \caption{The task tree for a blink task in \cref{lst:blink_code} in \gls{MTASK}.}%
679 \label{fig:blink_tree}
680 \end{figure}
681
682 \subsection{Memory management}
683 The third and final phase is memory management.
684 The \gls{MTASK} \gls{RTS} is designed to run on systems with as little as \qty{2}{\kibi\byte} of \gls{RAM}.
685 Aggressive memory management is therefore vital.
686 Not all firmwares for microprocessors support heaps and---when they do---allocation often leaves holes when not used in a \emph{last in first out} strategy.
687 The \gls{RTS} uses a chunk of memory in the global data segment with its own memory manager tailored to the needs of \gls{MTASK}.
688 The size of this block can be changed in the configuration of the \gls{RTS} if necessary.
689 On an \gls{ARDUINO} UNO---equipped with \qty{2}{\kibi\byte} of \gls{RAM}---the maximum viable size is about \qty{1500}{\byte}.
690 The self-managed memory uses a similar layout as the memory layout for \gls{C} programs only the heap and the stack are switched (see \cref{fig:memory_layout}).
691
692 \begin{figure}
693 \centering
694 \includestandalone{memorylayout}
695 \caption{Memory layout in the \gls{MTASK} \gls{RTS}.}\label{fig:memory_layout}
696 \end{figure}
697
698 A task is stored below the stack and it consists of the task id, a pointer to the task tree in the heap (null if not initialised yet), the current task value, the configuration of \glspl{SDS}, the configuration of peripherals, the byte code and some scheduling information.
699
700 In memory, task data grows from the bottom up and the interpreter stack is located directly on top of it growing in the same direction.
701 As a consequence, the stack moves when a new task is received.
702 This never happens within execution because communication is always processed before execution.
703 Values in the interpreter are always stored on the stack.
704 Compound data types are stored unboxed and flattened.
705 Task trees grow from the top down as in a heap.
706 This approach allows for flexible ratios, i.e.\ many tasks and small trees or few tasks and big trees.
707
708 Stable tasks, and unreachable task tree nodes are removed.
709 If a task is to be removed, tasks with higher memory addresses are moved down.
710 For task trees---stored in the heap---the \gls{RTS} already marks tasks and task trees as trash during rewriting, so the heap can be compacted in a single pass.
711 This is possible because there is no sharing or cycles in task trees and nodes contain pointers to their parent.
712
713
714 \section{C code generation for communication}\label{sec:ccodegen}
715 All communication between the \gls{ITASK} server and the \gls{MTASK} server is type parametrised.
716 From the structural representation of the type, a \gls{CLEAN} parser and printer is constructed using generic programming.
717 Furthermore, a \ccpp{} parser and printer is generated for use on the \gls{MTASK} device.
718 The technique for generating the \ccpp{} parser and printer is very similar to template metaprogramming and requires a rich generic programming library or compiler support that includes a lot of metadata in the record and constructor nodes.
719 Using generic programming in the \gls{MTASK} system, both serialisation and deserialisation on the microcontroller and the server is automatically generated.
720
721 \subsection{Server}
722 On the server, off-the-shelve generic programming techniques are used to make the serialisation and deserialisation functions (see \cref{lst:ser_deser_server}).
723 Serialisation is a simple conversion from a value of the type to a string.
724 Deserialisation is a bit different in order to support streaming\footnotemark.
725 \footnotetext{%
726 Here the \cleaninline{*!} variant of the generic interface is chosen that has less uniqueness constraints for the compiler-generated adaptors \citep{alimarine_generic_2005,hinze_derivable_2001}.%
727 }
728 Given a list of available characters, a tuple is always returned.
729 The right-hand side of the tuple contains the remaining characters, the unparsed input.
730 The left-hand side contains either an error or a maybe value.
731 If the value is a \cleaninline{?None}, there was no full value to parse.
732 If the value is a \cleaninline{?Just}, the data field contains a value of the requested type.
733
734 \begin{lstClean}[caption={Serialisation and deserialisation functions in \gls{CLEAN}.},label={lst:ser_deser_server}]
735 generic toByteCode a :: a -> String
736 generic fromByteCode a *! :: [Char] -> (Either String (? a), [Char])
737 \end{lstClean}
738
739 \subsection{Client}
740 The \gls{RTS} of the \gls{MTASK} system runs on resource-constrained microcontrollers and is implemented in portable \ccpp{}.
741 In order to achieve more interoperation safety, the communication between the server and the client is automated, i.e.\ the serialisation and deserialisation code in the \gls{RTS} is generated.
742 \todo[inline]{Dit naar voren halen naar 7.4.0?}
743 The technique used for this is very similar to the technique shown in \cref{chp:first-class_datatypes}.
744 However, instead of using template metaprogramming, a feature \gls{CLEAN} lacks, generic programming is used also as a two-stage rocket.
745 In contrast to many other generic programming systems, \gls{CLEAN} allows for access to much of the metadata of the compiler.
746 For example, \cleaninline{Cons}, \cleaninline{Object}, \cleaninline{Field}, and \cleaninline{Record} generic constructors are enriched with their arity, names, types, \etc.
747 Furthermore, constructors can access the metadata of the objects and fields of their parent records.
748 Using this metadata, generic functions are created that generate \ccpp{} type definitions, parsers and printers for any first-order \gls{CLEAN} type.
749 The exact details of this technique can be found in the future in a paper that is in preparation.
750
751 \Glspl{ADT} are converted to tagged unions, newtypes to typedefs, records to structs, and arrays to dynamic size-parametrised allocated arrays.
752 For example, the \gls{CLEAN} types in \cref{lst:ser_clean} are translated to the \ccpp{} types seen in \cref{lst:ser_c}
753
754 \begin{lstClean}[caption={Simple \glspl{ADT} in \gls{CLEAN}.},label={lst:ser_clean}]
755 :: T a = A a | B NT {#Char}
756 :: NT =: NT Real
757 \end{lstClean}
758
759 \begin{lstArduino}[caption={Generated \ccpp{} type definitions for the simple \glspl{ADT}.},label={lst:ser_c}]
760 typedef double Real;
761 typedef char Char;
762
763 typedef Real NT;
764 enum T_c {A_c, B_c};
765
766 struct Char_HshArray { uint32_t size; Char *elements; };
767 struct T {
768 enum T_c cons;
769 struct { void *A;
770 struct { NT f0; struct Char_HshArray f1; } B;
771 } data;
772 };
773 \end{lstArduino}
774
775 For each of these generated types, two functions are created, a typed printer, and a typed parser (see \cref{lst:ser_pp}).
776 The parser functions are parametrised by a read function, an allocation function and parse functions for all type variables.
777 This allows for the use of these functions in environments where the communication is parametrised and the memory management is self-managed such as in the \gls{MTASK} \gls{RTS}.
778
779 \begin{lstArduino}[caption={Printer and parser for the \glspl{ADT} in \ccpp{}.},label={lst:ser_pp}]
780 struct T parse_T(uint8_t (*get)(), void *(*alloc)(size_t),
781 void *(*parse_0)(uint8_t (*)(), void *(*)(size_t)));
782
783 void print_T(void (*put)(uint8_t), struct T r,
784 void (*print_0)(void (*)(uint8_t), void *));
785 \end{lstArduino}
786
787 \section{Conclusion}
788 This chapter showed the implementation of the \gls{MTASK} byte code compiler, the \gls{RTS}, and the internals of their communication.
789 It is not straightforward to execute \gls{MTASK} tasks on resources-constrained \gls{IOT} edge devices.
790 To achieve this, the terms in the \gls{DSL} are compiled to compact domain-specific byte code.
791 This byte code is sent for interpretation to the light-weight \gls{RTS} of the edge device.
792 The \gls{RTS} first evaluates the main expression in the interpreter.
793 The result of this evaluation, a run time representation of the task, is a task tree.
794 This task tree is rewritten according to small-step reduction rules until a stable value is observed.
795 Rewriting multiple tasks at the same time is achieved by interleaving the rewrite steps, resulting in seemingly parallel execution of the tasks.
796 All communication, including the serialisation and deserialisation, between the server and the \gls{RTS} is automated.
797 From the structural representation of the types, printers and parsers are generated for the server and the client.
798
799 \input{subfilepostamble}
800 \end{document}