88659b895b7f13b045686d1d1e1f08cb050173fd
[phd-thesis.git] / top / imp.tex
1 \documentclass[../thesis.tex]{subfiles}
2
3 \input{subfilepreamble}
4
5 \setcounter{chapter}{4}
6
7 \begin{document}
8 \input{subfileprefix}
9 \chapter{Implementation}%
10 \label{chp:implementation}
11 \begin{chapterabstract}
12 This chapter shows the implementation of the \gls{MTASK} system by:
13 \begin{itemize}
14 \item giving details of the implementation of \gls{MTASK}'s \gls{TOP} engine that executes the \gls{MTASK} tasks on the microcontroller;
15 \item showing the implementation of the byte code compiler for \gls{MTASK}'s \gls{TOP} language;
16 \item explaining the machinery used to automatically serialise and deserialise data to-and-fro the device.
17 \end{itemize}
18 \end{chapterabstract}
19
20 The \gls{MTASK} language targets resource-constrained edge devices that have little memory, processor speed and communication.
21 Furthermore, microcontrollers usually have flash-based program memory which wears out fairly quick.
22 For example, the flash memory of the popular atmega328p powering the \gls{ARDUINO} UNO is just rated for 10000 write cycles.
23 While this sounds like a lot, if new tasks are sent to the device every minute or so, a lifetime of only seven days is guaranteed.
24 Hence, for dynamic applications, storing the program in the \gls{RAM} of the device and interpreting this code is necessary, saving precious write cycles of the program memory.
25
26 In the \gls{MTASK} system, this is done by the \gls{MTASK} \gls{RTS}.
27 The \gls{RTS} is a customisable domain-specific \gls{OS} that takes care of the execution of tasks, but also low-level mechanisms such as the communication, multitasking, and memory management.
28 Once a device is programmed with the \gls{MTASK} \gls{RTS}, it can continuously receive new tasks without the need for reprogramming.
29 The \gls{OS} is written in portable \ccpp{} and only contains a small device-specific portion.
30 In order to keep the abstraction level high and the hardware requirements low, much of the high-level functionality of the \gls{MTASK} language is implemented not in terms of lower-level constructs from \gls{MTASK} language but in terms of \ccpp{} code.
31
32 \section{\texorpdfstring{\Glsxtrlong{RTS}}{Run time system}}
33 The event loop of the \gls{RTS} is executed repeatedly and consists of three distinct phases.
34 After doing the three phases, the devices goes to sleep for as long as possible (see \cref{chp:green_computing_mtask}).
35
36 \subsection{Communication}
37 In the first phase, the communication channels are processed.
38 The exact communication method is a customisable device-specific option baked into the \gls{RTS}.
39 The interface is deliberately kept simple and consists of a two layer interface: a link interface and a communication interface.
40 Besides opening, closing and cleaning up, the link interface has only three functions that are shown in \cref{lst:link_interface}.
41 Consequently, implementing this link interface is very simple but allows for many more advanced link settings such as buffering.
42 There are implementations for this interface for serial or \gls{WIFI} connections using \gls{ARDUINO} and \gls{TCP} connections for Linux.
43
44 \begin{lstArduino}[caption={Link interface of the \gls{MTASK} \gls{RTS}.},label={lst:link_interface}]
45 bool link_input_available(void);
46 uint8_t link_read_byte(void);
47 void link_write_byte(uint8_t b);
48 \end{lstArduino}
49
50 The communication interface abstracts away from this link interface and is typed instead.
51 It contains only two functions as seen in \cref{lst:comm_interface}.
52 There are implementations for direct communication, or communication using an \gls{MQTT} broker.
53 Both use the automatic serialisation and deserialisation shown in \cref{sec:ccodegen}.
54
55 \begin{lstArduino}[caption={Communication interface of the \gls{MTASK} \gls{RTS}.},label={lst:comm_interface}]
56 struct MTMessageTo receive_message(void);
57 void send_message(struct MTMessageFro msg);
58 \end{lstArduino}
59
60 Processing the received messages from the communication channels happens synchronously and the channels are exhausted completely before moving on to the next phase.
61 There are several possible messages that can be received from the server:
62
63 \begin{description}
64 \item[SpecRequest]
65 is a message instructing the device to send its specification and is sent usually immediately after connecting.
66 The \gls{RTS} responds with a \texttt{Spec} answer containing the specification.
67 \item[TaskPrep]
68 tells the device a (big) task is on its way.
69 Especially on faster connections, it may be the case that the communication buffers overflow because a big message is sent while the \gls{RTS} is busy executing tasks.
70 This allows the \gls{RTS} to postpone execution for a while, until the big task has been received.
71 The server sends the big task when the device acknowledges (by sending a \texttt{TaskPrepAck} message) the preparation.
72 \item[Task]
73 contains a new task, its peripheral configuration, the \glspl{SDS}, and the bytecode.
74 The new task is immediately copied to the task storage but is only initialised during the next phase after which a \texttt{TaskAck} is sent.
75 Tasks are stored below the stack, but since the stack is only used in the middle phase, execution, it is no problem that it moves.
76 \item[SdsUpdate]
77 notifies the device of the new value for a lowered \gls{SDS}.
78 The old value of the lowered \gls{SDS} is immediately replaced with the new one.
79 There is no acknowledgement required.
80 \item[TaskDel]
81 instructs the device to delete a running task.
82 Tasks are automatically deleted when they become stable.
83 However, a task may also be deleted when the surrounding task on the server is deleted, for example when the task is on the left-hand side of a step combinator and the condition to step holds.
84 The device acknowledges by sending a \texttt{TaskDelAck}.
85 \item[Shutdown]
86 tells the device to reset.
87 \end{description}
88
89 \subsection{Execution}
90 The second phase consists of performing one execution step for all tasks that wish for it.
91 Tasks are ordered in a priority queue ordered by the time a task needs to be executed, the \gls{RTS} selects all tasks that can be scheduled, see \cref{sec:scheduling} for more details.
92 Execution of a task is always an interplay between the interpreter and the \emph{rewriter}.
93
94 If a task is not initialized yet, i.e.\ the pointer to the current task tree is still null, the byte code of the main function is interpreted.
95 The main expression always produces a task tree.
96 Execution of a task consists of continuously rewriting the task until its value is stable.
97 Rewriting is a destructive process, i.e.\ the rewriting is done in place.
98 The rewriting engine uses the interpreter when needed, e.g.\ to calculate the step continuations.
99 The rewriter and the interpreter use the same stack to store intermediate values.
100 Rewriting steps are small so that interleaving results in seemingly parallel execution.
101 In this phase new task tree nodes may be allocated.
102 Both rewriting and initialization are atomic operations in the sense that no processing on SDSs is done other than SDS operations from the task itself.
103 The host is notified if a task value is changed after a rewrite step.
104
105 \subsection{Memory management}
106 The third and final phase is memory management.
107 The \gls{MTASK} \gls{RTS} is designed to run on systems with as little as \qty{2}{\kibi\byte} of \gls{RAM}.
108 Aggressive memory management is therefore vital.
109 Not all firmwares for microprocessors support heaps and---when they do---allocation often leaves holes when not used in a \emph{last in first out} strategy.
110 The \gls{RTS} uses a chunk of memory in the global data segment with its own memory manager tailored to the needs of \gls{MTASK}.
111 The size of this block can be changed in the configuration of the \gls{RTS} if necessary.
112 On an \gls{ARDUINO} UNO---equipped with \qty{2}{\kibi\byte} of \gls{RAM}---the maximum viable size is about \qty{1500}{\byte}.
113 The self-managed memory uses a similar layout as the memory layout for \gls{C} programs only the heap and the stack are switched (see \cref{fig:memory_layout}).
114
115 \begin{figure}
116 \centering
117 \includestandalone{memorylayout}
118 \caption{Memory layout}\label{fig:memory_layout}
119 \end{figure}
120
121 A task is stored below the stack and its complete state is a \gls{CLEAN} record contain most importantly the task id, a pointer to the task tree in the heap (null if not initialised yet), the current task value, the configuration of \glspl{SDS}, the configuration of peripherals, the byte code and some scheduling information.
122
123 In memory, task data grows from the bottom up and the interpreter stack is located directly on top of it growing in the same direction.
124 As a consequence, the stack moves when a new task is received.
125 This never happens within execution because communication is always processed before execution.
126 Values in the interpreter are always stored on the stack.
127 Compound data types are stored unboxed and flattened.
128 Task trees grow from the top down as in a heap.
129 This approach allows for flexible ratios, i.e.\ many tasks and small trees or few tasks and big trees.
130
131 Stable tasks, and unreachable task tree nodes are removed.
132 If a task is to be removed, tasks with higher memory addresses are moved down.
133 For task trees---stored in the heap---the \gls{RTS} already marks tasks and task trees as trash during rewriting so the heap can be compacted in a single pass.
134 This is possible because there is no sharing or cycles in task trees and nodes contain pointers pointers to their parent.
135
136 \todo{plaa\-tje van me\-mo\-ry hier uitbreiden}
137
138 \section{Compiler}
139 \subsection{Instruction set}
140 The instruction set is a fairly standard stack machine instruction set extended with special \gls{TOP} instructions for creating task tree nodes.
141 All instructions are housed in a \gls{CLEAN} \gls{ADT} and serialised to the byte representation using a generic function.
142 Type synonyms (\cref{lst:type_synonyms}) are used to provide insight on the arguments of the instructions.
143 Labels are always two bytes long, all other arguments are one byte long.
144
145 \begin{lstClean}[caption={Type synonyms for instructions arguments.},label={lst:type_synonyms}]
146 :: ArgWidth :== UInt8 :: ReturnWidth :== UInt8
147 :: Depth :== UInt8 :: Num :== UInt8
148 :: SdsId :== UInt8 :: JumpLabel =: JL UInt16
149 \end{lstClean}
150
151 \Cref{lst:instruction_type} shows an excerpt of the \gls{CLEAN} type that represents the instruction set.
152 For example, shorthand instructions are omitted for brevity.
153 Detailed semantics for the instructions are given in \cref{chp:bytecode_instruction_set}.
154 One notable instruction is the \cleaninline{MkTask} instruction, it allocates and initialises a task tree node and pushes a pointer to it on the stack.
155
156 \begin{lstClean}[caption={The type housing the instruction set.},label={lst:instruction_type}]
157 :: BCInstr
158 //Jumps
159 = BCJumpF JumpLabel | BCJump JumpLabel | BCLabel JumpLabel | BCJumpSR ArgWidth JumpLabel
160 | BCReturn ReturnWidth ArgWidth | BCTailcall ArgWidth ArgWidth JumpLabel
161 //Arguments
162 | BCArgs ArgWidth ArgWidth
163 //Task node creation and refinement
164 | BCMkTask BCTaskType | BCTuneRateMs | BCTuneRateSec
165 //Stack ops
166 | BCPush String255 | BCPop Num | BCRot Depth Num | BCDup | BCPushPtrs
167 //Casting
168 | BCItoR | BCItoL | BCRtoI | ...
169 // arith
170 | BCAddI | BCSubI | ...
171 ...
172
173 :: BCTaskType
174 = BCStableNode ArgWidth | BCUnstableNode ArgWidth
175 // Pin io
176 | BCReadD | BCWriteD | BCReadA | BCWriteA | BCPinMode
177 // Interrupts
178 | BCInterrupt
179 // Repeat
180 | BCRepeat
181 // Delay
182 | BCDelay | BCDelayUntil
183 // Parallel
184 | BCTAnd | BCTOr
185 //Step
186 | BCStep ArgWidth JumpLabel
187 //Sds ops
188 | BCSdsGet SdsId | BCSdsSet SdsId | BCSdsUpd SdsId JumpLabel
189 // Rate limiter
190 | BCRateLimit
191 ////Peripherals
192 //DHT
193 | BCDHTTemp UInt8 | BCDHTHumid UInt8
194 ...
195 \end{lstClean}
196
197 \subsection{Compiler infrastructure}
198 The bytecode compiler interpretation for the \gls{MTASK} language is implemented as a monad stack containing a writer monad and a state monad.
199 The writer monad is used to generate code snippets locally without having to store them in the monadic values.
200 The state monad accumulates the code, and stores the stateful data the compiler requires.
201 \Cref{lst:compiler_state} shows the data type for the state, storing:
202 function the compiler currently is in;
203 code of the main expression;
204 context (see \cref{ssec:step});
205 code for the functions;
206 next fresh label;
207 a list of all the used \glspl{SDS}, either local \glspl{SDS} containing the initial value (\cleaninline{Left}) or lifted \glspl{SDS} (see \cref{sec:liftsds}) containing a reference to the associated \gls{ITASK} \gls{SDS};
208 and finally there is a list of peripherals used.
209
210 \begin{lstClean}[label={lst:compiler_state},caption={The type for the \gls{MTASK} byte code compiler}]
211 :: BCInterpret a :== StateT BCState (WriterT [BCInstr] Identity) a
212 :: BCState =
213 { bcs_infun :: JumpLabel
214 , bcs_mainexpr :: [BCInstr]
215 , bcs_context :: [BCInstr]
216 , bcs_functions :: Map JumpLabel BCFunction
217 , bcs_freshlabel :: JumpLabel
218 , bcs_sdses :: [Either String255 MTLens]
219 , bcs_hardware :: [BCPeripheral]
220 }
221 :: BCFunction =
222 { bcf_instructions :: [BCInstr]
223 , bcf_argwidth :: UInt8
224 , bcf_returnwidth :: UInt8
225 }
226 \end{lstClean}
227
228 Executing the compiler is done by providing an initial state.
229 After compilation, several post-processing steps are applied to make the code suitable for the microprocessor.
230 First, in all tail call \cleaninline{BCReturn}'s are replaced by \cleaninline{BCTailCall} to implement tail call elimination.
231 Furthermore, all byte code is concatenated, resulting in one big program.
232 Many instructions have commonly used arguments so shorthands are introduced to reduce the program size.
233 For example, the \cleaninline{BCArg} instruction is often called with argument \qtyrange{0}{2} and can be replaced by the \cleaninline{BCArg0}--\cleaninline{BCArg2} shorthands.
234 Furthermore, redundant instructions (e.g.\ pop directly after push) are removed as well in order not to burden the code generation with these intricacies.
235 Finally the labels are resolved to represent actual program addresses instead of freshly generated identifiers.
236 After the byte code is ready, the lifted \glspl{SDS} are resolved to provide an initial value for them.
237 The result---byte code, \gls{SDS} specification and perpipheral specifications---are the result of the process, ready to be sent to the device.
238
239 \section{Compilation rules}
240 This section describes the compilation rules, the translation from abstract syntax to byte code.
241 The compilation scheme consists of three schemes\slash{}functions.
242 When something is surrounded by double vertical bars, e.g.\ $\stacksize{a_i}$, it denotes the number of stack cells required to store it.
243
244 Some schemes have a \emph{context} $r$ as an argument which contains information about the location of the arguments in scope.
245 More information is given in the schemes requiring such arguments.
246
247 \newcommand{\cschemeE}[2]{\mathcal{E}\llbracket#1\rrbracket~#2}
248 \newcommand{\cschemeF}[1]{\mathcal{F}\llbracket#1\rrbracket}
249 \newcommand{\cschemeS}[3]{\mathcal{S}\llbracket#1\rrbracket~#2~#3}
250 \begin{table}
251 \centering
252 \begin{tabularx}{\linewidth}{l X}
253 \toprule
254 Scheme & Description\\
255 \midrule
256 $\cschemeE{e}{r}$ & Produces the value of expression $e$ given the context $r$ and pushes it on the stack.
257 The result can be a basic value or a pointer to a task.\\
258 $\cschemeF{e}$ & Generates the bytecode for functions.\\
259 $\cschemeS{e}{r}{w} $ & Generates the function for the step continuation given the context $r$ and the width $w$ of the left-hand side task value.\\
260 \bottomrule
261 \end{tabularx}
262 \end{table}
263
264 \subsection{Expressions}
265 Almost all expression constructions are compiled using $\mathcal{E}$.
266 The argument of $\mathcal{E}$ is the context (see \cref{ssec:functions}).
267 Values are always placed on the stack; tuples and other compound data types are unpacked.
268 Function calls, function arguments and tasks are also compiled using $\mathcal{E}$ but their compilations is explained later.
269
270 \begin{align*}
271 \cschemeE{\text{\cleaninline{lit}}~e}{r} & = \text{\cleaninline{BCPush (bytecode e)}};\\
272 \cschemeE{e_1\mathbin{\text{\cleaninline{+.}}}e_2}{r} & = \cschemeE{e_1}{r};
273 \cschemeE{e_2}{r};
274 \text{\cleaninline{BCAdd}};\\
275 {} & \text{\emph{Similar for other binary operators}}\\
276 \cschemeE{\text{\cleaninline{Not}}~e}{r} & =
277 \cschemeE{e}{r};
278 \text{\cleaninline{BCNot}};\\
279 {} & \text{\emph{Similar for other unary operators}}\\
280 \cschemeE{\text{\cleaninline{If}}~e_1~e_2~e_3}{r} & =
281 \cschemeE{e_1}{r};
282 \text{\cleaninline{BCJmpF}}\enskip l_{else}; \mathbin{\phantom{=}} \cschemeE{e_2}{r}; \text{\cleaninline{BCJmp}}\enskip l_{endif};\\
283 {} & \mathbin{\phantom{=}} \text{\cleaninline{BCLabel}}\enskip l_{else}; \cschemeE{e_3}{r}; \mathbin{\phantom{=}} \text{\cleaninline{BCLabel}}\enskip l_{endif};\\
284 {} & \text{\emph{Where $l_{else}$ and $l_{endif}$ are fresh labels}}\\
285 \cschemeE{\text{\cleaninline{tupl}}~e_1~e_2}{r} & =
286 \cschemeE{e_1}{r};
287 \cschemeE{e_2}{r};\\
288 {} & \text{\emph{Similar for other unboxed compound data types}}\\
289 \cschemeE{\text{\cleaninline{first}}~e}{r} & =
290 \cschemeE{e}{r};
291 \text{\cleaninline{BCPop}}\enskip w;\\
292 {} & \text{\emph{Where $w$ is the width of the left value and}}\\
293 {} & \text{\emph{similar for other unboxed compound data types}}\\
294 \cschemeE{\text{\cleaninline{second}}\enskip e}{r} & =
295 \cschemeE{e}{r};
296 \text{\cleaninline{BCRot}}\enskip w_1\enskip (w_1+w_2);
297 \text{\cleaninline{BCPop}}\enskip w_2;\\
298 {} & \text{\emph{Where $w_1$ is the width of the left and, $w_2$ of the right value}}\\
299 {} & \text{\emph{similar for other unboxed compound data types}}\\
300 \end{align*}
301
302 Translating $\mathcal{E}$ to \gls{CLEAN} code is very straightforward, it basically means executing the monad.
303 Almost always, the type of the interpretation is not used, i.e.\ it is a phantom type.
304 To still have the functions return the correct type, the \cleaninline{tell`}\footnote{\cleaninline{tell` :: [BCInstr] -> BCInterpret a}} helper is used.
305 This function is similar to the writer monad's \cleaninline{tell} function but is casted to the correct type.
306 \Cref{lst:imp_arith} shows the implementation for the arithmetic and conditional expressions.
307 Note that $r$, the context, is not an explicit argument but stored in the state.
308
309 \begin{lstClean}[caption={Interpretation implementation for the arithmetic and conditional classes.},label={lst:imp_arith}]
310 instance expr BCInterpret where
311 lit t = tell` [BCPush (toByteCode{|*|} t)]
312 (+.) a b = a >>| b >>| tell` [BCAdd]
313 ...
314 If c t e = freshlabel >>= \elselabel->freshlabel >>= \endiflabel->
315 c >>| tell` [BCJumpF elselabel] >>|
316 t >>| tell` [BCJump endiflabel,BCLabel elselabel] >>|
317 e >>| tell` [BCLabel endiflabel]
318 \end{lstClean}
319
320 \subsection{Functions}\label{ssec:functions}
321 Compiling functions occurs in $\mathcal{F}$, which generates bytecode for the complete program by iterating over the functions and ending with the main expression.
322 When compiling the body of the function, the arguments of the function are added to the context so that the addresses can be determined when referencing arguments.
323 The main expression is a special case of $\mathcal{F}$ since it neither has arguments nor something to continue.
324 Therefore, it is just compiled using $\mathcal{E}$.
325
326 \begin{align*}
327 \cschemeF{main=m} & =
328 \cschemeE{m}{[]};\\
329 \cschemeF{f~a_0 \ldots a_n = b~\text{\cleaninline{In}}~m} & =
330 \text{\cleaninline{BCLabel}}~f; \cschemeE{b}{[\langle f, i\rangle, i\in \{(\Sigma^n_{i=0}\stacksize{a_i})..0\}]};\\
331 {} & \mathbin{\phantom{=}} \text{\cleaninline{BCReturn}}~\stacksize{b}~n; \cschemeF{m};\\
332 \end{align*}
333
334 A function call starts by pushing the stack and frame pointer, and making space for the program counter (\cref{lst:funcall_pushptrs}) followed by evaluating the arguments in reverse order (\cref{lst:funcall_args}).
335 On executing \cleaninline{BCJumpSR}, the program counter is set and the interpreter jumps to the function (\cref{lst:funcall_jumpsr}).
336 When the function returns, the return value overwrites the old pointers and the arguments.
337 This occurs right after a \cleaninline{BCReturn} (\cref{lst:funcall_ret}).
338 Putting the arguments on top of pointers and not reserving space for the return value uses little space and facilitates tail call optimization.
339
340 \begin{figure}
341 \begin{subfigure}{.24\linewidth}
342 \centering
343 \includestandalone{memory1}
344 \caption{\cleaninline{BCPushPtrs}}\label{lst:funcall_pushptrs}
345 \end{subfigure}
346 \begin{subfigure}{.24\linewidth}
347 \centering
348 \includestandalone{memory2}
349 \caption{Arguments}\label{lst:funcall_args}
350 \end{subfigure}
351 \begin{subfigure}{.24\linewidth}
352 \centering
353 \includestandalone{memory3}
354 \caption{\cleaninline{BCJumpSR}}\label{lst:funcall_jumpsr}
355 \end{subfigure}
356 \begin{subfigure}{.24\linewidth}
357 \centering
358 \includestandalone{memory4}
359 \caption{\cleaninline{BCReturn}}\label{lst:funcall_ret}
360 \end{subfigure}
361 \caption{The stack layout during function calls.}%
362 \end{figure}
363
364 Calling a function and referencing function arguments are an extension to $\mathcal{E}$ as shown below.
365 Arguments may be at different places on the stack at different times (see \cref{ssec:step}) and therefore the exact location always has to be determined from the context using \cleaninline{findarg}\footnote{\cleaninline{findarg [l`:r] l = if (l == l`) 0 (1 + findarg r l)}}.
366 Compiling argument $a_{f^i}$, the $i$th argument in function $f$, consists of traversing all positions in the current context.
367 Arguments wider than one stack cell are fetched in reverse to preserve the order.
368
369 \begin{align*}
370 \cschemeE{f(a_0, \ldots, a_n)}{r} & =
371 \text{\cleaninline{BCPushPtrs}}; \cschemeE{a_n}{r}; \cschemeE{a_{\ldots}}{r}; \cschemeE{a_0}{r}; \text{\cleaninline{BCJumpSR}}~n~f;\\
372 \cschemeE{a_{f^i}}{r} & =
373 \text{\cleaninline{BCArg}~findarg}(r, f, i)~\text{for all}~i\in\{w\ldots v\};\\
374 {} & v = \Sigma^{i-1}_{j=0}\stacksize{a_{f^j}}~\text{ and }~ w = v + \stacksize{a_{f^i}}\\
375 \end{align*}
376
377 Translating the compilation schemes for functions to Clean is not as straightforward as other schemes due to the nature of shallow embedding.\todo{deze \P{} moet ge\-\"up\-da\-ted worden}
378 The \cleaninline{fun} class has a single function with a single argument.
379 This argument is a Clean function that---when given a callable Clean function representing the mTask function---will produce \cleaninline{main} and a callable function.
380 To compile this, the argument must be called with a function representing a function call in mTask.
381 \Cref{lst:fun_imp} shows the implementation for this as Clean code.
382 To uniquely identify the function, a fresh label is generated.
383 The function is then called with the \cleaninline{callFunction} helper function that generates the instructions that correspond to calling the function.
384 That is, it pushes the pointers, compiles the arguments, and writes the \cleaninline{JumpSR} instruction.
385 The resulting structure (\cleaninline{g In m}) contains a function representing the mTask function (\cleaninline{g}) and the \cleaninline{main} structure to continue with.
386 To get the actual function, \cleaninline{g} must be called with representations for the argument, i.e.\ using \cleaninline{findarg} for all arguments.
387 The arguments are added to the context and \cleaninline{liftFunction} is called with the label, the argument width and the compiler.
388 This function executes the compiler, decorates the instructions with a label and places them in the function dictionary together with the metadata such as the argument width.
389 After lifting the function, the context is cleared again and compilation continues with the rest of the program.
390
391 \begin{lstClean}[label={lst:fun_imp},caption={The backend implementation for functions.}]
392 instance fun (BCInterpret a) BCInterpret | type a where
393 fun def = {main=freshlabel >>= \funlabel->
394 let (g In m) = def \a->callFunction funlabel (toByteWidth a) [a]
395 argwidth = toByteWidth (argOf g)
396 in addToCtx funlabel zero argwidth
397 >>| infun funlabel
398 (liftFunction funlabel argwidth
399 (g (retrieveArgs funlabel zero argwidth)
400 ) ?None)
401 >>| clearCtx >>| m.main
402 }
403
404 argOf :: ((m a) -> b) a -> UInt8 | toByteWidth a
405 callFunction :: JumpLabel UInt8 [BCInterpret b] -> BCInterpret c | ...
406 liftFunction :: JumpLabel UInt8 (BCInterpret a) (?UInt8) -> BCInterpret ()
407 \end{lstClean}
408
409 \subsection{Tasks}\label{ssec:scheme_tasks}
410 Task trees are created with the \cleaninline{BCMkTask} instruction that allocates a node and pushes it to the stack.
411 It pops arguments from the stack according to the given task type.
412 The following extension of $\mathcal{E}$ shows this compilation scheme (except for the step combinator, explained in \cref{ssec:step}).
413
414 \begin{align*}
415 \cschemeE{\text{\cleaninline{rtrn}}~e}{r} & =
416 \cschemeE{e}{r};
417 \text{\cleaninline{BCMkTask BCStable}}_{\stacksize{e}};\\
418 \cschemeE{\text{\cleaninline{unstable}}~e}{r} & =
419 \cschemeE{e}{r};
420 \text{\cleaninline{BCMkTask BCUnstable}}_{\stacksize{e}};\\
421 \cschemeE{\text{\cleaninline{readA}}~e}{r} & =
422 \cschemeE{e}{r};
423 \text{\cleaninline{BCMkTask BCReadA}};\\
424 \cschemeE{\text{\cleaninline{writeA}}~e_1~e_2}{r} & =
425 \cschemeE{e_1}{r};
426 \cschemeE{e_2}{r};
427 \text{\cleaninline{BCMkTask BCWriteA}};\\
428 \cschemeE{\text{\cleaninline{readD}}~e}{r} & =
429 \cschemeE{e}{r};
430 \text{\cleaninline{BCMkTask BCReadD}};\\
431 \cschemeE{\text{\cleaninline{writeD}}~e_1~e_2}{r} & =
432 \cschemeE{e_1}{r};
433 \cschemeE{e_2}{r};
434 \text{\cleaninline{BCMkTask BCWriteD}};\\
435 \cschemeE{\text{\cleaninline{delay}}~e}{r} & =
436 \cschemeE{e}{r};
437 \text{\cleaninline{BCMkTask BCDelay}};\\
438 \cschemeE{\text{\cleaninline{rpeat}}~e}{r} & =
439 \cschemeE{e}{r};
440 \text{\cleaninline{BCMkTask BCRepeat}};\\
441 \cschemeE{e_1\text{\cleaninline{.\|\|.}}e_2}{r} & =
442 \cschemeE{e_1}{r};
443 \cschemeE{e_2}{r};
444 \text{\cleaninline{BCMkTask BCOr}};\\
445 \cschemeE{e_1\text{\cleaninline{.&&.}}e_2}{r} & =
446 \cschemeE{e_1}{r};
447 \cschemeE{e_2}{r};
448 \text{\cleaninline{BCMkTask BCAnd}};\\
449 \end{align*}
450
451 This simply translates to Clean code by writing the correct \cleaninline{BCMkTask} instruction as exemplified in \cref{lst:imp_ret}.
452
453 \begin{lstClean}[caption={The backend implementation for \cleaninline{rtrn}.},label={lst:imp_ret}]
454 instance rtrn BCInterpret
455 where
456 rtrn m = m >>| tell` [BCMkTask (bcstable m)]
457 \end{lstClean}
458
459 \subsection{Sequential combinator}\label{ssec:step}
460 The \cleaninline{step} construct is a special type of task because the task value of the left-hand side may change over time.
461 Therefore, the continuation tasks on the right-hand side are \emph{observing} this task value and acting upon it.
462 In the compilation scheme, all continuations are first converted to a single function that has two arguments: the stability of the task and its value.
463 This function either returns a pointer to a task tree or fails (denoted by $\bot$).
464 It is special because in the generated function, the task value of a task can actually be inspected.
465 Furthermore, it is a lazy node in the task tree: the right-hand side may yield a new task tree after several rewrite steps (i.e.\ it is allowed to create infinite task trees using step combinators).
466 The function is generated using the $\mathcal{S}$ scheme that requires two arguments: the context $r$ and the width of the left-hand side so that it can determine the position of the stability which is added as an argument to the function.
467 The resulting function is basically a list of if-then-else constructions to check all predicates one by one.
468 Some optimization is possible here but has currently not been implemented.
469
470 \begin{align*}
471 \cschemeE{t_1\text{\cleaninline{>>*.}}t_2}{r} & =
472 \cschemeE{a_{f^i}}{r}, \langle f, i\rangle\in r;
473 \text{\cleaninline{BCMkTask}}~\text{\cleaninline{BCStable}}_{\stacksize{r}}; \cschemeE{t_1}{r};\\
474 {} & \mathbin{\phantom{=}} \text{\cleaninline{BCMkTask}}~\text{\cleaninline{BCAnd}}; \text{\cleaninline{BCMkTask}}~(\text{\cleaninline{BCStep}}~(\cschemeS{t_2}{(r + [\langle l_s, i\rangle])}{\stacksize{t_1}}));\\
475 \end{align*}
476
477 \begin{align*}
478 \cschemeS{[]}{r}{w} & =
479 \text{\cleaninline{BCPush}}~\bot;\\
480 \cschemeS{\text{\cleaninline{IfValue}}~f~t:cs}{r}{w} & =
481 \text{\cleaninline{BCArg}} (\stacksize{r} + w);
482 \text{\cleaninline{BCIsNoValue}};\\
483 {} & \mathbin{\phantom{=}} \cschemeE{f}{r};
484 \text{\cleaninline{BCAnd}};\\
485 {} & \mathbin{\phantom{=}} \text{\cleaninline{BCJmpF}}~l_1;\\
486 {} & \mathbin{\phantom{=}} \cschemeE{t}{r};
487 \text{\cleaninline{BCJmp}}~l_2;\\
488 {} & \mathbin{\phantom{=}} \text{\cleaninline{BCLabel}}~l_1;
489 \cschemeS{cs}{r}{w};\\
490 {} & \mathbin{\phantom{=}} \text{\cleaninline{BCLabel}}~l_2;\\
491 {} & \text{\emph{Where $l_1$ and $l_2$ are fresh labels}}\\
492 {} & \text{\emph{Similar for \cleaninline{IfStable} and \cleaninline{IfUnstable}}}\\
493 \end{align*}
494
495 First the context is evaluated.
496 The context contains arguments from functions and steps that need to be preserved after rewriting.
497 The evaluated context is combined with the left-hand side task value by means of a \cleaninline{.&&.} combinator to store it in the task tree so that it is available after a rewrite.
498 This means that the task tree is be transformed as follows:
499
500 \begin{lstClean}
501 t1 >>= \v1->t2 >>= \v2->t3 >>= ...
502 //is transformed to
503 t1 >>= \v1->rtrn v1 .&&. t2 >>= \v2->rtrn (v1, v2) .&&. t3 >>= ...
504 \end{lstClean}
505
506 The translation to \gls{CLEAN} is given in \cref{lst:imp_seq}.
507
508 \begin{lstClean}[caption={Backend implementation for the step class.},label={lst:imp_seq}]
509 instance step BCInterpret where
510 (>>*.) lhs cont
511 //Fetch a fresh label and fetch the context
512 = freshlabel >>= \funlab->gets (\s->s.bcs_context)
513 //Generate code for lhs
514 >>= \ctx->lhs
515 //Possibly add the context
516 >>| tell` (if (ctx =: []) []
517 //The context is just the arguments up till now in reverse
518 ( [BCArg (UInt8 i)\\i<-reverse (indexList ctx)]
519 ++ map BCMkTask (bcstable (UInt8 (length ctx)))
520 ++ [BCMkTask BCTAnd]
521 ))
522 //Increase the context
523 >>| addToCtx funlab zero lhswidth
524 //Lift the step function
525 >>| liftFunction funlab
526 //Width of the arguments is the width of the lhs plus the
527 //stability plus the context
528 (one + lhswidth + (UInt8 (length ctx)))
529 //Body label ctx width continuations
530 (contfun funlab (UInt8 (length ctx)))
531 //Return width (always 1, a task pointer)
532 (Just one)
533 >>| modify (\s->{s & bcs_context=ctx})
534 >>| tell` [BCMkTask (instr rhswidth funlab)]
535
536 toContFun :: JumpLabel UInt8 -> BCInterpret a
537 toContFun steplabel contextwidth
538 = foldr tcf (tell` [BCPush fail]) cont
539 where
540 tcf (IfStable f t)
541 = If ((stability >>| tell` [BCIsStable]) &. f val)
542 (t val >>| tell` [])
543 ...
544 stability = tell` [BCArg (lhswidth + contextwidth)]
545 val = retrieveArgs steplabel zero lhswidth
546 \end{lstClean}
547
548 \subsection{\texorpdfstring{\Glspl{SDS}}{Shared data sources}}
549 The compilation scheme for \gls{SDS} definitions is a trivial extension to $\mathcal{F}$ since there is no code generated as seen below.
550
551 \begin{align*}
552 \cschemeF{\text{\cleaninline{sds}}~x=i~\text{\cleaninline{In}}~m} & =
553 \cschemeF{m};\\
554 \end{align*}
555
556 The \gls{SDS} access tasks have a compilation scheme similar to other tasks (see \cref{ssec:scheme_tasks}).
557 The \cleaninline{getSds} task just pushes a task tree node with the \gls{SDS} identifier embedded.
558 The \cleaninline{setSds} task evaluates the value, lifts that value to a task tree node and creates an \gls{SDS} set node.
559
560 \begin{align*}
561 \cschemeE{\text{\cleaninline{getSds}}~s}{r} & =
562 \text{\cleaninline{BCMkTask}} (\text{\cleaninline{BCSdsGet}} s);\\
563 \cschemeE{\text{\cleaninline{setSds}}~s~e}{r} & =
564 \cschemeE{e}{r};
565 \text{\cleaninline{BCMkTask BCStable}}_{\stacksize{e}};\\
566 {} & \mathbin{\phantom{=}} \text{\cleaninline{BCMkTask}} (\text{\cleaninline{BCSdsSet}} s);\\
567 \end{align*}
568
569 While there is no code generated in the definition, the byte code compiler is storing the \gls{SDS} data in the \cleaninline{bcs_sdses} field in the compilation state.
570 The \glspl{SDS} are typed as functions in the host language so an argument for this function must be created that represents the \gls{SDS} on evaluation.
571 For this, an \cleaninline{BCInterpret} is created that emits this identifier.
572 When passing it to the function, the initial value of the \gls{SDS} is returned.
573 This initial value is stored as a byte code encoded value in the state and the compiler continues with the rest of the program.
574
575 Compiling \cleaninline{getSds} is a matter of executing the \cleaninline{BCInterpret} representing the \gls{SDS}, which yields the identifier that can be embedded in the instruction.
576 Setting the \gls{SDS} is similar: the identifier is retrieved and the value is written to put in a task tree so that the resulting task can remember the value it has written.
577 Lifted SDSs are compiled in a very similar way \cref{sec:liftsds}.
578
579 % VimTeX: SynIgnore on
580 \begin{lstClean}[caption={Backend implementation for the SDS classes.},label={lst:comp_sds}]
581 :: Sds a = Sds Int
582 instance sds BCInterpret where
583 sds def = {main = freshsds >>= \sdsi->
584 let sds = modify (\s->{s & bcs_sdses=put sdsi
585 (Left (toByteCode t)) s.bcs_sdses})
586 >>| pure (Sds sdsi)
587 (t In e) = def sds
588 in e.main}
589 getSds f = f >>= \(Sds i)-> tell` [BCMkTask (BCSdsGet (fromInt i))]
590 setSds f v = f >>= \(Sds i)->v >>| tell`
591 ( map BCMkTask (bcstable (byteWidth v))
592 ++ [BCMkTask (BCSdsSet (fromInt i))])
593 \end{lstClean}
594 % VimTeX: SynIgnore off
595
596 \section{\texorpdfstring{\Gls{C}}{C} code generation}\label{sec:ccodegen}
597 All communication between the \gls{ITASK} server and the \gls{MTASK} server is type-parametrised.
598 From the structural representation of the type, a \gls{CLEAN} parser and printer is constructed using generic programming.
599 Furthermore, a \ccpp{} parser and printer is generated for use on the \gls{MTASK} device.
600 The technique for generating the \ccpp{} parser and printer is very similar to template metaprogramming and requires a generic programming library or compiler support that includes a lot of metadata in the record and constructor nodes.
601
602 \section{Conclusion}
603 Tasks in the \gls{MTASK} system are executed on resource-constrained \gls{IOT} edge devices.
604
605 \todo[inline]{conclusion}
606
607 \input{subfilepostamble}
608 \end{document}