1b310cd90b7035db169097b679f187c8b417817e
[phd-thesis.git] / top / int.tex
1 \documentclass[../thesis.tex]{subfiles}
2
3 \input{subfilepreamble}
4
5 \begin{document}
6 \input{subfileprefix}
7
8 \chapter{Integration with \texorpdfstring{\gls{ITASK}}{iTask}}%
9 \label{chp:integration_with_itask}
10 \begin{chapterabstract}
11 \noindent This chapter shows the integration of \gls{MTASK} with \gls{ITASK} by showing:
12 \begin{itemize}
13 \item an architectural overview \gls{MTASK} applications;
14 \item on the interface for connecting devices;
15 \item the interface for lifting \gls{MTASK} tasks to \gls{ITASK} tasks;
16 \item a interface for lifting \gls{ITASK} \glspl{SDS} to \gls{MTASK} \glspl{SDS};
17 \item and finishes with non-trivial home automation example application using all integration mechanisms;
18 \end{itemize}
19 \end{chapterabstract}
20
21 The \gls{MTASK} language is a multi-view \gls{DSL}, i.e.\ there are multiple interpretations possible for a single \gls{MTASK} term.
22 Using the byte code compiler (\cleaninline{BCInterpret}) \gls{DSL} interpretation, \gls{MTASK} tasks can be fully integrated in \gls{ITASK}.
23 They are executed as if they are regular \gls{ITASK} tasks and they communicate may access \glspl{SDS} from \gls{ITASK} as well.
24 \Gls{MTASK} devices contain a domain-specific \gls{OS} and are little \gls{TOP} engines in their own respect, being able to execute tasks.
25 \Cref{fig:mtask_integration} shows the architectural layout of a typical \gls{IOT} system created with \gls{ITASK} and \gls{MTASK}.
26 The entire system is written as a single \gls{CLEAN} specification where multiple tasks are executed at the same time.
27 Tasks can access \glspl{SDS} according to many-to-many communication and multiple clients can work on the same task.
28 Devices are integrated into the system using the \cleaninline{withDevice} function (see \cref{sec:withdevice}).
29 Using \cleaninline{liftmTask}, \gls{MTASK} tasks are lifted to a device (see \cref{sec:liftmtask}).
30 \Gls{ITASK} \glspl{SDS} are lifted to the \gls{MTASK} device using \cleaninline{liftsds} (see \cref{sec:liftmtask}).
31
32 \begin{figure}[ht]
33 \centering
34 \includestandalone{mtask_integration}
35 \caption{\Gls{MTASK}'s integration with \gls{ITASK}.}%
36 \label{fig:mtask_integration}
37 \end{figure}
38
39 \section{Connecting edge devices}\label{sec:withdevice}
40 When interpreted by the byte code compiler view, an \gls{MTASK} task produces a compiler.
41 This compiler is exceuted at run time so that the resulting byte code can be sent to an edge device.
42 All communication with this device happens through a so-called \emph{channels} \gls{SDS}.
43 The channels contain three fields, a queue of messages that are received, a queue of messages to send and a stop flag.
44 Every communication method that implements the \cleaninline{channelSync} class can provide the communication with an \gls{MTASK} device.
45 As of now, serial port communication, direct \gls{TCP} communication and \gls{MQTT} over \gls{TCP} are supported as communication providers (see \cref{lst:connection_types}).
46 The \cleaninline{withDevice} function transforms such a communication provider and a task that does something with this device to an \gls{ITASK} task.
47 Internally, the task sets up the communication, exchanges specifications with the device, executes the inner task while handling errors, and finally cleans up after closing.
48 \Cref{lst:mtask_device} shows the types and interface to connecting devices.
49
50 \begin{lstClean}[label={lst:mtask_device},caption={Device communication interface in \gls{MTASK}.}]
51 :: MTDevice //abstract
52 :: Channels :== ([MTMessageFro], [MTMessageTo], Bool)
53
54 class channelSync a :: a (Shared sds Channels) -> Task () | RWShared sds
55
56 withDevice :: a (MTDevice -> Task b)
57 -> Task b | iTask b & channelSync, iTask a
58 \end{lstClean}
59
60 \subsection{Implementation}
61 \Cref{lst:pseudo_withdevice} shows a pseudocode implementation of the \cleaninline{withDevice} function.
62 The \cleaninline{MTDevice} abstract type is internally represented as three \gls{ITASK} \gls{SDS} that contain all the current information about the tasks.
63 The first \gls{SDS} is the information about the \gls{RTS} of the device, i.e.\ metadata on the tasks that are executing, the hardware specification and capabilities, and a list of fresh task identifiers.
64 The second \gls{SDS} is a map storing downstream \gls{SDS} updates.
65 When a lifted \gls{SDS} is updated on the device, a message is sent to the server.
66 This message is initially queued in the map to allow for asynchronous handling of multiple updates.
67 Finally, the \cleaninline{MTDevices} type contains the communication channels.
68
69 The \cleaninline{withDevice} task itself first constructs the \glspl{SDS} using the \gls{ITASK} function \cleaninline{withShared} to create anonymous local \glspl{SDS}.
70 Then, it performs the following four tasks in parallel to monitor the edge device.
71 \begin{enumerate}
72 \item It synchronises the channels using the \cleaninline{channelSync} overloaded function.
73 Errors that occur here are converted to the proper \gls{MTASK} exception.
74 \item Watches the channels for the shutdown flag.
75 If the connection is lost with the device unexpectedly, an \gls{MTASK} exception is thrown.
76 \item Watches the channels for messages and processes them accordingly by changing the device information \gls{SDS} or adding the lifted \gls{SDS} updates to the corresponding \gls{SDS} update queue.
77 \item Sends a request for a specification. Once the specification is received, the device task is run.
78 The task value of this device task is then used as the task value of the \cleaninline{withDevice} task.
79 \end{enumerate}
80
81 \begin{lstClean}[caption={Pseudocode for the \texttt{widthDevice} function},label={lst:pseudo_withdevice}]
82 withDevice spec deviceTask =
83 withShared newMap \sdsupdates->
84 withShared ([], [MTTSpecRequest], False) \channels->
85 withShared default \dev->parallel
86 [ channelSync spec channels
87 , watchForShutdown channels
88 , watchChannelMessages dev channels
89 , waitForSpecification
90 >>| deviceTask
91 >>* [ifStable: issueShutdown]
92 ]
93 \end{lstClean}
94
95 If at any stage an unrecoverable device error occurs, an \gls{ITASK} exception is thrown on the \cleaninline{withDevice} task.
96 This exception can be caught in order to device some kind of fail-safe mechanism.
97 For example, when a device fails, the tasks can be sent to another device as can be seen in \cref{lst:failover}.
98 This function executes an \gls{MTASK} task on a pool of devices.
99 If an error occurs during execution, the next device in the pool is tried until the pool is exhausted
100
101 \begin{lstClean}[caption={An \gls{MTASK} failover combinator.},label={lst:failover}]
102 failover :: [TCPSettings] (Main (MTask BCInterpret a)) -> Task a
103 failover [] _ = throw "Exhausted device pool"
104 failover [d:ds] mtask = try (withDevice d (liftmTask mtask)) except
105 where except MTEUnexpectedDisconnect = failover ds mtask
106 except _ = throw e
107 \end{lstClean}
108
109 \section{Lifting \texorpdfstring{\gls{MTASK}}{mTask} tasks}\label{sec:liftmtask}
110 Once the connection with the device is established, \gls{MTASK} tasks can be lifted to \gls{MTASK} tasks using the \cleaninline{liftmTask} family of functions (see \cref{lst:liftmtask}).
111 Given an \gls{MTASK} task in the \cleaninline{BCInterpret} view and a device obtained from \cleaninline{withDevice}, an \gls{ITASK} task is returned.
112 This \gls{ITASK} task tethers the \gls{MTASK} task that is executed on the microcontroller.
113 Hence, when for example observing the task value, the actual task value from the microcontroller is observed.
114
115 \begin{lstClean}[label={lst:liftmtask},caption={The interface for lifting \gls{MTASK} tasks to \gls{ITASK} tasks.}]
116 liftmTask :: (Main (MTask BCInterpret a)) MTDevice -> Task a | iTask a
117 \end{lstClean}
118
119 \subsection{Implementation}
120 \Cref{lst:liftmTask_pseudo} shows the pseudocode for the \cleaninline{liftmTask} implementation
121 The first argument is the task and the second argument is the device which is just an \gls{ADT} containing the \glspl{SDS} referring to the device information, the \gls{SDS} update queue, and the channels.
122 First a fresh identifier for the task is generated using the device state.
123 With this identifier, the cleanup hook can be installed.
124 This is done to assure the task is removed from the edge device if the \gls{ITASK} task coordinating it is destroyed.
125 Tasks can be destroyed when for example a task executed in parallel and the parallel combinator terminates or when the condition to step holds in a sequential task combination.
126 Then the \gls{MTASK} compiler is invoked, its only argument besides the task is a function doing something with the results of the compilation, i.e.\ the lifted \glspl{SDS} and the messages containing the compiled and serialised task.
127 With the result of the compilation, the task can be executed.
128 First the messages are put in the channels, sending them to the device.
129 Then, in parallel:
130 \begin{enumerate*}
131 \item the value is watched by looking in the device state \gls{SDS}, this task also determines the task value of the whole task
132 \item the downstream \glspl{SDS} are monitored, i.e.\ the \cleaninline{sdsupdates} \gls{SDS} is monitored and updates from the device are applied to the associated \gls{ITASK} \gls{SDS}
133 \item the upstroam \glspl{SDS} are monitored by spawning tasks that watch these \glspl{SDS}, if one is updated, the novel value is sent to the edge device.
134 \end{enumerate*}
135
136 \begin{lstClean}[label={lst:liftmTask_pseudo},caption={Pseudocode implementation for \texttt{liftmTask}.}]
137 liftmTask task (MTDevice dev sdsupdates channels)
138 = freshTaskId dev
139 >>= \tid->withCleanupHook (sendmessage [MTTTaskDel tid] channels) (
140 compile task \mrefs msgs->
141 sendMessage msgs channels
142 >>| waitForReturnAndValue tid dev
143 -|| watchSharesDownstream mrefs tid sdsupdates
144 -|| watchSharesUpstream mrefs channels tid)
145 \end{lstClean}
146
147 \section{Lifting \texorpdfstring{\gls{ITASK}}{iTask} \texorpdfstring{\glsxtrlongpl{SDS}}{shared data sources}}\label{sec:liftsds}
148 Lifting \gls{ITASK} \glspl{SDS} to \gls{MTASK} \glspl{SDS} is something that mostly happens at the compiler level using the \cleaninline{liftsds} function (see \cref{lst:mtask_itasksds}).
149 \Glspl{SDS} in \gls{MTASK} must always have an initial value.
150 For regular \gls{SDS} this value is given in the source code, for lifted \gls{ITASK} \glspl{SDS} this value is obtained by reading the values once just before sending the task to the edge device.
151 On the device itself, there is just one difference between lifted \glspl{SDS} and regular \glspl{SDS}: after changing \pgls{SDS}, a message is sent to the server containing this new value.
152 The \cleaninline{withDevice} task (see \cref{sec:withdevice}) receives and processes this message by writing to the \gls{ITASK} \gls{SDS}.
153 Tasks watching this \gls{SDS} get notified then through the normal notification mechanism of \gls{ITASK}.
154
155 \begin{lstClean}[label={lst:mtask_itasksds},caption={Lifted \gls{ITASK} \glspl{SDS} in \gls{MTASK}.}]
156 class liftsds v where
157 liftsds :: ((v (Sds t)) -> In (Shared sds t) (Main (MTask v u)))
158 -> Main (MTask v u) | RWShared sds
159 \end{lstClean}
160
161 As an example, \cref{lst:mtask_liftsds_ex} shows a lightswitch function producing an \gls{ITASK}\slash\gls{MTASK} task.
162 Given an \cleaninline{MTDevice} type, a device handle, an \gls{ITASK} \gls{SDS} of the type boolean is created.
163 This boolean represents the state of the light.
164 The \gls{MTASK} task uses this \gls{SDS} to turn on or off the light.
165 An \gls{ITASK} task that runs in parallel allows interactive updating of this state.
166
167 \todo{dit voorbeeld aanhouden of alleen die grote gebruiken}
168 \begin{lstClean}[label={lst:mtask_liftsds_ex},caption={Interactive light switch program.}]
169 lightswitch dev =
170 withShared False \sh->
171 liftmTask (mtask sh) dev
172 -|| updateSharedInformation [] sh
173 <<@ Hint "Light switch"
174 where
175 mtask sh =
176 declarePin D13 PMOutput \d13->
177 liftsds \ls=sh
178 In fun \f=(\st->
179 getSds ls
180 >>*. [IfValue ((!=.)st) (\v->writeD d13 v)]
181 >>|. f (Not st))
182 In {main=f true}
183 \end{lstClean}
184
185 \subsection{Implementation}
186 The compilation of the code and the serialisation of the data throws away all typing information.
187 \Glspl{SDS} are stored in the compiler state as a map from identifiers to either an initial value or an \cleaninline{MTLens}.
188 The \cleaninline{MTLens} is a type synonym for a \gls{SDS} that represents the typeless serialised value of the underlying \gls{SDS}.
189 This is done so that the \cleaninline{withDevice} task can write the received \gls{SDS} updates to the according \gls{SDS} independently.
190 \Gls{ITASK}'s notification mechanism then takes care of the rest.
191 Such a \gls{SDS} is created by using the \cleaninline{mapReadWriteError} which, given a pair of read and write functions with error handling, produces a \gls{SDS} with the lens embedded.
192 The read function transforms, the function that converts a typed value to a typeless serialised value, just applies the serialisation.
193 The write function, the function that, given the new serialised value and the old typed value, produces a new typed value.
194 It tries to decode the serialised value, if that succeeds, it is written to the underlying \gls{SDS}, an error is thrown otherwise.
195 \Cref{lst:mtask_itasksds_lens} provides the implementation for this:
196
197 % VimTeX: SynIgnore on
198 \begin{lstClean}[label={lst:mtask_itasksds_lens},caption={Lens applied to lifted \gls{ITASK} \glspl{SDS} in \gls{MTASK}.}]
199 lens :: (Shared sds a) -> MTLens | type a & RWShared sds
200 lens sds = mapReadWriteError
201 ( \r-> Ok (fromString (toByteCode{|*|} r)
202 , \w r-> ?Just <$> iTasksDecode (toString w)
203 ) ?None sds
204 \end{lstClean}
205 % VimTeX: SynIgnore off
206
207 \Cref{lst:mtask_itasksds_lift} shows the code for the implementation of \cleaninline{liftsds} that uses the \cleaninline{lens} function shown earlier.
208 First, the \gls{SDS} to be lifted is extracted from the expression by bootstrapping the fixed point with a dummy value.
209 This is safe because the expression on the right-hand side of the \cleaninline{In} is never evaluated.
210 Then, using \cleaninline{addSdsIfNotExist}, the identifier for this particular \gls{SDS} is either retrieved from the compiler state or generated freshly.
211 This identifier is then used to provide a reference to the \cleaninline{def} definition to evaluate the main expression.
212
213 % VimTeX: SynIgnore on
214 \begin{lstClean}[label={lst:mtask_itasksds_lift},caption={Lens applied to lifted \gls{ITASK} \glspl{SDS} in \gls{MTASK}.}]
215 liftsds def = {main =
216 let (t In _) = def (abort "liftsds: expression too strict")
217 in addSdsIfNotExist (Right $ lens t)
218 >>= \sdsi->let (_ In e) = def (pure (Sds sdsi)) in e.main
219 }\end{lstClean}
220 % VimTeX: SynIgnore off
221
222 \section{Home automation}
223 This section presents a interactive home automation program (\Cref{lst:example_home_automation}) to illustrate \gls{MTASK}'s integration with \gls{ITASK}.
224 It consists of a web interface for the user to control which tasks may be executed on either of two connected devices: an \gls{ARDUINO} UNO, connected via a serial port; and an ESP8266 based prototyping board called NodeMCU, connected via \gls{TCP} over WiFi.
225
226 \Crefrange{lst:example:spec1}{lst:example:spec2} show the specification for the devices.
227 The UNO is connected via serial using the unix filepath \path{/dev/ttyACM0} and the default serial port settings.
228 The NodeMCU is connected via WiFi and hence the \cleaninline{TCPSettings} record is used.
229 Both types have \cleaninline{channelSync} instances.
230
231 The code consists of an \gls{ITASK} part and several \gls{MTASK} parts.
232 \Crefrange{lst:example:task1}{lst:example:task2} containing the \gls{ITASK} task that coordinates the \gls{IOT} application.
233 It first connects the devices (\crefrange{lst:example:conn1}{lst:example:conn2}) followed by launching a \cleaninline{parallel} task, visualized as a tabbed window, and a shutdown button to terminate the program (\crefrange{lst:example:par1}{lst:example:par2}).
234 This parallel task is the controller of the tasks that run on the edge devices.
235 It contains one task that allows adding new tasks (using \cleaninline{appendTask}) and all other tasks in the process list will be \gls{MTASK} tasks once they are added by the user.
236 The controller task, \cleaninline{chooseTask} as shown in \crefrange{lst:example:ct1}{lst:example:ct2}, allows the user to pick a task, sending it to the specified device.
237 Tasks are picked by index from the \cleaninline{tasks} list (\crefrange{lst:example:tasks1}{lst:example:tasks2}) using \cleaninline{enterChoice}.
238 The interface that is generated for this can be seen in \cref{fig:example_screenshots1}.
239 After selecting the task, a device is selected (see \cref{fig:example_screenshots2,lst:example:selectdev}).
240 When both a task and a device is selected, an \gls{ITASK} task is added to the process list using \cleaninline{appendTask}.
241 Using the helper function \cleaninline{mkTask}, the actual task is selected from the \cleaninline{tasks} list and executed by providing the device argument.
242 For example, when selecting the \cleaninline{temperature} task, the current temperature is shown to the user (\cref{fig:example_screenshots3}).
243 This task just sends a simple temperature monitoring task to the device using \cleaninline{liftmTask} and provides a view on its task value using the \cleaninline{>\&>}\footnotemark{} \gls{ITASK} combinator.
244 \footnotetext{\cleaninline{(>\&>) infixl 1 :: (Task a) ((SDSLens () (? a) ()) -> Task b) -> Task b \| iTask a \& iTask b}}
245 The light switch task at \crefrange{lst:example:ls1}{lst:example:ls2} is a task that has bidirectional interaction using the definition of \cleaninline{lightswitch} shown in \cref{lst:mtask_liftsds_ex}.
246 Using \cleaninline{liftsds}, the status of the light switch is synchronised with the user.
247 The task on the edge device continuously monitors the value of the lifted \gls{SDS}.
248 If it is different from the current state, the new value is written to the digital \gls{GPIO} pin 13 and the monitoring function is recursively called.
249
250 \begin{figure}[ht]
251 \centering
252 \begin{subfigure}[b]{.3\linewidth}
253 \includegraphics[width=\linewidth]{home_auto1}
254 \caption{Select task.}%
255 \label{fig:example_screenshots1}
256 \end{subfigure}
257 \begin{subfigure}[b]{.3\linewidth}
258 \includegraphics[width=\linewidth]{home_auto2}
259 \caption{Select device.}%
260 \label{fig:example_screenshots2}
261 \end{subfigure}
262 \begin{subfigure}[b]{.3\linewidth}
263 \includegraphics[width=\linewidth]{home_auto3}
264 \caption{View result.}%
265 \label{fig:example_screenshots3}
266 \end{subfigure}
267 \caption{Screenshots of the home automation example program in action.}%
268 \label{fig:example_screenshots}
269 \end{figure}
270
271 \begin{figure}
272 \cleaninputlisting[firstline=12,lastline=50,numbers=left,belowskip=0pt,escapeinside={/*}{*/}]{lst/example.icl}
273 \begin{lstClean}[numbers=left,firstnumber=40,aboveskip=0pt,caption={An example of a home automation program.},label={lst:example_home_automation}]
274 , ...][+\label{lst:example:tasks2}+]\end{lstClean}
275 \end{figure}
276
277 \section{Conclusion}
278 \Gls{MTASK} edge devices run little \gls{TOP} engines of their own.
279 Using only a couple of \gls{ITASK} functions, \gls{MTASK} tasks can be integrated in \gls{ITASK} seamlessly.
280 Devices, using any supported type of connection, are integrated in \gls{ITASK} using the \cleaninline{withDevice} function.
281 Once connected, \gls{MTASK} tasks can be sent to the device for execution using \cleaninline{liftmTask}, lifting them to full-fledged \gls{ITASK} tasks.
282 Furthermore, the \gls{MTASK} tasks can interact with \gls{ITASK} \glspl{SDS} using the \cleaninline{liftsds} construct.
283 This together allows entire \gls{IOT} systems to be programmed from a single source.
284
285 \input{subfilepostamble}
286 \end{document}