
Knowledge Representation and Reasoning

BKI312 (2014-2015)

Practical Assignments (Series 1)

M. van der Heijden and J. Kwisthout

October 2014

1

1 Introduction to the assignments

Welcome to the first series of assignments on knowledge representation and reasoning. In this series you will
program the hitting-set algorithm and you will model and solve planning problems in Prolog. (Thanks go
to M. Crosby for his help on the sitcalc assignment).

Additional files The files that you need are available from Blackboard (see assignments)

Marks and Time This assignment is marked out of a total of 100 percent, and it contributes a total of 20
percent towards your overall grade for the course knowledge representation and reasoning. The distribution
over the sub-assignments is as follows:

Assignment 1-1: 50 percent
Assignment 1-2: 50 percent
The estimated total amount of time for the average student can be roughly four full days of work per student.
This varies since most students work in teams of two. The four days are effort asked for, but in case much
more is needed to complete only the required parts, contact the teachers. During the planned practical
sessions you can work on the problems in the vicinity of the teachers. They can help out with many practical
issues, explain Prolog concepts and so on, but remember that this assignment is part of the evaluation (and
contributes to your grade) and this means that the teachers will not help you with the essential problem
solving parts.

Submission See the individual descriptions of the assignments for detailed descriptions of what to hand
in. We expect all written answers in the form of a small report, including formalizations, pictures, and
small code fragments to illustrate your answers. Each assignment needs to be covered in a separate section
(or chapter) of your report.

The report is the main important thing. Code is required to answer most of the questions, but especially
the accompanying descriptions or explanations are important for your grade. In addition: for each of the
assignments, answer the following questions: i) how much time did it take you to finish it?, ii) if you would
have to change aspects of the assignment: what would they be and why? Code files are to be submitted in
a zip-file, properly named. All submissions should be done through Blackboard.

Good Luck!

The deadline for submission is

18th November 2014

2

Figure 1: Example Sokoban problem. The grid is a 3x4 rectangle with the upper-right square missing. The
agent is represented by the circle. There are three crates (represented by the boxes) A, B and C. The stars
represent the goal locations for the respective crates.

2 Assignment 1-1: Situation calculus and planning

This assignment deals with modelling and programming using situation calculus.

2.1 Introduction

This assignment is about the Situation Calculus and planning. It will evaluate your skills in formalizing,
implementing and testing a planning problem. Part 1 is a written exercise that requires you to formalize
a planning problem using Situation Calculus. Part 2 requires you to implement the model and verify its
correctness using a planner. In Part 3 you can extend the model and its implementation to deal with
additional aspects of the environment. In Part 4 you need to answer some broader questions.

2.2 Part 1: Modelling Sokoban

The first part of the assignment requires you to develop a model using the Situation Calculus (sitcalc from
now on). You will then use the axioms you defined to infer a plan for a simple instance of the problem.

Problem description In the Sokoban domain, an agent moves around a grid world pushing boxes into
desired locations. The agent can move to any orthogonally connected empty grid square. Additionally, there
are crates in the domain that an agent can push. An agent can push a crate only in a straight line and only
if the space behind it is empty. There may only be one crate (or agent) in any grid location at any given
time. Figure 1 shows an example problem. It contains eleven grid squares, three crates and one agent. Each
crate has a respective goal location that it must be pushed to. We will refer to locations numbered so that
the bottom left location is loc1-1 and the two top-right locations are loc2-4 and loc3-3.

3

Task 1: Knowledge base The first step in the creation of a model is the design of the knowledge base,
i.e. the structures that will hold information about the environment that the planner can use when it chooses
an action. The initial model should include information about the grid world, the crates and the location of
the player. You should define a set of predicates that can encode every state of the problem. Some of them
will be atemporal predicates, which do not change as time progresses, and some will be fluent predicates
whose values depend on the current situation. Briefly comment on all predicates you introduce.

Q1: Specify how you would show which locations are connected. This should include the direction in
which the locations are connected as this will help when defining the push action.

Q2: Explain how to keep track of the position at which the agent and crates are located at any particular
moment and which locations are empty.

Q3: Using the symbols you just defined, write down the initial state of the problem depicted in Figure 1.
Q4: Using the symbols you just defined, describe how to specify the set of goal states of the problem

depicted in Figure 1.

Task 2: Actions The agent can move from the space it occupies to any adjacent empty space. Alterna-
tively, it can push a crate in a straight line as long as the space behind the crate is empty. For example, in
Figure 1 the only push action the agent can perform (in the initial state) is to push crate B left into loc1-3

which would leave the crate in loc1-3 and the agent in loc2-3. Formalize the following actions in terms of
possibility axioms and effect axioms. You can omit universal quantifiers.

Q5: The agent can move to an adjacent empty space.
Q6: The agent can push a crate that it is next to into an empty space behind the crate. Note that a

crate can only be pushed in a straight line and only into the square directly behind it. This moves the agent
into the space the crate originally occupied. You should not need to use any arithmetic operations here. You
can make use of the direction information you encoded with your connected predicate.

Effect axioms alone are not sufficient: they describe how the new situation has been affected by the
action executed, but they do not update information unrelated to the specific action, which may (or may
not, if not updated) remain the same.

Q7: Write the successor-state axioms for the fluents in your model. Briefly describe how you got to
these, possibly by highlighting how they could be derived from effect specifications.

2.3 Part 2: Implementation

The second part of the assignment is centred on the implementation of the model you developed in Part 1.
Once we have translated the axioms into rules that a planner can understand, we can work on more complex
instances of the problem. The conversion is fairly straightforward, mostly a translation of logical symbols
into ASCII characters, as we shall see in this section.

A planner and the Situation Calculus You can use the planner in planner.pl. We also provide two
examples implementing a simple blocks world, sample-blocks.pl and sample-blocks-domain.pl.

To show the differences and similarities between situation calculus and the language read by the planner,
we compare two (simplified) versions of the blocks world example. What follows are the possibility and
successor-state axioms for the move action within the blocks world. Following the general conventions, we
have predicates starting with an upper-case letter and variables in lower-case, quantified.

∀x, y, s.Clear(x, s) ∧ Clear(y, s)→ Poss(Move(x, y), s)

In sitcalc, the opposite is true; predicates begin with lower-case letters and variables with capitals. Quan-
tifiers are dropped. Logical connectives change: the implication symbol is now :-. A comma represents
a conjunction, while disjunctions are marked by semi-colons. The end of a rule is marked by a dot. The
following statement means ’if What is clear and Where is clear in state S, then it is possible to move from
What to Where in state S’:

4

poss(move(What, Where), S) :-

clear(What, S), clear(Where, S).

In logic, a successor-state axiom is guarded by the predicate that verifies if the action is possible.

Poss(a, s)→ On(x, y,Result(a, s))
↔

Move(x, y) ∨ (On(x, y, s) ∧ a 6= Move(y, z))

This is done automatically by the planner or sitcalc interpreter, and can be dropped. Moreover, we are
interested in the planning task, so we keep only one direction of the iff in the formula above: the ←. The
resulting sitcalc axiom is (where the word results is used instead of do in this version):

on(Block, Support, results(A, S)) : − A = move(Block, Support);
on(Block, Support, S), not(A = move(Block,)).

where the semicolon ; is a disjunction, and the underscore is an anonymous variable that unifies with
anything.

Task 3: Translate Axioms After reading the sample files and the included documentation, make a copy
of the domain-template.pl file and rename it domain-task1.pl. Translate the axioms of your model and
save them in this file.

Simple Experiments The goal of the following three exercises is to learn the language accepted by the
planner, and for you to test the correctness of the model. Each task has at least one solution, and all
plans do not exceed 15 actions in length; if the planner fails to find a plan, there might be something
incorrect in the model. For each task, make a new copy of the file instance-template.pl, and rename it
instance-task#.pl, where # is the number of the task. Any comment or description can go inside the .pl

source file. Make sure to include both instance-task#.pl and domain-task#.pl for each task.

Additional hints: there are several simple ways to make planning more efficient. For example, one can add
a visited fluent to ensure the planner will not look at actions that will lead to an already visited tile. One
can also check for reverse actions: by checking whether the planner is trying to exactly reverse the previous
action in the plan (and preventing that) one can discard unnecessary moves and speed up planning. There
are several other tricks one could apply (although they are not necessary to solve the problem per se). If you
employ such programming tricks, be sure to describe them properly in your report, and also motivate that
they will actually be beneficial for your specific application (either by arguing or by experimental evaluation
showing a speedup).

Task 4: The Planning Problem in Figure 1 Implement and test the problem shown in Figure 1.

Task 5: Crates go to Any Goal Location Rewrite the problem so that the crates are allowed to end
in any of the goal locations in Figure 1. Implement and test on the same problem.

Task 6: Inverse Problem Find an initial state and goal specification for which the agent visits every
location in the grid world in the resulting plan. The agent does not need to revisit its starting location but
must visit the goal locations of crates and the crates’ initial locations. You may change the number of crates,
their locations and their goal locations as well as the agent’s starting location (but not the size or shape
of the grid world). The goal specification should only include the goal locations of crates (as before). Test
whether the resulting plan satisfies the requirements.

5

Figure 2: Problem for task 6. A key’s label corresponds to the crate it unlocks.

2.4 Part 3: Extending the domain

In this section you will extend the original problem to include new actions, action effects and goals. Only
the sitcalc implementation of the axioms is required, but make sure the code is properly commented when
defining new predicates. For each task, make a new copy of the file domain-template.pl, and rename it
domain-task#.pl. Any comment or description should go inside the .pl source file. Make sure to include
both instance-task#.pl and domain-task#.pl for each task.

Each task is a separate extension to the basic problem (Part 2: Tasks 1 and 2).

Task 7: Unlocking the Crates In this version of the domain each crate starts locked to the ground.
The agent cannot push the boxes until it has found and picked up the key for each crate. Add a pickup
action that lets the agent pick up a key that is in its current location. You should not add any more actions;
instead, update your definitions for the push action so that they require the agent to have picked up the
correct key. Once implemented, test on the problem shown in Figure 2.

(not required) Various Extensions There are several immediate ways to make things even more inter-
esting. These are not required, but highly encouraged. Completing any of them will be beneficial for your
final grade for the assignments, to various degrees (with a maximum of 15 points).

• Extend the model with new exciting effects or new actions. Some blocks may glide multiple grid
positions unexpectedly, or sometimes we can jump over a block to get to another position more easily,
or

• Extend your model with Golog-constructs (look this up: Golog is syntactic sugar to provide more
programming-like functionalities in sitcalc). For example a solution can be programmed using while

there is an object still not on its place do something. More elegantly, one could add procedures to, for

6

example, make room for something else: in order to push some block to its position, one may need to
first clear an exit which might take up some actions first.

• Model a larger level of the original game (Google for Sokoban). Originally, the game involved several
rooms and corridors. You would need to extend the model to incorporate maybe some additional
elements, and surely one needs to be careful with planning since solutions for large levels might become
very large. (Extending the model with some Golog-predicates to guide the search for a plan might help
too to make planning more efficient).

• Implement a more efficient planner.

• ...(and many other possibilities)

2.5 Part 4: General questions

Task 10: Sitcalc expressivity Reflect on the advantages and disadvantages of sitcalc, using your sitcalc
model for the Sokoban domain as an example. Consider things like the elements of the models, the size of
models, the relative ease of reasoning (planning) and so on. An additional aspect you should discuss is how
easy it is to extend the models to new situations (as you did for example to handle keys). A conceptual
comparison with e.g. STRIPS (for planning) or other action languages (Event calculus; Temporal Action
Logic) could be useful here to put things in perspective.

Task 11: Related work Logical systems for actions and change are increasingly used in modern robotics
in AI. Look up a paper (on the web, or in Google Scholar: http://scholar.google.com) published after
2010 in which logic or Prolog is used to reason with change, actions or plans in a robotic(-like) setting.
Give a correct reference to the paper in your report (i.e. we expect a bibliographic reference, and not just
a weblink) and explain briefly the main highlight(s) of the paper. Useful keywords to search include: logic,
action, change, Prolog, STRIPS, situation calculus, robotics, relational, roboearth, knowrob, ADL, PDDL,
etc. Note that we do not require you to summarize the complete paper for this assignment.

3 Assignment 1-2: Consistency-based diagnosis

Model-based reasoning is one of the central topics of knowledge representation and reasoning in artificial
intelligence. The second part of this assignment aims at testing your understanding of Prolog and model-
based reasoning by implementing the hitting-set algorithm that you have seen during the lecture.

3.1 Working with trees in Prolog

In order to implement the hitting-set algorithm, we need to be able to represent trees in Prolog. The first
task helps to get used to working with such data structures in a logic programming environment.

Exercises In contrast to imperative programming languages, Prolog does not contain constructs for “real”
data structures in the language. However, using terms, it is possible to represent any data structure by a
compound term that constructs such a data structure. While you have seen some basic data structures
before (e.g. lists), the following exercise illustrates this further using tree structures in Prolog. You do not
need to submit these warm-up exercises and you may ask the instructors for help, if necessary.

(a) Consider for example a binary tree which we can build up using the following two terms (some examples
are given below):

– a constant leaf which represents a leaf node;

– a function node with arity 2, which, given 2 nodes (its children), returns a tree.

7

Define a predicate isBinaryTree(Term), which is true if and only if Term represents a tree. For
example, isBinaryTree(Term) should be true if Term = leaf. Test this on compound terms such as:

– leaf (true)

– node(leaf) (false)

– node(leaf,leaf) (true)

– node(leaf,node(leaf,leaf)) (true)

(b) Define a predicate nnodes(Tree, N), which computes the number of nodes N of a given Tree, e.g.

?- nnodes(leaf,N).

N = 1.

?- nnodes(node(leaf,node(leaf,leaf)),N).

N = 5.

(c) Extend the representation of the tree so that each node (and leaf) is labelled with a number. Adapt
your definition of isBinaryTree and nnodes to reflect this representation.

(d) Define a predicate makeBinary(N, Tree) which gets some number N ≥ 0 and returns a tree where
the root node is labelled by N . Furthermore, if a node is labelled by K > 0, then it has children that
are labelled by K − 1. If a node is labelled by 0, then it does not have children.

(e) Now extend the representation of your tree so that each node can have an arbitrary number of children
using lists. Also define a nnodes predicate for these kind of trees.

3.2 Implementation of the hitting-set algorithm

The hitting-set algorithm acts as the core of consistency-based diagnosis, and has been discussed during the
course. In these task, you will implement this algorithm in Prolog.

Task 12: Generate conflict sets To get started, perform the following exercise.

• Download tp.pl and diagnosis.pl from blackboard.

• In tp.pl, scroll down to the bottom and inspect the definition of tp/5.

• In diagnosis.pl, inspect the definitions of the diagnostic problems in the file. Formulas are represented
by Prolog terms where constants (and functions) are interpreted as predicates, with additional operators
~ (not), , (and), ; (or), => (implies), <=> (iff), and quantification {all, or} X:f , where X is a (Prolog)
variable and f is a term which contains X. Since , and ; are also Prolog operators, it is often required
to put brackets around these terms. For example, the formula ∀x(P (x) ∨Q(x)) can be represented by
the term (all X:(p(X) ; q(X))).

Experiment with tp/5 and determine at least three conflict sets for the diagnostic problems. Provide a proof
that it is indeed a conflict set, and give an informal explanation how tp/5 computes those sets.

Task 13: Define your data structure Define a Prolog representation for hitting-set trees. Program a
corresponding predicate isHittingSetTree(Tree) and convince yourself that this predicate is true if and
only if Tree is a hitting-set tree. Guarantee that the edge labels on a path from the root to another node
are distinct. In the following, the tp/5 program will deliver these labels (conflict sets) for you.

8

Task 14: Implementation Use this representation to develop a Prolog program of the hitting-set algo-
rithm. The input to the program is a diagnostic problem; the output is the set of all minimal hitting sets
(i.e. diagnoses). Optionally, add some of the optimizations to prune the search space as described in [1] (see
Google scholar or the library for the paper).
You may use standard Prolog functions such as subset and append. Other useful predicates may include
var(X) to test whether X is a variable or =.. to construct and deconstruct term into symbols. See the
SWI-Prolog manual for more details.
Evaluate your program using the given diagnostic problems and determine the minimal diagnoses. Explain
why the results are correct. Also, reflect on your code (such as: What are the limitations? How can it be
improved? What are the problems encountered? Do the (optional) optimizations help? What can you say
about its complexity?)

(not required) Testing the performance Modify the example problems to become larger and more
complex. Investigate the time and space limits of your hitting-set implementation and Prolog.

References

[1] R. Reiter (1987). A theory of diagnosis from first principles. Artificial Intelligence, 32, 57–95.

9

