

Application Security Verification Standard 3.0.1
July 2016

2 OWASP Application Security Verification Standard 3.0

ACKNOWLEDGEMENTS 5

ABOUT THE STANDARD 5
COPYRIGHT AND LICENSE 5

PREFACE 7

WHAT’S NEW IN 3.0? 7

USING THE APPLICATION SECURITY VERIFICATION STANDARD 8

APPLICATION SECURITY VERIFICATION LEVELS 8
HOW TO USE THIS STANDARD 9
APPLYING ASVS IN PRACTICE 10

CASE STUDIES 13

CASE STUDY 1: AS A SECURITY TESTING GUIDE 13
CASE STUDY 2: AS A SECURE SDLC 14

ASSESSING SOFTWARE HAS ACHIEVED A VERIFICATION LEVEL 15

OWASP’S STANCE ON ASVS CERTIFICATIONS AND TRUST MARKS 15
GUIDANCE FOR CERTIFYING ORGANIZATIONS 15
THE ROLE OF AUTOMATED PENETRATION TESTING TOOLS 15
THE ROLE OF PENETRATION TESTING 16
AS DETAILED SECURITY ARCHITECTURE GUIDANCE 16
AS A REPLACEMENT FOR OFF THE SHELF SECURE CODING CHECKLISTS 16
AS A GUIDE FOR AUTOMATED UNIT AND INTEGRATION TESTS 16
AS SECURE DEVELOPMENT TRAINING 17

OWASP PROJECTS USING ASVS 18

SECURITY KNOWLEDGE FRAMEWORK 18
OWASP ZED ATTACK PROXY 18
OWASP CORNUCOPIA 18

DETAILED VERIFICATION REQUIREMENTS 19

V1: ARCHITECTURE, DESIGN AND THREAT MODELLING 20

CONTROL OBJECTIVE 20
REQUIREMENTS 20
REFERENCES 21

V2: AUTHENTICATION VERIFICATION REQUIREMENTS 22

CONTROL OBJECTIVE 22
REQUIREMENTS 22
REFERENCES 24

V3: SESSION MANAGEMENT VERIFICATION REQUIREMENTS 25

CONTROL OBJECTIVE 25

OWASP Application Security Verification Standard 3.0 3

REQUIREMENTS 25
REFERENCES 26

V4: ACCESS CONTROL VERIFICATION REQUIREMENTS 27

CONTROL OBJECTIVE 27
REQUIREMENTS 27
REFERENCES 28

V5: MALICIOUS INPUT HANDLING VERIFICATION REQUIREMENTS 29

CONTROL OBJECTIVE 29
REQUIREMENTS 29
REFERENCES 31

V6: OUTPUT ENCODING / ESCAPING 33

V7: CRYPTOGRAPHY AT REST VERIFICATION REQUIREMENTS 34

CONTROL OBJECTIVE 34
REQUIREMENTS 34
REFERENCES 35

V8: ERROR HANDLING AND LOGGING VERIFICATION REQUIREMENTS 36

CONTROL OBJECTIVE 36
REQUIREMENTS 36
REFERENCES 37

V9: DATA PROTECTION VERIFICATION REQUIREMENTS 38

CONTROL OBJECTIVE 38
REQUIREMENTS 38
REFERENCES 40

V10: COMMUNICATIONS SECURITY VERIFICATION REQUIREMENTS 41

CONTROL OBJECTIVE 41
REQUIREMENTS 41
REFERENCES 42

V11: HTTP SECURITY CONFIGURATION VERIFICATION REQUIREMENTS 44

CONTROL OBJECTIVE 44
REQUIREMENTS 44
REFERENCES 45

V12: SECURITY CONFIGURATION VERIFICATION REQUIREMENTS 46

V13: MALICIOUS CONTROLS VERIFICATION REQUIREMENTS 47

CONTROL OBJECTIVE 47
REQUIREMENTS 47
REFERENCES 47

4 OWASP Application Security Verification Standard 3.0

V14: INTERNAL SECURITY VERIFICATION REQUIREMENTS 48

V15: BUSINESS LOGIC VERIFICATION REQUIREMENTS 49

CONTROL OBJECTIVE 49
REQUIREMENTS 49
REFERENCES 49

V16: FILES AND RESOURCES VERIFICATION REQUIREMENTS 50

CONTROL OBJECTIVE 50
REQUIREMENTS 50
REFERENCES 51

V17: MOBILE VERIFICATION REQUIREMENTS 52

CONTROL OBJECTIVE 52
REQUIREMENTS 52
REFERENCES 53

V18: WEB SERVICES VERIFICATION REQUIREMENTS 54

CONTROL OBJECTIVE 54
REQUIREMENTS 54
REFERENCES 55

V19. CONFIGURATION 56

CONTROL OBJECTIVE 56
REQUIREMENTS 56
REFERENCES 57

APPENDIX A: WHAT EVER HAPPENED TO… 58

APPENDIX B: GLOSSARY 64

APPENDIX C: REFERENCES 68

APPENDIX D: STANDARDS MAPPINGS 69

OWASP Application Security Verification Standard 3.0 5

Acknowledgements

About the Standard

The Application Security Verification Standard is a list of application security requirements
or tests that can be used by architects, developers, testers, security professionals, and even
consumers to define what a secure application is.

Copyright and License

Copyright © 2008 – 2016 The OWASP Foundation. This document is
released under the Creative Commons Attribution ShareAlike 3.0
license. For any reuse or distribution, you must make clear to others
the license terms of this work.

Version 3.0, 2015

Project Leads Lead Authors Contributors and Reviewers
Andrew van der Stock
Daniel Cuthbert

Jim Manico Abhinav Sejpal
Ari Kesäniemi
Boy Baukema
Colin Watson
Cristinel Dumitru
David Ryan
François-Eric Guyomarc’h
Gary Robinson
Glenn Ten Cate
James Holland
Martin Knobloch
Raoul Endres
Ravishankar S
Riccardo Ten Cate
Roberto Martelloni
Ryan Dewhurst
Stephen de Vries
Steven van der Baan

Version 2.0, 2014

Project Leads Lead Authors Contributors and Reviewers
Daniel Cuthbert
Sahba Kazerooni

Andrew van der Stock
Krishna Raja

Antonio Fontes
Archangel Cuison
Ari Kesäniemi
Boy Baukema
Colin Watson
Dr Emin Tatli
Etienne Stalmans
Evan Gaustad
Jeff Sergeant
Jerome Athias

6 OWASP Application Security Verification Standard 3.0

Project Leads Lead Authors Contributors and Reviewers
Jim Manico
Mait Peekma
Pekka Sillanpää
Safuat Hamdy
Scott Luc
Sebastien Deleersnyder

Version 1.0, 2009

Project Leads Lead Authors Contributors and Reviewers
Mike Boberski
Jeff Williams
Dave Wichers

Jim Manico Andrew van der Stock
Barry Boyd
Bedirhan Urgun
Colin Watson
Dan Cornell
Dave Hausladen
Dave van Stein
Dr. Sarbari Gupta
Dr. Thomas Braun
Eoin Keary
Gaurang Shah
George Lawless
Jeff LoSapio
Jeremiah Grossman
John Martin
John Steven
Ken Huang
Ketan Dilipkumar Vyas
Liz Fong Shouvik Bardhan
Mandeep Khera
Matt Presson
Nam Nguyen
Paul Douthit
Pierre Parrend
Richard Campbell
Scott Matsumoto
Stan Wisseman
Stephen de Vries
Steve Coyle
Terrie Diaz
Theodore Winograd

OWASP Application Security Verification Standard 3.0 7

Preface

Welcome to the Application Security Verification Standard (ASVS) version 3.0. The ASVS is a
community-effort to establish a framework of security requirements and controls that focus
on normalising the functional and non-functional security controls required when designing,
developing and testing modern web applications.

ASVS v3.0 is a culmination of community effort and industry feedback. In this release, we
felt it was important to qualify the experiences of real world use cases relating to ASVS
adoption. This will help newcomers to the standard plan their adoption of the ASVS, whilst
assisting existing companies in learning from the experience of others.

We expect that there will most likely never be 100% agreement on this standard. Risk
analysis is always subjective to some extent, which creates a challenge when attempting to
generalize in a one size fits all standard. However, we hope that the latest updates made in
this version are a step in the right direction, and respectfully enhance the concepts
introduced in this important industry standard.

What’s new in 3.0?

In version 3.0, we have added several new sections, including Configuration, Web Services,
Modern (Client) based applications, to make the Standard more applicable to modern
applications, which are commonly responsive applications, with an extensive HTML5 front
end or mobile client that calls a common set of RESTful web services using SAML
authentication.

We have also de-duplicated the standard, for example, to ensure that a mobile developer
does not need to re-test the same items multiple times.

We have provided a mapping to the CWE common weakness enumeration (CWE) dictionary.
The CWE mapping can be used to identify information such as likelihood of exploitation,
consequence of a successful exploitation and broadly speaking to gain insight on what could
go wrong if a security control is not used or implemented effectively and how to mitigate
the weakness.

Lastly, we reached out to the community and held peer review sessions at AppSec EU 2015
and a final working session at AppSec USA 2015 to include a massive amount of community
feedback. During peer review, if edits to the meaning of a control changed substantially, we
created a new control and deprecated the old one. We have deliberately chosen to not
reuse any deprecated control requirements, as this could be a source of confusion. We have
provided a comprehensive mapping of what has changed in Appendix A.

Taken together, v3.0 is the single largest change to the Standard in its history. We hope that
you find the update to the standard useful, and use it in ways we can only imagine.

8 OWASP Application Security Verification Standard 3.0

Using the Application Security Verification Standard

ASVS has two main goals:

 to help organizations develop and maintain secure applications

 to allow security service, security tools vendors, and consumers to align their

requirements and offerings

Application Security Verification Levels

The Application Security Verification Standard defines three security verification levels, with
each level increasing in depth.

 ASVS Level 1 is meant for all software.

 ASVS Level 2 is for applications that contain sensitive data, which requires

protection.

 ASVS Level 3 is for the most critical applications - applications that perform high

value transactions, contain sensitive medical data, or any application that requires

the highest level of trust.

Each ASVS level contains a list of security requirements. Each of these requirements can also
be mapped to security-specific features and capabilities that must be built into software by
developers.

Figure 1 - OWASP Application Security Verification Standard 3.0 Levels

OWASP Application Security Verification Standard 3.0 9

How to use this standard

One of the best ways to use the Application Security Verification Standard is to use it as
blueprint create a Secure Coding Checklist specific to your application, platform or
organization. Tailoring the ASVS to your use cases will increase the focus on the security
requirements that are most important to your projects and environments.

Level 1: Opportunistic

An application achieves ASVS Level 1 (or Opportunistic) if it adequately defends against
application security vulnerabilities that are easy to discover, and included in the OWASP Top
10 and other similar checklists.

Level 1 is typically appropriate for applications where low confidence in the correct use of
security controls is required, or to provide a quick analysis of a fleet of enterprise
applications, or assisting in developing a prioritized list of security requirements as part of a
multi-phase effort. Level 1 controls can be ensured either automatically by tools or simply
manually without access to source code. We consider Level 1 the minimum required for all
applications.

Threats to the application will most likely be from attackers who are using simple and low
effort techniques to identify easy-to-find and easy-to-exploit vulnerabilities. This is in
contrast to a determined attacker who will spend focused energy to specifically target the
application. If data processed by your application has high value, you would rarely want to
stop at a Level 1 review.

Level 2: Standard

An application achieves ASVS Level 2 (or Standard) if it adequately defends against most of
the risks associated with software today.

Level 2 ensures that security controls are in place, effective, and used within the application.
Level 2 is typically appropriate for applications that handle significant business-to-business
transactions, including those that process healthcare information, implement business-
critical or sensitive functions, or process other sensitive assets.

Threats to Level 2 applications will typically be skilled and motivated attackers focusing on
specific targets using tools and techniques that are highly practiced and effective at
discovering and exploiting weaknesses within applications.

Level 3: Advanced

ASVS Level 3 is the highest level of verification within the ASVS. This level is typically
reserved for applications that require significant levels of security verification, such as those
that may be found within areas of military, health and safety, critical infrastructure, etc.
Organisations may require ASVS Level 3 for applications that perform critical functions,

10 OWASP Application Security Verification Standard 3.0

where failure could significantly impact the organization's operations, and even its
survivability. Example guidance on the application of ASVS Level 3 is provided below. An
application achieves ASVS Level 3 (or Advanced) if it adequately defends against advanced
application security vulnerabilities and also demonstrates principles of good security design.

An application at ASVS Level 3 requires more in depth analysis, architecture, coding, and
testing than all the other levels. A secure application is modularized in a meaningful way (to
facilitate e.g. resiliency, scalability, and most of all, layers of security), and each module
(separated by network connection and/or physical instance) takes care of its own security
responsibilities (defence in depth), that need to be properly documented. Responsibilities
include controls for ensuring confidentiality (e.g. encryption), integrity (e.g. transactions,
input validation), availability (e.g. handling load gracefully), authentication (including
between systems), non-repudiation, authorization, and auditing (logging).

Applying ASVS in Practice

Different threats have different motivations. Some industries have unique information and
technology assets and domain specific regulatory compliance requirements.

Below we provide industry-specific guidance regarding recommended ASVS levels. Although
some unique criteria and some differences in threats exist for each industry, a common
theme throughout all industry segments is that opportunistic attackers will look for any
easily exploitable vulnerable applications, which is why ASVS Level 1 is recommended for all
applications regardless of industry. This is a suggested starting point to manage the easiest
to find risks. Organizations are strongly encouraged to look more deeply at their unique risk
characteristics based on the nature of their business. At the other end of the spectrum is
ASVS Level 3, which is reserved for those cases that might endanger human safety or when
a full application breach could severely impact the organization.

OWASP Application Security Verification Standard 3.0 11

Industry Threat Profile L1 Recommendation L2 Recommendation L3 Recommendation

Finance and

Insurance

Although this segment will experience

attempts from opportunistic attackers, it is

often viewed as a high value target by

motivated attackers and attacks are often

financially motivated. Commonly, attackers

are looking for sensitive data or account

credentials that can be used to commit fraud

or to benefit directly by leveraging money

movement functionality built into

applications. Techniques often include stolen

credentials, application-level attacks, and

social engineering. Some major compliance

considerations include Payment Card

Industry Data Security Standard (PCI

DSS),Gramm Leech Bliley Act and

Sarbanes-Oxley Act (SOX).

All network

accessible

applications.

Applications that

contain sensitive

information like

credit card numbers,

personal

information, that

can move limited

amounts of money

in limited ways.

Examples include:

(i) transfer money

between accounts at

the same institution

or

(ii) a slower form of

money movement

(e.g. ACH) with

transaction limits or

(iii) wire transfers

with hard transfer

limits within a period

of time.

Applications that

contain large

amounts of sensitive

information or that

allow either rapid

transfer of large

sums of money (e.g.

wire transfers)

and/or transfer of

large sums of money

in the form of

individual

transactions or as a

batch of smaller

transfers.

Manufacturi

ng,

professional,

transportati

on,

technology,

utilities,

infrastructur

e, and

defense

These industries may not appear to have

very much in common, but the threat actors

who are likely to attack organizations in this

segment are more likely to perform focused

attacks with more time, skill, and resources.

Often the sensitive information or systems

are not easy to locate and require leveraging

insiders and social engineering techniques.

Attacks may involve insiders, outsiders, or be

collusion between the two. Their goals may

include gaining access to intellectual

property for strategic or technological

advantage. We also do not want to overlook

attackers looking to abuse application

functionality influence the behaviour of or

disrupt sensitive systems.

Most attackers are looking for sensitive data

that can be used to directly or indirectly

profit from to include personally identifiable

information and payment data. Often the

data can be used for identity theft,

fraudulent payments, or a variety of fraud

schemes.

All network

accessible

applications.

Applications

containing internal

information or

information about

employees that may

be leveraged in

social engineering.

Applications

containing

nonessential, but

important

intellectual property

or trade secrets.

Applications

containing valuable

intellectual property,

trade secrets, or

government secrets

(e.g. in the United

States this may be

anything classified at

Secret or above) that

is critical to the

survival or success of

the organization.

Applications

controlling sensitive

functionality (e.g.

transit,

manufacturing

equipment, control

systems) or that

have the possibility

of threatening safety

of lif

12 OWASP Application Security Verification Standard 3.0

Industry Threat Profile L1 Recommendation L2 Recommendation L3 Recommendation

Healthcare Most attackers are looking for sensitive data

that can be used to directly or indirectly

profit from to include personally identifiable

information and payment data. Often the

data can be used for identity theft,

fraudulent payments, or a variety of fraud

schemes.

For the US healthcare sector, the Health

Insurance Portability and

Accountability Act (HIPAA) Privacy, Security,

Breach Notification

Rules and Patient Safety Rule

(http://www.hhs.gov/ocr/privacy/=.

All network

accessible

applications

Applications with

small or moderate

amounts of sensitive

medical information

(Protected Health

Information),

Personally

Identifiable

Information, or

payment data.

Applications used to

control medical

equipment, devices,

or records that may

endanger human

life. Payment and

Point of Sale systems

(POS) that contain

large amounts of

transaction data that

could be used to

commit fraud. This

includes any

administrative

interfaces for these

applications

Retail, food,

hospitality

Many of the attackers in this segment utilize

opportunistic "smash and grab" tactics.

However, there is also a regular threat of

specific attacks on applications known to

contain payment information, perform

financial transactions, or store personally

identifiable information. Although less likely

than the threats mentioned above, there is

also the possibility of more advanced threats

attacking this industry segment to steal

intellectual property, gain competitive

intelligence, or gain an advantage with the

target organization or a business partner in

negotiations.

All network

accessible

applications.

Suitable for business

applications, product

catalogue

information, internal

corporate

information, and

applications with

limited user

information (e.g.

contact

information).

Applications with

small or moderate

amounts of payment

data or checkout

functionality.

Payment and Point

of Sale systems

(POS) that contain

large amounts of

transaction data that

could be used to

commit fraud. This

includes any

administrative

interfaces for these

applications.

Applications with a

large volume of

sensitive information

like full credit card

numbers, mother's

maiden name, social

security numbers

etc.

http://www.hhs.gov/ocr/privacy/
http://www.hhs.gov/ocr/privacy/

OWASP Application Security Verification Standard 3.0 13

Case Studies

Case Study 1: As a Security Testing Guide

At a private university in Utah, USA, the campus Red Team uses the OWASP ASVS as a guide
when performing application penetration tests. It is used throughout the penetration
testing process, from initial planning and scoping meetings to guidance for testing activities,
and as a way to frame the findings of the final report to clients. The Red Team also organizes
training for the team using the ASVS.

The campus Red Team performs network and application penetration testing for various
departments on campus as part of the overall university's information security strategy.
During initial planning meetings, clients are often reticent to give permission for their
application to be tested by a team of students. By introducing the ASVS and explaining to
stakeholders that testing activities will be guided by this standard, and that the final report
will include how the application performed against the standard, many concerns are
immediately resolved. The ASVS is then used during scoping to help determine how much
time and effort will be spent on the test. By using the predefined verification levels of the
ASVS, the Red Team explains risk-based testing. This helps the client, stakeholders, and the
team to come to an agreement on an appropriate scope for the application in question.

Once testing begins, the Red Team uses the ASVS to organize activities and divide up the
workload. By tracking which verification requirements have been tested and which are still
pending, project managers for the team can easily see how the test is progressing. This
leads to improved communication with clients and gives project managers the ability to
better manage resources. Because the Red Team is composed primarily of students, most
team members have multiple demands on their time from different courses. Well-defined
tasks, based on individual verification requirements or entire categories, help team
members know exactly what needs to be tested and allow them to provide accurate
estimations on how long a task will take to complete. Reporting also benefits from the clear
organization of the ASVS, as team members can write up a finding before moving on to the
next task, effectively performing the majority of report writing concurrently with the
penetration test.

The Red Team organizes the final report around the ASVS, reporting the status of each
verification requirement and providing further details where appropriate. This gives clients
and stakeholders a good idea of where their application stands as measured by the
standard, and is extremely valuable on follow-up engagements because it allows them to
see how security has improved or regressed over time. Furthermore, stakeholders
interested in how the application performed a specific category or categories can easily find
out that information because the report format aligns so closely with the ASVS. The clear
organization of the ASVS has also made it easier to train new team members on how to
write a report when compared to the previous report format.

14 OWASP Application Security Verification Standard 3.0

Finally, training of the Red Team has improved after adopting the ASVS. Previously, weekly
trainings were centered on a topic chosen by the team lead or project manager. These were
selected based on requests by team members and perceived need. Training based on these
criteria had the potential to broaden the skills of team members, but did not necessarily
relate to core Red Team activities. In other words, the team did not get significantly better
at penetration testing. After adopting the ASVS, team training now focuses on how to test
individual verification requirements. This has led to a significant improvement in the
measurable skills of individual team members and the quality of final reports.

Case Study 2: As a secure SDLC

A start up looking to provide big data analytics to financial institutions realises that security
in development is on top of the list of requirements in order to obtain access to and process
financial metadata. In this instance, the start up has chosen to use the ASVS as the basis of
their agile secure development lifecycle.

The start up uses the ASVS to generate epics and use cases for functional security issues,
such as how best to implement login functionality. The start up uses ASVS in a different way
than most - it looks through ASVS, picking the requirements that suit the current sprint, and
adds them directly to the sprint backlog if it’s a functional requirement, or as a constraint to
existing use cases if non-functional. For example, adding TOTP two factor authentication
was selected, along with password policies and a web service regulator that doubles as a
brute force detection and prevention mechanism. In future sprints, additional requirements
will be selected based upon a “just in time”, “you ain’t gonna need it” basis.

The developers use the ASVS as a peer review checklist, which ensures unsafe code does not
get checked in, and in retrospective plans to challenge developers who have checked in a
new feature to ensure that they have considered likely ASVS requirements and if anything
can be improved or reduced in future sprints.

Lastly, the developers use the ASVS as part of their automated verification secure unit and
integration test suites to test for use, abuse, and fuzz testing cases. The aim is to reduce the
risk from waterfall methodology “penetration testing at the end” causing expensive
refactoring when delivering milestone builds into production. As new builds could be
promoted after every sprint, it is not sufficient to rely upon a single assurance activity, and
so by automating their testing regime, there should be no significant issues that can be
found by even a skilled penetration tester with weeks to test the application.

OWASP Application Security Verification Standard 3.0 15

Assessing software has achieved a verification level

OWASP’s stance on ASVS Certifications and Trust Marks

OWASP, as a vendor-neutral not-for-profit organisation, does not certify any vendors,
verifiers or software.

All such assurance assertions, trust marks, or certifications are not officially vetted,
registered, or certified by OWASP, so an organization relying upon such a view needs to be
cautious of the trust placed in any third party or trust mark claiming ASVS certification.

This should not inhibit organizations from offering such assurance services, as long as they
do not claim official OWASP certification.

Guidance for certifying organizations

The Application Security Verification Standard can be used as an open book verification of
the application, including open and unfettered access to key resources such as architects
and developers, project documentation, source code, authenticated access to test systems
(including access to at least one account in each role), particularly for L2 and L3
verifications.

Historically, penetration testing and secure code reviews have included issues “by
exception” – that is only failed issues appear in the final report. A certifying organization
must include in any report the scope of the verification (particularly if a key component is
out of scope, such as SSO authentication), a summary of verification findings, including
passed and failed tests, with clear indications of how to resolve the failed tests.

Keeping detailed work papers, screenshots or movies, scripts to reliably and repeatedly
exploit an issue, and electronic records of testing, such as intercepting proxy logs and
associated notes such as a cleanup list, is considered standard industry practice and can be
really useful as proofs of the findings for the most doubts developers. It is not sufficient to
simply run a tool and report on the failures; this does not (at all) provide sufficient evidence
that all issues at a certifying level have been tested and tested thoroughly. In case of
dispute, there should be sufficient assurance evidence to demonstrate each and every
verified requirement has indeed been tested.

The role of automated penetration testing tools

Automated penetration tools are encouraged to provide as much as possible coverage and
to exercise as many parameters as possible with many different forms of malicious inputs as
possible.

It is not possible to fully complete ASVS verification using automated penetration testing
tools alone. Whilst a large majority of requirements in L1 can be performed using

16 OWASP Application Security Verification Standard 3.0

automated tests, the overall majority of requirements are not amenable to automated
penetration testing.

Please note that the lines between automated and manual testing have blurred as the
application security industry matures. Automated tools are often manually tuned by experts
and manual testers often leverage a wide variety of automated tools.

The role of penetration testing

It is possible to perform a manual penetration test and verify all L1 issues without requiring
access to source code, but this is not a leading practice. L2 requires at least some access to
developers, documentation, code, and authenticated access to the system. Complete
penetration testing coverage at Level 3 is not possible, as most of the additional issues
involve review of system configuration, malicious code review, threat modelling, and other
non-penetration testing artefacts.

As detailed security architecture guidance

One of the more common uses for the Application Security Verification Standard is as a
resource for security architects. The two major security architecture frameworks, SABSA or
TOGAF, are missing a great deal of information that is necessary to complete application
security architecture review. ASVS can be used to fill in those gaps by allowing security
architects to choose better controls for common problems, such as data protection patterns
and input validation strategies.

As a replacement for off the shelf secure coding checklists

Many organizations can benefit from adopting the ASVS, by choosing one of the three
levels, or by forking ASVS and changing what is required for each application risk level in a
domain specific way. We encourage this type of forking as long as traceability is maintained,
so that if an app has passed requirement 4.1, this means the same thing for forked copies as
the standard as it evolves.

As a guide for automated unit and integration tests

The ASVS is designed to highly testable, with the sole exception of architectural and
malicious code requirements. By building unit and integration tests that test for specific and
relevant fuzz and abuse cases, the application becomes nearly self-verifying with each and
every build. For example, additional tests can be crafted for the test suite for a login
controller, testing the username parameter for common usernames, account enumeration,
brute forcing, LDAP and SQL injection, and XSS. Similarly, a test on the password parameter
should include common passwords, password length, null byte injection, removing the
parameter, XSS, account enumeration, and more.

OWASP Application Security Verification Standard 3.0 17

As secure development training

ASVS can also be used to define characteristics of secure software. Many “secure coding”
courses are simply ethical hacking courses with a light smear of coding tips. This does not
help developers. Instead, secure development courses can use the ASVS with a strong focus
on the proactive controls found in the ASVS, rather than the Top 10 negative things not to
do.

18 OWASP Application Security Verification Standard 3.0

OWASP Projects using ASVS

Security Knowledge Framework

https://www.owasp.org/index.php/OWASP_Security_Knowledge_Framework

Training developers in writing secure code - SKF is a fully open-source Python-Flask web-
application that uses the OWASP Application Security Verification Standard to train you and
your team in writing secure code, by design.

OWASP Zed Attack Proxy

https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project

The OWASP Zed Attack Proxy (ZAP) is an easy to use integrated penetration testing tool for
finding vulnerabilities in web applications. It is designed to be used by people with a wide
range of security experience and as such is ideal for developers and functional testers who
are new to penetration testing. ZAP provides automated scanners as well as a set of tools
that allow you to find security vulnerabilities manually.

OWASP Cornucopia

https://www.owasp.org/index.php/OWASP_Cornucopia

OWASP Cornucopia is a mechanism in the form of a card game to assist software
development teams identify security requirements in Agile, conventional and formal
development processes. It is language, platform and technology agnostic. Cornucopia suits
were selected based on the structure of the OWASP Secure Coding Practices - Quick
Reference Guide (SCP), but with additional consideration of sections in the OWASP
Application Security Verification Standard, the OWASP Testing Guide and David Rook’s
Principles of Secure Development.

https://www.owasp.org/index.php/OWASP_Security_Knowledge_Framework
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Cornucopia

OWASP Application Security Verification Standard 3.0 19

Detailed Verification Requirements

V1. Architecture, design and threat modelling

V2. Authentication

V3. Session management

V4. Access control

V5. Malicious input handling

V7. Cryptography at rest

V8. Error handling and logging

V9. Data protection

V10. Communications

V11. HTTP security configuration

V13. Malicious controls

V15. Business logic

V16. File and resources

V17. Mobile

V18. Web services (NEW for 3.0)

V19. Configuration (NEW for 3.0)

20 OWASP Application Security Verification Standard 3.0

V1: Architecture, design and threat modelling

Control objective

Ensure that a verified application satisfies the following high level requirements:

 At level 1, components of the application are identified and have a reason for being

in the app

 At level 2, the architecture has been defined and the code adheres to the

architecture

 At level 3, the architecture and design is in place, in use, and effective

Note: This section has been re-introduced in version 3.0, but is essentially the same
architectural controls as version 1.0 of the ASVS.

Requirements

Description 1 2 3 Since

1.1
Verify that all application components are identified and
are known to be needed.

   1.0

1.2
Verify that all components, such as libraries, modules, and
external systems, that are not part of the application but
that the application relies on to operate are identified.

   1.0

1.3
Verify that a high-level architecture for the application
has been defined.

   1.0

1.4
Verify that all application components are defined in
terms of the business functions and/or security functions
they provide.

  1.0

1.5

Verify that all components that are not part of the
application but that the application relies on to operate
are defined in terms of the functions, and/or security
functions, they provide.

  1.0

1.6

Verify that a threat model for the target application has
been produced and covers off risks associated with
Spoofing, Tampering, Repudiation, Information
Disclosure, Denial of Service, and Elevation of privilege
(STRIDE).

  1.0

OWASP Application Security Verification Standard 3.0 21

Description 1 2 3 Since

1.7
Verify all security controls (including libraries that call
external security services) have a centralized
implementation.

   3.0

1.8

Verify that components are segregated from each other
via a defined security control, such as network
segmentation, firewall rules, or cloud based security
groups.

   3.0

1.9
Verify the application has a clear separation between the
data layer, controller layer and the display layer, such that
security decisions can be enforced on trusted systems.

   3.0

1.10
Verify that there is no sensitive business logic, secret keys
or other proprietary information in client side code.

   3.0

1.11
Verify that all application components, libraries, modules,
frameworks, platform, and operating systems are free
from known vulnerabilities.

   3.0.1

References

For more information, please see:

 Threat Modeling Cheat Sheet

https://www.owasp.org/index.php/Application_Security_Architecture_Cheat_Sheet

 Attack Surface Analysis Cheat Sheet:

https://www.owasp.org/index.php/Attack_Surface_Analysis_Cheat_Sheet

https://www.owasp.org/index.php/Application_Security_Architecture_Cheat_Sheet
https://www.owasp.org/index.php/Attack_Surface_Analysis_Cheat_Sheet

22 OWASP Application Security Verification Standard 3.0

V2: Authentication Verification Requirements

Control objective

Authentication is the act of establishing, or confirming, something (or someone) as
authentic, that is, that claims made by or about the thing are true. Ensure that a verified
application satisfies the following high level requirements:

 Verifies the digital identity of the sender of a communication.

 Ensures that only those authorised are able to authenticate and credentials are

transported in a secure manner.

Requirements

Description 1 2 3 Since

2.1
Verify all pages and resources by default require
authentication except those specifically intended to be
public (Principle of complete mediation).

   1.0

2.2

Verify that forms containing credentials are not filled in by
the application. Pre-filling by the application implies that
credentials are stored in plaintext or a reversible format,
which is explicitly prohibited.

   3.0.1

2.4
Verify all authentication controls are enforced on the
server side.

   1.0

2.6
Verify all authentication controls fail securely to ensure
attackers cannot log in.

   1.0

2.7

Verify password entry fields allow, or encourage, the use
of passphrases, and do not prevent password managers,
long passphrases or highly complex passwords being
entered.

   3.0.1

2.8

Verify all account identity authentication functions (such
as update profile, forgot password, disabled / lost token,
help desk or IVR) that might regain access to the account
are at least as resistant to attack as the primary
authentication mechanism.

   2.0

2.9
Verify that the changing password functionality includes
the old password, the new password, and a password
confirmation.

   1.0

OWASP Application Security Verification Standard 3.0 23

Description 1 2 3 Since

2.12

Verify that all authentication decisions can be logged,
without storing sensitive session identifiers or passwords.
This should include requests with relevant metadata
needed for security investigations.

   3.0.1

2.13
Verify that account passwords are one way hashed with a
salt, and there is sufficient work factor to defeat brute
force and password hash recovery attacks.

   3.0.1

2.16

Verify that credentials are transported using a suitable
encrypted link and that all pages/functions that require a
user to enter credentials are done so using an encrypted
link.

   3.0

2.17
Verify that the forgotten password function and other
recovery paths do not reveal the current password and
that the new password is not sent in clear text to the user.

   2.0

2.18
Verify that information enumeration is not possible via
login, password reset, or forgot account functionality.

   2.0

2.19
Verify there are no default passwords in use for the
application framework or any components used by the
application (such as “admin/password”).

   2.0

2.20
Verify that anti-automation is in place to prevent breached
credential testing, brute forcing, and account lockout
attacks.

   3.0.1

2.21
Verify that all authentication credentials for accessing
services external to the application are encrypted and
stored in a protected location.

   2.0

2.22

Verify that forgotten password and other recovery paths
use a TOTP or other soft token, mobile push, or other
offline recovery mechanism. Use of a random value in an
e-mail or SMS should be a last resort and is known weak.

   3.0.1

2.23

Verify that account lockout is divided into soft and hard
lock status, and these are not mutually exclusive. If an
account is temporarily soft locked out due to a brute force
attack, this should not reset the hard lock status.

   3.0

2.24

Verify that if shared knowledge based questions (also
known as "secret questions") are required, the questions
do not violate privacy laws and are sufficiently strong to
protect accounts from malicious recovery.

   3.0.1

2.25
Verify that the system can be configured to disallow the
use of a configurable number of previous passwords.

   2.0

24 OWASP Application Security Verification Standard 3.0

Description 1 2 3 Since

2.26
Verify that risk based re-authentication, two factor or
transaction signing is in place for high value transactions.

   3.0.1

2.27
Verify that measures are in place to block the use of
commonly chosen passwords and weak passphrases.

   3.0

2.28
Verify that all authentication challenges, whether
successful or failed, should respond in the same average
response time.

  3.0

2.29
Verify that secrets, API keys, and passwords are not
included in the source code, or online source code
repositories.

  3.0

2.31

Verify that if an application allows users to authenticate,
they can authenticate using two-factor authentication or
other strong authentication, or any similar scheme that
provides protection against username + password
disclosure.

   3.0

2.32
Verify that administrative interfaces are not accessible to
untrusted parties.

   3.0

2.33
Browser autocomplete, and integration with password
managers are permitted unless prohibited by risk based
policy.

   3.0.1

References

For more information, please see:

 OWASP Testing Guide 4.0: Testing for Authentication

https://www.owasp.org/index.php/Testing_for_authentication

 Password storage cheat sheet

https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet

 Forgot password cheat sheet

https://www.owasp.org/index.php/Forgot_Password_Cheat_Sheet

 Choosing and Using Security Questions at

https://www.owasp.org/index.php/Choosing_and_Using_Security_Questions_Cheat

_Sheet

https://www.owasp.org/index.php/Testing_for_authentication
https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet
https://www.owasp.org/index.php/Forgot_Password_Cheat_Sheet
https://www.owasp.org/index.php/Choosing_and_Using_Security_Questions_Cheat_Sheet
https://www.owasp.org/index.php/Choosing_and_Using_Security_Questions_Cheat_Sheet

OWASP Application Security Verification Standard 3.0 25

V3: Session Management Verification Requirements

Control objective

One of the core components of any web-based application is the mechanism by which it
controls and maintains the state for a user interacting with it. This is referred to this as
Session Management and is defined as the set of all controls governing state-full interaction
between a user and the web-based application.

Ensure that a verified application satisfies the following high level session management
requirements:

 Sessions are unique to each individual and cannot be guessed or shared

 Sessions are invalidated when no longer required and timed out during periods of

inactivity.

Requirements

Description 1 2 3 Since

3.1
Verify that there is no custom session manager, or that
the custom session manager is resistant against all
common session management attacks.

   1.0

3.2
Verify that sessions are invalidated when the user logs
out.

   1.0

3.3
Verify that sessions timeout after a specified period of
inactivity.

   1.0

3.4
Verify that sessions timeout after an administratively-
configurable maximum time period regardless of
activity (an absolute timeout).

   1.0

3.5
Verify that all pages that require authentication have
easy and visible access to logout functionality.

   1.0

3.6

Verify that the session id is never disclosed in URLs,
error messages, or logs. This includes verifying that the
application does not support URL rewriting of session
cookies.

   1.0

3.7
Verify that all successful authentication and re-
authentication generates a new session and session id.

   1.0

3.10
Verify that only session ids generated by the application
framework are recognized as active by the application.

   1.0

26 OWASP Application Security Verification Standard 3.0

Description 1 2 3 Since

3.11 Verify that session ids are sufficiently long, random and
unique across the correct active session base.

   1.0

3.12

Verify that session ids stored in cookies have their path
set to an appropriately restrictive value for the
application, and authentication session tokens
additionally set the “HttpOnly” and “secure” attributes

   3.0

3.16
Verify that the application limits the number of active
concurrent sessions.

   3.0

3.17
Verify that an active session list is displayed in the
account profile or similar of each user. The user should
be able to terminate any active session.

   3.0

3.18
Verify the user is prompted with the option to
terminate all other active sessions after a successful
change password process.

   3.0

References

For more information, please see:

 OWASP Testing Guide 4.0: Session Management Testing

https://www.owasp.org/index.php/Testing_for_Session_Management

 OWASP Session Management Cheat Sheet:

https://www.owasp.org/index.php/Session_Management_Cheat_Sheet

https://www.owasp.org/index.php/Testing_for_Session_Management
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet

OWASP Application Security Verification Standard 3.0 27

V4: Access Control Verification Requirements

Control objective

Authorization is the concept of allowing access to resources only to those permitted to use
them. Ensure that a verified application satisfies the following high level requirements:

 Persons accessing resources holds valid credentials to do so.

 Users are associated with a well-defined set of roles and privileges.

 Role and permission metadata is protected from replay or tampering.

Requirements

Description 1 2 3 Since

4.1

Verify that the principle of least privilege exists - users
should only be able to access functions, data files, URLs,
controllers, services, and other resources, for which they
possess specific authorization. This implies protection
against spoofing and elevation of privilege.

   1.0

4.4

Verify that access to sensitive records is protected, such
that only authorized objects or data is accessible to each
user (for example, protect against users tampering with a
parameter to see or alter another user's account).

   1.0

4.5

Verify that directory browsing is disabled unless
deliberately desired. Additionally, applications should not
allow discovery or disclosure of file or directory metadata,
such as Thumbs.db, .DS_Store, .git or .svn folders.

   1.0

4.8 Verify that access controls fail securely.    1.0

4.9
Verify that the same access control rules implied by the
presentation layer are enforced on the server side.

   1.0

4.10
Verify that all user and data attributes and policy
information used by access controls cannot be
manipulated by end users unless specifically authorized.

   1.0

4.11
Verify that there is a centralized mechanism (including
libraries that call external authorization services) for
protecting access to each type of protected resource.

  1.0

4.12
Verify that all access control decisions can be logged and
all failed decisions are logged.

   2.0

28 OWASP Application Security Verification Standard 3.0

Description 1 2 3 Since

4.13
Verify that the application or framework uses strong
random anti-CSRF tokens or has another transaction
protection mechanism.

   2.0

4.14

Verify the system can protect against aggregate or
continuous access of secured functions, resources, or
data. For example, consider the use of a resource
governor to limit the number of edits per hour or to
prevent the entire database from being scraped by an
individual user.

   2.0

4.15

Verify the application has additional authorization (such
as step up or adaptive authentication) for lower value
systems, and / or segregation of duties for high value
applications to enforce anti-fraud controls as per the risk
of application and past fraud.

   3.0

4.16
Verify that the application correctly enforces context-
sensitive authorisation so as to not allow unauthorised
manipulation by means of parameter tampering.

   3.0

References

For more information, please see:

 OWASP Testing Guide 4.0: Authorization

https://www.owasp.org/index.php/Testing_for_Authorization

 OWASP Cheat Sheet: Access Control

https://www.owasp.org/index.php/Access_Control_Cheat_Sheet

https://www.owasp.org/index.php/Testing_for_Authorization
https://www.owasp.org/index.php/Access_Control_Cheat_Sheet

OWASP Application Security Verification Standard 3.0 29

V5: Malicious input handling verification requirements

Control objective

The most common web application security weakness is the failure to properly validate
input coming from the client or from the environment before using it. This weakness leads
to almost all of the major vulnerabilities in web applications, such as cross site scripting, SQL
injection, interpreter injection, locale/Unicode attacks, file system attacks, and buffer
overflows.

Ensure that a verified application satisfies the following high level requirements:

 All input is validated to be correct and fit for the intended purpose.

 Data from an external entity or client should never be trusted and should be handled

accordingly.

Requirements

Description 1 2 3 Since

5.1
Verify that the runtime environment is not susceptible to
buffer overflows, or that security controls prevent buffer
overflows.

   1.0

5.3
Verify that server side input validation failures result in
request rejection and are logged.

   1.0

5.5
Verify that input validation routines are enforced on the
server side.

   1.0

5.6
Verify that a single input validation control is used by the
application for each type of data that is accepted.

  1.0

5.10

Verify that all SQL queries, HQL, OSQL, NOSQL and stored
procedures, calling of stored procedures are protected by the
use of prepared statements or query parameterization, and
thus not susceptible to SQL injection

   2.0

5.11 Verify that the application is not susceptible to LDAP Injection,
or that security controls prevent LDAP Injection.

   2.0

5.12
Verify that the application is not susceptible to OS Command
Injection, or that security controls prevent OS Command
Injection.

   2.0

30 OWASP Application Security Verification Standard 3.0

Description 1 2 3 Since

5.13
Verify that the application is not susceptible to Remote File
Inclusion (RFI) or Local File Inclusion (LFI) when content is used
that is a path to a file.

   3.0

5.14
Verify that the application is not susceptible to common XML
attacks, such as XPath query tampering, XML External Entity
attacks, and XML injection attacks.

   2.0

5.15

Ensure that all string variables placed into HTML or other web
client code is either properly contextually encoded manually,
or utilize templates that automatically encode contextually to
ensure the application is not susceptible to reflected, stored
and DOM Cross-Site Scripting (XSS) attacks.

   2.0

5.16

If the application framework allows automatic mass
parameter assignment (also called automatic variable binding)
from the inbound request to a model, verify that security
sensitive fields such as “accountBalance”, “role” or
“password” are protected from malicious automatic binding.

   2.0

5.17

Verify that the application has defenses against HTTP
parameter pollution attacks, particularly if the application
framework makes no distinction about the source of request
parameters (GET, POST, cookies, headers, environment, etc.)

   2.0

5.18
Verify that client side validation is used as a second line of
defense, in addition to server side validation.

   3.0

5.19

Verify that all input data is validated, not only HTML form
fields but all sources of input such as REST calls, query
parameters, HTTP headers, cookies, batch files, RSS feeds, etc;
using positive validation (whitelisting), then lesser forms of
validation such as greylisting (eliminating known bad strings),
or rejecting bad inputs (blacklisting).

   3.0

5.20

Verify that structured data is strongly typed and validated
against a defined schema including allowed characters, length
and pattern (e.g. credit card numbers or telephone, or
validating that two related fields are reasonable, such as
validating suburbs and zip or post codes match).

   3.0

5.21

Verify that unstructured data is sanitized to enforce generic
safety measures such as allowed characters and length, and
characters potentially harmful in given context should be
escaped (e.g. natural names with Unicode or apostrophes,

such as ねこ or O'Hara)

   3.0

OWASP Application Security Verification Standard 3.0 31

Description 1 2 3 Since

5.22

Make sure untrusted HTML from WYSIWYG editors or similar
are properly sanitized with an HTML sanitizer and handle it
appropriately according to the input validation task and
encoding task.

   3.0

5.23
For auto-escaping template technology, if UI escaping is
disabled, ensure that HTML sanitization is enabled instead.

   3.0

5.24
Verify that data transferred from one DOM context to
another, uses safe JavaScript methods, such as using
.innerText and .val.

   3.0

5.25
Verify when parsing JSON in browsers, that JSON.parse is used
to parse JSON on the client. Do not use eval() to parse JSON on
the client.

   3.0

5.26
Verify that authenticated data is cleared from client storage,
such as the browser DOM, after the session is terminated.

   3.0

References

For more information, please see:

 OWASP Testing Guide 4.0: Input Validation Testing

https://www.owasp.org/index.php/Testing_for_Input_Validation

 OWASP Cheat Sheet: Input Validation

https://www.owasp.org/index.php/Input_Validation_Cheat_Sheet

 OWASP Testing Guide 4.0: Testing for HTTP Parameter Pollution

https://www.owasp.org/index.php/Testing_for_HTTP_Parameter_pollution_%28OT

G-INPVAL-004%29

 OWASP LDAP Injection Cheat Sheet

https://www.owasp.org/index.php/LDAP_Injection_Prevention_Cheat_Sheet

 OWASP Testing Guide 4.0: Client Side Testing

https://www.owasp.org/index.php/Client_Side_Testing

 OWASP Cross Site Scripting Prevention Cheat Sheet

https://www.owasp.org/index.php/XSS_%28Cross_Site_Scripting%29_Prevention_C

heat_Sheet

https://www.owasp.org/index.php/Testing_for_Input_Validation
https://www.owasp.org/index.php/Input_Validation_Cheat_Sheet
https://www.owasp.org/index.php/Testing_for_HTTP_Parameter_pollution_%28OTG-INPVAL-004%29
https://www.owasp.org/index.php/Testing_for_HTTP_Parameter_pollution_%28OTG-INPVAL-004%29
https://www.owasp.org/index.php/LDAP_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Client_Side_Testing
https://www.owasp.org/index.php/XSS_%28Cross_Site_Scripting%29_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_%28Cross_Site_Scripting%29_Prevention_Cheat_Sheet

32 OWASP Application Security Verification Standard 3.0

 OWASP Java Encoding Project

https://www.owasp.org/index.php/OWASP_Java_Encoder_Project

For more information on auto-escaping, please see

 Reducing XSS by way of Automatic Context-Aware Escaping in Template Systems

http://googleonlinesecurity.blogspot.com/2009/03/reducing-xss-by-way-of-

automatic.html

 AngularJS Strict Contextual Escaping https://docs.angularjs.org/api/ng/service/$sce

 https://cwe.mitre.org/data/definitions/915.html

https://www.owasp.org/index.php/OWASP_Java_Encoder_Project
http://googleonlinesecurity.blogspot.com/2009/03/reducing-xss-by-way-of-automatic.html
http://googleonlinesecurity.blogspot.com/2009/03/reducing-xss-by-way-of-automatic.html
https://docs.angularjs.org/api/ng/service/$sce
https://cwe.mitre.org/data/definitions/915.html

OWASP Application Security Verification Standard 3.0 33

V6: Output encoding / escaping

This section was incorporated into V5 in Application Security Verification Standard 2.0.
ASVS requirement 5.16 addresses contextual output encoding to help prevent Cross Site
Scripting.

34 OWASP Application Security Verification Standard 3.0

V7: Cryptography at rest verification requirements

Control objective

Ensure that a verified application satisfies the following high level requirements:

 That all cryptographic modules fail in a secure manner and that errors are handled

correctly.

 That a suitable random number generator is used when randomness is required.

 That access to keys is managed in a secure way.

Requirements

Description 1 2 3 Since

7.2
Verify that all cryptographic modules fail securely,
and errors are handled in a way that does not
enable oracle padding.

   1.0

7.6

Verify that all random numbers, random file
names, random GUIDs, and random strings are
generated using the cryptographic module’s
approved random number generator when these
random values are intended to be not guessable
by an attacker.

   1.0

7.7
Verify that cryptographic algorithms used by the
application have been validated against FIPS 140-2
or an equivalent standard.

   1.0

7.8
Verify that cryptographic modules operate in their
approved mode according to their published
security policies.

  1.0

7.9

Verify that there is an explicit policy for how
cryptographic keys are managed (e.g., generated,
distributed, revoked, and expired). Verify that this
key lifecycle is properly enforced.

   1.0

7.11

Verify that all consumers of cryptographic services
do not have direct access to key material. Isolate
cryptographic processes, including master secrets
and consider the use of a virtualized or physical
hardware key vault (HSM).

  3.0.1

OWASP Application Security Verification Standard 3.0 35

Description 1 2 3 Since

7.12
Personally Identifiable Information should be
stored encrypted at rest and ensure that
communication goes via protected channels.

   3.0

7.13

Verify that sensitive passwords or key material
maintained in memory is overwritten with zeros as
soon as it no longer required, to mitigate memory
dumping attacks.

   3.0.1

7.14
Verify that all keys and passwords are replaceable,
and are generated or replaced at installation time.

   3.0

7.15

Verify that random numbers are created with
proper entropy even when the application is under
heavy load, or that the application degrades
gracefully in such circumstances.

  3.0

References

For more information, please see:

● OWASP Testing Guide 4.0: Testing for weak Cryptography

https://www.owasp.org/index.php/Testing_for_weak_Cryptography

● OWASP Cheat Sheet: Cryptographic Storage

https://www.owasp.org/index.php/Cryptographic_Storage_Cheat_Sheet

https://www.owasp.org/index.php/Testing_for_weak_Cryptography
https://www.owasp.org/index.php/Cryptographic_Storage_Cheat_Sheet

36 OWASP Application Security Verification Standard 3.0

V8: Error handling and logging verification requirements

Control objective

The primary objective of error handling and logging is to provide a useful reaction by the
user, administrators, and incident response teams. The objective is not to create massive
amounts of logs, but high quality logs, with more signal than discarded noise.

High quality logs will often contain sensitive data, and must be protected as per local data
privacy laws or directives. This should include:

 Not collecting or logging sensitive information if not specifically required.

 Ensuring all logged information is handled securely and protected as per its data

classification.

 Ensuring that logs are not forever, but have an absolute lifetime that is as short as

possible.

If logs contain private or sensitive data, the definition of which varies from country to
country, the logs become some of the most sensitive information held by the application
and thus very attractive to attackers in their own right.

Requirements

Description 1 2 3 Since

8.1

Verify that the application does not output error
messages or stack traces containing sensitive data
that could assist an attacker, including session id,
software/framework versions and personal
information

   1.0

8.2
Verify that error handling logic in security controls
denies access by default.

   1.0

8.3
Verify security logging controls provide the ability
to log success and particularly failure events that
are identified as security-relevant.

   1.0

8.4

Verify that each log event includes necessary
information that would allow for a detailed
investigation of the timeline when an event
happens.

   1.0

OWASP Application Security Verification Standard 3.0 37

Description 1 2 3 Since

8.5
Verify that all events that include untrusted data
will not execute as code in the intended log
viewing software.

   1.0

8.6
Verify that security logs are protected from
unauthorized access and modification.

   1.0

8.7

Verify that the application does not log sensitive
data as defined under local privacy laws or
regulations, organizational sensitive data as
defined by a risk assessment, or sensitive
authentication data that could assist an attacker,
including user’s session identifiers, passwords,
hashes, or API tokens.

   3.0

8.8
Verify that all non-printable symbols and field
separators are properly encoded in log entries, to
prevent log injection.

  2.0

8.9
Verify that log fields from trusted and untrusted
sources are distinguishable in log entries.

  2.0

8.10
Verify that an audit log or similar allows for non-
repudiation of key transactions.

   3.0

8.11
Verify that security logs have some form of
integrity checking or controls to prevent
unauthorized modification.

  3.0

8.12
Verify that the logs are stored on a different
partition than the application is running with
proper log rotation.

  3.0

8.13
Time sources should be synchronized to ensure
logs have the correct time

   3.0.1

References

For more information, please see:

● OWASP Testing Guide 4.0 content: Testing for Error Handling

https://www.owasp.org/index.php/Testing_for_Error_Handling

https://www.owasp.org/index.php/Testing_for_Error_Handling

38 OWASP Application Security Verification Standard 3.0

V9: Data protection verification requirements

Control objective

There are three key elements to sound data protection: Confidentiality, Integrity and
Availability (CIA). This standard assumes that data protection is enforced on a trusted
system, such as a server, which has been hardened and has sufficient protections.

Applications have to assume that all user devices are compromised in some way. Where an
application transmits or stores sensitive information on insecure devices, such as shared
computers, phones and tablets, the application is responsible for ensuring data stored on
these devices is encrypted and cannot be easily illicitly obtained, altered or disclosed.

Ensure that a verified application satisfies the following high level data protection
requirements:

 Confidentiality: Data should be protected from unauthorised observation or

disclosure both in transit and when stored.

 Integrity: Data should be protected being maliciously created, altered or deleted by

unauthorized attackers.

 Availability: Data should be available to authorized users as required

Requirements

Description 1 2 3 Since

9.1
Verify that all forms containing sensitive information
have disabled client side caching, including autocomplete
features.

   1.0

9.2

Verify that the list of sensitive data processed by the
application is identified, and that there is an explicit
policy for how access to this data must be controlled,
encrypted and enforced under relevant data protection
directives.

  1.0

9.3
Verify that all sensitive data is sent to the server in the
HTTP message body or headers (i.e., URL parameters are
never used to send sensitive data).

   1.0

OWASP Application Security Verification Standard 3.0 39

Description 1 2 3 Since

9.4

Verify that the application sets appropriate anti-caching
headers as per the risk of the application, such as the
following:

Expires: Tue, 03 Jul 2001 06:00:00 GMT

Last-Modified: {now} GMT

Cache-Control: no-store, no-cache, must-
revalidate, max-age=0

Cache-Control: post-check=0, pre-check=0

Pragma: no-cache

   1.0

9.5

Verify that on the server, all cached or temporary copies
of sensitive data stored are protected from unauthorized
access or purged/invalidated after the authorized user
accesses the sensitive data.

   1.0

9.6
Verify that there is a method to remove each type of
sensitive data from the application at the end of the
required retention policy.

 ✓ 1.0

9.7
Verify the application minimizes the number of
parameters in a request, such as hidden fields, Ajax
variables, cookies and header values.

   2.0

9.8
Verify the application has the ability to detect and alert
on abnormal numbers of requests for data harvesting for
an example screen scraping.

 ✓ 2.0

9.9

Verify that data stored in client side storage (such as
HTML5 local storage, session storage, IndexedDB, regular
cookies or Flash cookies) does not contain sensitive data
or PII.

✓ ✓ ✓ 3.0.1

9.10
Verify accessing sensitive data is logged, if the data is
collected under relevant data protection directives or
where logging of accesses is required.

 ✓ ✓ 3.0

9.11
Verify that sensitive information maintained in memory
is overwritten with zeros as soon as it no longer required,
to mitigate memory dumping attacks.

 ✓ ✓ 3.0.1

References

For more information, please see:

● User Privacy Protection Cheat Sheet:

https://www.owasp.org/index.php/User_Privacy_Protection_Cheat_Sheet

https://www.owasp.org/index.php/User_Privacy_Protection_Cheat_Sheet

OWASP Application Security Verification Standard 3.0 41

V10: Communications security verification requirements

Control objective

Ensure that a verified application satisfies the following high level requirements:

 That TLS is used where sensitive data is transmitted

 That strong algorithms and ciphers are used at all times.

Requirements

Description 1 2 3 Since

10.1 Verify that a path can be built from a trusted CA to each
Transport Layer Security (TLS) server certificate, and that
each server certificate is valid.

   1.0

10.3 Verify that TLS is used for all connections (including both
external and backend connections) that are authenticated
or that involve sensitive data or functions, and does not fall
back to insecure or unencrypted protocols. Ensure the
strongest alternative is the preferred algorithm.

   3.0

10.4 Verify that backend TLS connection failures are logged.  1.0

10.5 Verify that certificate paths are built and verified for all
client certificates using configured trust anchors and
revocation information.

  1.0

10.6 Verify that all connections to external systems that involve
sensitive information or functions are authenticated.

   1.0

10.8 Verify that there is a single standard TLS implementation
that is used by the application that is configured to operate
in an approved mode of operation.

  1.0

10.10 Verify that TLS certificate public key pinning (HPKP) is
implemented with production and backup public keys. For
more information, please see the references below.

   3.0.1

10.11 Verify that HTTP Strict Transport Security headers are
included on all requests and for all subdomains, such as
Strict-Transport-Security: max-age=15724800;
includeSubdomains

   3.0

10.12 Verify that production website URL has been submitted to
preloaded list of Strict Transport Security domains
maintained by web browser vendors. Please see the
references below.

  3.0

42 OWASP Application Security Verification Standard 3.0

Description 1 2 3 Since

10.13 Ensure forward secrecy ciphers are in use to mitigate
passive attackers recording traffic.

   3.0

10.14 Verify that proper certification revocation, such as Online
Certificate Status Protocol (OCSP) Stapling, is enabled and
configured.

   3.0

10.15 Verify that only strong algorithms, ciphers, and protocols
are used, through all the certificate hierarchy, including
root and intermediary certificates of your selected
certifying authority.

   3.0

10.16 Verify that the TLS settings are in line with current leading
practice, particularly as common configurations, ciphers,
and algorithms become insecure.

   3.0

References

For more information, please see:

 OWASP – TLS Cheat Sheet.

https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet

 Notes on “Approved modes of TLS”. In the past, the ASVS referred to the US

standard FIPS 140-2, but as a global standard, applying US standards this can be

difficult, contradictory, or confusing to apply. A better method of achieving

compliance with 10.8 would be to review guides such as

(https://wiki.mozilla.org/Security/Server_Side_TLS), generate known good

configurations (https://mozilla.github.io/server-side-tls/ssl-config-generator/), and

use known TLS evaluation tools, such as sslyze, various vulnerability scanners or

trusted TLS online assessment services to obtain a desired level of security. In

general, we see non-compliance for this section being the use of outdated or

insecure ciphers and algorithms, the lack of perfect forward secrecy, outdated or

insecure SSL protocols, weak preferred ciphers, and so on.

 Certificate pinning. For more information please review

https://tools.ietf.org/html/rfc7469. The rationale behind certificate pinning for

https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://wiki.mozilla.org/Security/Server_Side_TLS)
https://mozilla.github.io/server-side-tls/ssl-config-generator/
https://tools.ietf.org/html/rfc7469

OWASP Application Security Verification Standard 3.0 43

production and backup keys is business continuity - see

https://noncombatant.org/2015/05/01/about-http-public-key-pinning/

 OWASP Certificate Pinning Cheat Sheet

https://www.owasp.org/index.php/Pinning_Cheat_Sheet

 OWASP Certificate and Public Key Pinning

https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning

 Time of first use (TOFU) Pinning

https://developer.mozilla.org/en/docs/Web/Security/Public_Key_Pinning

 Pre-loading HTTP Strict Transport Security

https://www.chromium.org/hsts

https://noncombatant.org/2015/05/01/about-http-public-key-pinning/
https://www.owasp.org/index.php/Pinning_Cheat_Sheet
https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning
https://developer.mozilla.org/en/docs/Web/Security/Public_Key_Pinning
https://www.chromium.org/hsts

44 OWASP Application Security Verification Standard 3.0

V11: HTTP security configuration verification requirements

Control objective

Ensure that a verified application satisfies the following high level requirements:

 The application server is suitably hardened from a default configuration

 HTTP responses contain a safe character set in the content type header.

Requirements

Description 1 2 3 Since

11.1

Verify that the application accepts only a defined
set of required HTTP request methods, such as
GET and POST are accepted, and unused methods
(e.g. TRACE, PUT, and DELETE) are explicitly
blocked.

   1.0

11.2
Verify that every HTTP response contains a
content type header specifying a safe character set
(e.g., UTF-8, ISO 8859-1).

   1.0

11.3
Verify that HTTP headers added by a trusted proxy
or SSO devices, such as a bearer token, are
authenticated by the application.

   2.0

11.4
Verify that a suitable X-FRAME-OPTIONS header is
in use for sites where content should not be
viewed in a 3rd-party X-Frame.

   3.0.1

11.5
Verify that the HTTP headers or any part of the
HTTP response do not expose detailed version
information of system components.

   2.0

11.6

Verify that all API responses contain X-Content-
Type-Options: nosniff and Content-Disposition:
attachment; filename="api.json" (or other
appropriate filename for the content type).

   3.0

11.7
Verify that a content security policy (CSPv2) is in
place that helps mitigate common DOM, XSS,
JSON, and JavaScript injection vulnerabilities.

   3.0.1

11.8
Verify that the X-XSS-Protection: 1; mode=block
header is in place to enable browser reflected XSS
filters.

   3.0

OWASP Application Security Verification Standard 3.0 45

References

For more information, please see:

 OWASP Testing Guide 4.0: Testing for HTTP Verb Tampering

https://www.owasp.org/index.php/Testing_for_HTTP_Verb_Tampering_%28OTG-

INPVAL-003%29

 Adding Content-Disposition to API responses helps prevent many attacks based on

misunderstanding on the MIME type between client and server, and the "filename"

option specifically helps prevent Reflected File Download attacks.

https://www.blackhat.com/docs/eu-14/materials/eu-14-Hafif-Reflected-File-

Download-A-New-Web-Attack-Vector.pdf

 https://www.owasp.org/index.php?title=Content_Security_Policy_Cheat_Sheet&setl

ang=en

https://www.owasp.org/index.php/Testing_for_HTTP_Verb_Tampering_%28OTG-INPVAL-003%29
https://www.owasp.org/index.php/Testing_for_HTTP_Verb_Tampering_%28OTG-INPVAL-003%29
https://www.blackhat.com/docs/eu-14/materials/eu-14-Hafif-Reflected-File-Download-A-New-Web-Attack-Vector.pdf
https://www.blackhat.com/docs/eu-14/materials/eu-14-Hafif-Reflected-File-Download-A-New-Web-Attack-Vector.pdf
https://www.owasp.org/index.php?title=Content_Security_Policy_Cheat_Sheet&setlang=en
https://www.owasp.org/index.php?title=Content_Security_Policy_Cheat_Sheet&setlang=en

46 OWASP Application Security Verification Standard 3.0

V12: Security configuration verification requirements

This section was incorporated into V11 in Application Security Verification Standard 2.0.

OWASP Application Security Verification Standard 3.0 47

V13: Malicious controls verification requirements

Control objective

Ensure that a verified application satisfies the following high level requirements:

 Malicious activity is handled securely and properly as to not affect the rest of the

application.

 Do not have time bombs or other time based attacks built into them

 do not “phone home” to malicious or unauthorized destinations

 Applications do not have back doors, Easter eggs, salami attacks, or logic flaws that

can be controlled by an attacker

Malicious code is extremely rare, and is difficult to detect. Manual line by line code review
can assist looking for logic bombs, but even the most experienced code reviewer will
struggle to find malicious code even if they know it exists. This section is not possible to
complete without access to source code, including as many third party libraries as possible.

Requirements

Description 1 2 3 Since

13.1
Verify all malicious activity is adequately
sandboxed, containerized or isolated to delay and
deter attackers from attacking other applications.

  2.0

13.2

Verify that the application source code, and as
many third party libraries as possible, does not
contain back doors, Easter eggs, and logic flaws in
authentication, access control, input validation,
and the business logic of high value transactions.

  3.0.1

References

For more information, please see:

 http://www.dwheeler.com/essays/apple-goto-fail.html

http://www.dwheeler.com/essays/apple-goto-fail.html

48 OWASP Application Security Verification Standard 3.0

V14: Internal security verification requirements

This section was incorporated into V13 in Application Security Verification Standard 2.0.

OWASP Application Security Verification Standard 3.0 49

V15: Business logic verification requirements

Control objective

Ensure that a verified application satisfies the following high level requirements:

 The business logic flow is sequential and in order

 Business logic includes limits to detect and prevent automated attacks, such as

continuous small funds transfers, or adding a million friends one at a time, and so

on.

 High value business logic flows have considered abuse cases and malicious actors,

and have protections against spoofing, tampering, repudiation, information

disclosure, and elevation of privilege attacks.

Requirements

Description 1 2 3 Since

15.1

Verify the application will only process business
logic flows in sequential step order, with all steps
being processed in realistic human time, and not
process out of order, skipped steps, process steps
from another user, or too quickly submitted
transactions.

   2.0

15.2

Verify the application has business limits and
correctly enforces on a per user basis, with
configurable alerting and automated reactions to
automated or unusual attack.

   2.0

References

For more information, please see:

 OWASP Testing Guide 4.0: Business Logic Testing

https://www.owasp.org/index.php/Testing_for_business_logic

 OWASP Cheat Sheet:

https://www.owasp.org/index.php/Business_Logic_Security_Cheat_Sheet

https://www.owasp.org/index.php/Testing_for_business_logic
https://www.owasp.org/index.php/Business_Logic_Security_Cheat_Sheet

50 OWASP Application Security Verification Standard 3.0

V16: Files and resources verification requirements

Control objective

Ensure that a verified application satisfies the following high level requirements:

 Untrusted file data should be handled accordingly and in a secure manner

 Obtained from untrusted sources are stored outside the webroot and limited

permissions.

Requirements

Description 1 2 3 Since

16.1 Verify that URL redirects and forwards only allow
whitelisted destinations, or show a warning when
redirecting to potentially untrusted content.

   2.0

16.2 Verify that untrusted file data submitted to the
application is not used directly with file I/O
commands, particularly to protect against path
traversal, local file include, file mime type, and OS
command injection vulnerabilities.

   2.0

16.3 Verify that files obtained from untrusted sources
are validated to be of expected type and scanned
by antivirus scanners to prevent upload of known
malicious content.

   2.0

16.4 Verify that untrusted data is not used within
inclusion, class loader, or reflection capabilities to
prevent remote/local file inclusion vulnerabilities.

   2.0

16.5 Verify that untrusted data is not used within cross-
domain resource sharing (CORS) to protect against
arbitrary remote content.

   2.0

16.6 Verify that files obtained from untrusted sources
are stored outside the webroot, with limited
permissions, preferably with strong validation.

   3.0

16.7 Verify that the web or application server is
configured by default to deny access to remote
resources or systems outside the web or
application server.

   2.0

16.8 Verify the application code does not execute
uploaded data obtained from untrusted sources.

   3.0

OWASP Application Security Verification Standard 3.0 51

Description 1 2 3 Since

16.9 Do not use Flash, Active-X, Silverlight, NACL, client-
side Java or other client side technologies not
supported natively via W3C browser standards.

   2.0

References

For more information, please see:

 File Extension Handling for Sensitive Information:

https://www.owasp.org/index.php/Unrestricted_File_Upload

https://www.owasp.org/index.php/Unrestricted_File_Upload

52 OWASP Application Security Verification Standard 3.0

V17: Mobile verification requirements

Control objective

This section contains controls that are mobile application specific. These controls have been
de-duplicated from 2.0, so must be taken in conjunction with all other sections of the
relevant ASVS Verification Level.

Mobile applications should:

 Should have the same level of security controls within the mobile client as found in

the server, by enforcing security controls in a trusted environment

 Sensitive information assets stored on the device should be done so in a secure

manner

 All sensitive data transmitted from the device should be done so with transport layer

security in mind.

Requirements

Description 1 2 3 Since

17.1 Verify that ID values stored on the device and
retrievable by other applications, such as the UDID
or IMEI number are not used as authentication
tokens.

   2.0

17.2 Verify that the mobile app does not store sensitive
data onto potentially unencrypted shared
resources on the device (e.g. SD card or shared
folders).

   2.0

17.3 Verify that sensitive data is not stored unprotected
on the device, even in system protected areas
such as key chains.

   2.0

17.4 Verify that secret keys, API tokens, or passwords
are dynamically generated in mobile applications.

   2.0

17.5 Verify that the mobile app prevents leaking of
sensitive information (for example, screenshots
are saved of the current application as the
application is backgrounded or writing sensitive
information in console).

   2.0

OWASP Application Security Verification Standard 3.0 53

Description 1 2 3 Since

17.6 Verify that the application is requesting minimal
permissions for required functionality and
resources.

   2.0

17.7 Verify that the application sensitive code is laid
out unpredictably in memory (For example ASLR).

   2.0

17.8 Verify that there are anti-debugging techniques
present that are sufficient enough to deter or
delay likely attackers from injecting debuggers into
the mobile app (For example GDB).

 ✓ 2.0

17.9 Verify that the app does not export sensitive
activities, intents, or content providers for other
mobile apps on the same device to exploit.


  2.0

17.10 Verify that sensitive information maintained in
memory is overwritten with zeros as soon as it no
longer required, to mitigate memory dumping
attacks.

   3.0.1

17.11

Verify that the app validates input to exported
activities, intents, or content providers.

   3.0.1

References

For more information, please see:

 OWASP Mobile Security Project:

https://www.owasp.org/index.php/OWASP_Mobile_Security_Project

 iOS Developer Cheat Sheet:

https://www.owasp.org/index.php/IOS_Developer_Cheat_Sheet

https://www.owasp.org/index.php/OWASP_Mobile_Security_Project
https://www.owasp.org/index.php/IOS_Developer_Cheat_Sheet

54 OWASP Application Security Verification Standard 3.0

V18: Web services verification requirements

Control objective

Ensure that a verified application that uses RESTful or SOAP based web services has:

 Adequate authentication, session management and authorization of all web services

 Input validation of all parameters that transit from a lower to higher trust level

 Basic interoperability of SOAP web services layer to promote API use

Requirements

Description 1 2 3 Since

18.1
Verify that the same encoding style is used
between the client and the server.

   3.0

18.2

Verify that access to administration and
management functions within the Web Service
Application is limited to web service
administrators.

   3.0

18.3
Verify that XML or JSON schema is in place and
verified before accepting input.

   3.0

18.4
Verify that all input is limited to an appropriate
size limit.

   3.0

18.5

Verify that SOAP based web services are compliant
with Web Services-Interoperability (WS-I) Basic
Profile at minimum. This essentially means TLS
encryption.

   3.0.1

18.6

Verify the use of session-based authentication and
authorization. Please refer to sections 2, 3 and 4
for further guidance. Avoid the use of static "API
keys" and similar.

   3.0

18.7

Verify that the REST service is protected from
Cross-Site Request Forgery via the use of at least
one or more of the following: ORIGIN checks,
double submit cookie pattern, CSRF nonces, and
referrer checks.

   3.0.1

18.8
Verify the REST service explicitly check the
incoming Content-Type to be the expected one,
such as application/xml or application/json.

   3.0

OWASP Application Security Verification Standard 3.0 55

Description 1 2 3 Since

18.9

Verify that the message payload is signed to
ensure reliable transport between client and
service, using JSON Web Signing or WS-Security for
SOAP requests.

   3.0.1

18.10
Verify that alternative and less secure access paths
do not exist.

   3.0

References

For more information, please see:

● OWASP Testing Guide 4.0: Configuration and Deployment Management Testing

https://www.owasp.org/index.php/Testing_for_configuration_management

● OWASP Cross-Site Request Forgery cheat sheet

https://www.owasp.org/index.php/Cross-

Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet

● JSON Web Tokens (and Signing)

https://jwt.io/

https://www.owasp.org/index.php/Testing_for_configuration_management
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
https://jwt.io/

56 OWASP Application Security Verification Standard 3.0

V19. Configuration

Control objective

Ensure that a verified application has:

 Up to date libraries and platform(s).

 A secure by default configuration.

 Sufficient hardening that user initiated changes to default configuration do not

unnecessarily expose or create security weaknesses or flaws to underlying systems.

Requirements

Description 1 2 3 Since

19.1

All components should be up to date with proper
security configuration(s) and version(s). This
should include removal of unneeded
configurations and folders such as sample
applications, platform documentation, and default
or example users.

   3.0

19.2

Communications between components, such as
between the application server and the database
server, should be encrypted, particularly when the
components are in different containers or on
different systems.

   3.0

19.3

Communications between components, such as
between the application server and the database
server should be authenticated using an account
with the least necessary privileges.

   3.0

19.4
Verify application deployments are adequately
sandboxed, containerized or isolated to delay and
deter attackers from attacking other applications.

   3.0

19.5
Verify that the application build and deployment
processes are performed in a secure fashion.

   3.0

19.6

Verify that authorised administrators have the
capability to verify the integrity of all security-
relevant configurations to ensure that they have
not been tampered with.

  3.0

19.7 Verify that all application components are signed.  3.0

OWASP Application Security Verification Standard 3.0 57

Description 1 2 3 Since

19.8
Verify that third party components come from
trusted repositories.

  3.0

19.9
Verify that build processes for system level
languages have all security flags enabled, such as
ASLR, DEP, and security checks.

  3.0

19.10

Verify that all application assets are hosted by the
application, such as JavaScript libraries, CSS
stylesheets and web fonts are hosted by the
application rather than rely on a CDN or external
provider.

  3.0.1

References

For more information, please see:

● OWASP Testing Guide 4.0: Configuration and Deployment Management Testing

https://www.owasp.org/index.php/Testing_for_configuration_management

https://www.owasp.org/index.php/Testing_for_configuration_management

58 OWASP Application Security Verification Standard 3.0

Appendix A: What ever happened to…

Original

Description Status Remov
ed

Reason

2.3 Verify that if a maximum number of
authentication attempts is exceeded, the
account is locked for a period of time long
enough to deter brute force attacks.

Deprecated 2.0 A more complex requirement
replaced it (v2.20)

2.5 Verify that all authentication controls
(including libraries that call external
authentication services) have a centralized
implementation.

Merged 3.0 Genericized to include all
security controls and moved
to 1.10

2.10 Verify that re-authentication is required
before any application- specific sensitive
operations are permitted.

Deprecated 2.0 Re-authentication is so rarely
observed that we decided to
remove the control

2.11 Verify that after an administratively-
configurable period of time, authentication
credentials expire.

Deprecated 2.0 Absolute timeouts and
credential expiry removed as
not being an effective
control.

2.14 Verify that all authentication credentials for
accessing services external to the
application are encrypted and stored in a
protected location (not in source code).

Updated 2.0 Became V2.21

2.15 Verify that all code implementing or using
authentication controls is not affected by
any malicious code.

Moved 2.0 Moved to V13 - Malicious
Code

2.30 Verify that if an application allows users to
authenticate, they use a proven secure
authentication mechanism.

Deprecated 3.0.1 Too ambiguous to be tested,
actually a summary of all the
V2 requirements

3.8 Verify that the session id is changed upon
re-authentication

Updated 3.0 Rolled into 3.7

3.9 Verify that the session id is changed or
cleared on logout

Updated 3.0 Rolled into 3.7

OWASP Application Security Verification Standard 3.0 59

Original

Description Status Remov
ed

Reason

3.13 Verify that all code implementing or using
session management controls is not affected
by any malicious code

Moved 2.0 Moved to V13 - Malicious
code

3.14 Verify that authenticated session tokens
using cookies are protected by the use of
"HttpOnly".

Updated 3.0 Moved into 3.13

3.15 Verify that authenticated session tokens
using cookies are protected with the
"secure" attribute.

Updated 3.0 Moved into 3.13

4.2 Verify that users can only access secured
URLs for which they possess specific
authorization.

Updated 3.0 Rolled into 4.1

4.3 Verify that users can only access secured
data files for which they possess specific
authorization.

Updated 3.0 Rolled into 4.1

4.13 Verify that limitations on input and access
imposed by the business on the application
(such as daily transaction limits or
sequencing of tasks) cannot be bypassed.

Moved 3.0 Moved to V15 Business Logic

4.15 Verify that all code implementing or using
access controls is not affected by any
malicious code.

Moved 2.0 Moved to V13 Malicious
Controls

5.2 Verify that a positive validation pattern is
defined and applied to all input

Deprecated 2.0 Removed as too difficult to
implement particularly for
free form text inputs

5.4 Verify that a character set, such as UTF-8, is
specified for all sources of input

Deprecated 3.0 Removed as too difficult to
implement in most languages

5.7 Verify that all input validation failures are
logged.

Deprecated 3.0 Removed as would create too
many useless logs that would
be ignored

5.8 Verify that all input data is canonicalized
for all downstream decoders or
interpreters prior to validation.

Deprecated 3.0 Removed as Type 1 JSP
technology specific and not
an issue for most modern
frameworks

60 OWASP Application Security Verification Standard 3.0

Original

Description Status Remov
ed

Reason

5.9 Verify that all input validation controls are
not affected by any malicious code

Moved 2.0 Moved to V13 Malicious
controls

5.14 Verify that the runtime environment is not
susceptible to XML Injections or that
security controls prevents XML Injections

Merged 3.0 Merged with V5.13

5.15 -- EMPTY REQUIREMENT -- Deleted 3.0 This requirement never
existed

5.19 Verify that for each type of output
encoding/escaping performed by the
application, there is a single security control
for that type of output for the intended
destination

Merged 3.0 Genericized to include all
security controls and moved
to 1.10

7.1 Verify that all cryptographic functions used
to protect secrets from the application user
are implemented server side

Deprecated 3.0 Many modern responsive and
mobile apps include this by
design

7.3 Verify that access to any master secret(s) is
protected from unauthorized access (A
master secret is an application credential
stored as plaintext on disk that is used to
protect access to security configuration
information).

Moved 3.0 Moved to V2.29

7.4 Verify that password hashes are salted
when they are created

Moved 2.0 Moved to V2.13

7.5 Verify that cryptographic module failures
are logged

Deprecated 2.0 Creating unnecessary logs
that are never reviewed is
counterproductive

7.10 Verify that all code supporting or using a
cryptographic module is not affected by any
malicious code

Moved 2.0 Moved to V13

8.2 Verify that all error handling is performed
on trusted devices

 3.0 Deprecated

8.3 Verify that all logging controls are
implemented on the server.

Moved 3.0 Became a more generic
architectural control V1.13

OWASP Application Security Verification Standard 3.0 61

Original

Description Status Remov
ed

Reason

8.9 Verify that there is a single application-level
logging implementation that is used by the
software.

Moved 3.0 Became a more generic
architectural control V1.13

8.11 Verify that a log analysis tool is available
which allows the analyst to search for log
events based on combinations of search
criteria across all fields in the log record
format supported by this system.

Deprecated 3.0 Removed as not required for
secure software

8.12 Verify that all code implementing or using
error handling and logging controls is not
affected by any malicious code.

Moved 2.0 Moved to V13 Malicious
Controls

8.15 Verify that logging is performed before
executing the transaction. If logging was
unsuccessful (e.g. disk full, insufficient
permissions) the application fails safe. This
is for when integrity and non-repudiation
are a must.

Deprecated 3.0 Removed as too detailed a
control that would only be
applicable to small
percentage of all apps

10.2 Verify that failed TLS connections do not fall
back to an insecure HTTP connection

Merged 3.0 Merged with 10.3

10.7 Verify that all connections to external
systems that involve sensitive information
or functions use an account that has been
set up to have the minimum privileges
necessary for the application to function
properly

10.9 Verify that specific character encodings are
defined for all connections (e.g., UTF-8).

11.1 Deprecated

11.4 Deprecated

11.5 Deprecated

11.6 Deprecated

11.7 Deprecated

62 OWASP Application Security Verification Standard 3.0

Original

Description Status Remov
ed

Reason

11.8 Deprecated

11.4 Deprecated

13.1 Deprecated

13.2 Deprecated

13.3 Deprecated

13.4 Deprecated

13.5 Deprecated

13.6 Deprecated

13.7 Deprecated

13.8 Deprecated

13.9 Deprecated

15.1-
15.7
15.9

Business Logic Section. Merged 3.0 Most of section 15 has been
merged into 15.8 and 15.10.

15.11 Verify that the application covers off risks
associated with Spoofing, Tampering,
Repudiation, Information Disclosure, and
Elevation of privilege (STRIDE).

Duplicate 3.0 Duplicated requirement.
Captured by V1.6

16.4 Verify that parameters obtained from
untrusted sources are not used in
manipulating filenames, pathnames or any
file system object without first being
canonicalized and input validated to prevent
local file inclusion attacks.

Moved 3.0 Moved to V16.2

17.1 Verify that the client validates SSL
certificates

Deprecated 3.0 Duplicated requirement.
General requirement already
captured by V10.

OWASP Application Security Verification Standard 3.0 63

Original

Description Status Remov
ed

Reason

17.7 Deprecated

17.8 Deprecated

17.10 Deprecated

17.11 Deprecated

17.12 Deprecated

17.13 Deprecated

17.14 Deprecated

17.15 Deprecated

17.16 Deprecated

17.17 Deprecated

17.18 Deprecated

17.19 Deprecated

17.20 Deprecated

17.22 Deprecated

17.23 Deprecated

17.24 Deprecated

64 OWASP Application Security Verification Standard 3.0

Appendix B: Glossary

 Access Control – A means of restricting access to files, referenced functions, URLs,

and data based on the identity of users and/or groups to which they belong.

 Address Space Layout Randomization (ASLR) – A technique to help protect against

buffer overflow attacks.

 Application Security – Application-level security focuses on the analysis of

components that comprise the application layer of the Open Systems

Interconnection Reference Model (OSI Model), rather than focusing on for example

the underlying operating system or connected networks.

 Application Security Verification – The technical assessment of an application

against the OWASP ASVS.

 Application Security Verification Report – A report that documents the overall

results and supporting analysis produced by the verifier for a particular application.

 Authentication – The verification of the claimed identity of an application user.

 Automated Verification – The use of automated tools (either dynamic analysis tools,

static analysis tools, or both) that use vulnerability signatures to find problems.

 Back Doors – A type of malicious code that allows unauthorized access to an

application.

 Blacklist – A list of data or operations that are not permitted, for example a list of

characters that are not allowed as input.

 Cascading Style Sheets (CSS) - A style sheet language used for describing the

presentation semantics of document written in a markup language, such as HTML.

 Certificate Authority (CA) – An entity that issues digital certificates.

 Communication Security – The protection of application data when it is transmitted

between application components, between clients and servers, and between

external systems and the application.

 Component – a self-contained unit of code, with associated disk and network

interfaces that communicates with other components.

OWASP Application Security Verification Standard 3.0 65

 Cross-Site Scripting (XSS) – A security vulnerability typically found in web

applications allowing the injection of client-side scripts into content.

 Cryptographic module – Hardware, software, and/or firmware that implements

cryptographic algorithms and/or generates cryptographic keys.

 Denial of Service (DoS) Attacks – The flooding of an application with more requests

than it can handle.

 Design Verification – The technical assessment of the security architecture of an

application.

 Dynamic Verification – The use of automated tools that use vulnerability signatures

to find problems during the execution of an application.

 Easter Eggs – A type of malicious code that does not run until a specific user input

event occurs.

 External Systems – A server-side application or service that is not part of the

application.

 FIPS 140-2 – A standard that can be used as the basis for the verification of the

design and implementation of cryptographic modules

 Globally Unique Identifier (GUID) – a unique reference number used as an identifier

in software.

 HyperText Markup Language (HTML) - The main markup language for the creation

of web pages and other information displayed in a web browser.

 Hyper Text Transfer Protocol (HTTP) – An application protocol for distributed,

collaborative, hypermedia information systems. It is the foundation of data

communication for the World Wide Web.

 Input Validation – The canonicalization and validation of untrusted user input.

 Lightweight Directory Access Protocol (LDAP) – An application protocol for

accessing and maintaining distributed directory information services over a network.

 Malicious Code – Code introduced into an application during its development

unbeknownst to the application owner, which circumvents the application’s

intended security policy. Not the same as malware such as a virus or worm!

66 OWASP Application Security Verification Standard 3.0

 Malware – Executable code that is introduced into an application during runtime

without the knowledge of the application user or administrator.

 Open Web Application Security Project (OWASP) – The Open Web Application

Security Project (OWASP) is a worldwide free and open community focused on

improving the security of application software. Our mission is to make application

security "visible," so that people and organizations can make informed decisions

about application security risks. See: http://www.owasp.org/

 Output encoding – The canonicalization and validation of application output to Web

browsers and to external systems.

 Personally Identifiable Information (PII) - is information that can be used on its own

or with other information to identify, contact, or locate a single person, or to identify

an individual in context.

 Positive validation – See whitelist.

 Security Architecture – An abstraction of an application’s design that identifies and

describes where and how security controls are used, and also identifies and

describes the location and sensitivity of both user and application data.

 Security Configuration – The runtime configuration of an application that affects

how security controls are used.

 Security Control – A function or component that performs a security check (e.g. an

access control check) or when called results in a security effect (e.g. generating an

audit record).

 SQL Injection (SQLi) – A code injection technique used to attack data driven

applications, in which malicious SQL statements are inserted into an entry point.

 Static Verification – The use of automated tools that use vulnerability signatures to

find problems in application source code.

 Target of Verification (TOV) – If you are performing application security verification

according to the OWASP ASVS requirements, the verification will be of a particular

application. This application is called the “Target of Verification” or simply the TOV.

OWASP Application Security Verification Standard 3.0 67

 Threat Modeling - A technique consisting of developing increasingly refined security

architectures to identify threat agents, security zones, security controls, and

important technical and business assets.

 Transport Layer Security – Cryptographic protocols that provide communication

security over the Internet

 URI/URL/URL fragments – A Uniform Resource Identifier is a string of characters

used to identify a name or a web resource. A Uniform Resource Locator is often used

as a reference to a resource.

 User acceptance testing (UAT)– Traditionally a test environment that behaves like

the production environment where all software testing is performed before going

live.

 Verifier - The person or team that is reviewing an application against the OWASP

ASVS requirements.

 Whitelist – A list of permitted data or operations, for example a list of characters

that are allowed to perform input validation.

 XML – A markup language that defines a set of rules for encoding documents.

68 OWASP Application Security Verification Standard 3.0

Appendix C: References

The following OWASP projects are most likely to be useful to users/adopters of this
standard:

 OWASP Testing Guide

https://www.owasp.org/index.php/OWASP_Testing_Project

 OWASP Code Review Guide

http://www.owasp.org/index.php/Category:OWASP_Code_Review_Project

 OWASP Cheat Sheets

https://www.owasp.org/index.php/OWASP_Cheat_Sheet_Series

 OWASP Proactive Controls

https://www.owasp.org/index.php/OWASP_Proactive_Controls

 OWASP Top 10

https://www.owasp.org/index.php/Top_10_2013-Top_10

 OWASP Mobile Top 10

https://www.owasp.org/index.php/Projects/OWASP_Mobile_Security_Project_-

_Top_Ten_Mobile_Risks

Similarly, the following web sites are most likely to be useful to users/adopters of this
standard:

 MITRE Common Weakness Enumeration - http://cwe.mitre.org/

 PCI Security Standards Council - https://www.pcisecuritystandards.org

 PCI Data Security Standard (DSS) v3.0 Requirements and Security Assessment

Procedures https://www.pcisecuritystandards.org/documents/PCI_DSS_v3.pdf

https://www.owasp.org/index.php/OWASP_Testing_Project
http://www.owasp.org/index.php/Category:OWASP_Code_Review_Project
https://www.owasp.org/index.php/OWASP_Cheat_Sheet_Series
https://www.owasp.org/index.php/OWASP_Proactive_Controls
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Projects/OWASP_Mobile_Security_Project_-_Top_Ten_Mobile_Risks
https://www.owasp.org/index.php/Projects/OWASP_Mobile_Security_Project_-_Top_Ten_Mobile_Risks
http://cwe.mitre.org/
https://www.pcisecuritystandards.org/
https://www.pcisecuritystandards.org/documents/PCI_DSS_v3.pdf

OWASP Application Security Verification Standard 3.0 69

Appendix D: Standards Mappings

PCI DSS 6.5 is derived from the OWASP Top 10 2004/2007, with some recent process
extensions. The ASVS is a strict superset of the OWASP Top 10 2013 (154 items to 10 items),
so all of the issues covered by OWASP Top 10 and PCI DSS 6.5.x are handled by more fine
grained ASVS control requirements. For example, “Broken authentication and session
management” maps exactly to sections V2 Authentication and V3 Session Management.

Full mapping is achieved by verification level 3, although verification level 2 will address
most PCI DSS 6.5 requirements except 6.5.3 and 6.5.4. Process issues, such as PCI DSS 6.5.6,
are not covered by the ASVS.

PCI-DSS 3.0 ASVS 3.0 Description

6.5.1 Injection flaws, particularly
SQL injection. Also consider OS
Command Injection, LDAP and
XPath injection flaws as well as
other injection flaws

5.11, 5.12, 5.13, 8.14, 16.2 Exact mapping.

6.5.2 Buffer overflows 5.1 Exact mapping

6.5.3 Insecure cryptographic
storage

v7 - all Comprehensive mapping from
Level 1 up

6.5.4 Insecure communications v10 - all Comprehensive mapping from
Level 1 up

6.5.5 Improper error handling 3.6, 7.2, 8.1, 8.2 Exact mapping

6.5.7 Cross-site scripting (XSS) 5.16, 5.20, 5.21, 5.24, 5.25, 5.26,
5.27, 11.4,11.15

ASVS breaks down XSS into
several requirements highlighting
the complexity of XSS defense
especially for legacy applications

6.5.8 Improper Access Control
(such as insecure direct object
references, failure to restrict URL
access, directory traversal and
failure to restrict user access to
functions).

v4 - all Comprehensive mapping from
Level 1 up

70 OWASP Application Security Verification Standard 3.0

6.5.9 Cross-site request forgery
(CSRF).

4.13 Exact mapping. ASVS considers
CSRF defense to be an aspect of
access control.

6.5.10 Broken authentication and
session management.

v2 and v3 - all Comprehensive mapping from
Level 1 up

	Acknowledgements
	About the Standard
	Copyright and License
	Version 3.0, 2015
	Version 2.0, 2014
	Version 1.0, 2009

	Preface
	What’s new in 3.0?

	Using the Application Security Verification Standard
	Application Security Verification Levels
	How to use this standard
	Level 1: Opportunistic
	Level 2: Standard
	Level 3: Advanced

	Applying ASVS in Practice

	Case Studies
	Case Study 1: As a Security Testing Guide
	Case Study 2: As a secure SDLC

	Assessing software has achieved a verification level
	OWASP’s stance on ASVS Certifications and Trust Marks
	Guidance for certifying organizations
	The role of automated penetration testing tools
	The role of penetration testing
	As detailed security architecture guidance
	As a replacement for off the shelf secure coding checklists
	As a guide for automated unit and integration tests
	As secure development training

	OWASP Projects using ASVS
	Security Knowledge Framework
	OWASP Zed Attack Proxy
	OWASP Cornucopia

	Detailed Verification Requirements
	V1: Architecture, design and threat modelling
	Control objective
	Requirements
	References

	V2: Authentication Verification Requirements
	Control objective
	Requirements
	References

	V3: Session Management Verification Requirements
	Control objective
	Requirements
	References

	V4: Access Control Verification Requirements
	Control objective
	Requirements
	References

	V5: Malicious input handling verification requirements
	Control objective
	Requirements
	References

	V6: Output encoding / escaping
	V7: Cryptography at rest verification requirements
	Control objective
	Requirements
	References

	V8: Error handling and logging verification requirements
	Control objective
	Requirements
	References

	V9: Data protection verification requirements
	Control objective
	Requirements
	References

	V10: Communications security verification requirements
	Control objective
	Requirements
	References

	V11: HTTP security configuration verification requirements
	Control objective
	Requirements
	References

	V12: Security configuration verification requirements
	V13: Malicious controls verification requirements
	Control objective
	Requirements
	References

	V14: Internal security verification requirements
	V15: Business logic verification requirements
	Control objective
	Requirements
	References

	V16: Files and resources verification requirements
	Control objective
	Requirements
	References

	V17: Mobile verification requirements
	Control objective
	Requirements
	References

	V18: Web services verification requirements
	Control objective
	Requirements
	References

	V19. Configuration
	Control objective
	Requirements
	References

	Appendix A: What ever happened to…
	Appendix B: Glossary
	Appendix C: References
	Appendix D: Standards Mappings

