
Advanced Programming (I00032)

Type constructor classes and kinds

Assignment 2

Preparation

The skeleton uses the module StdMaybe, which is not part of the StdEnv. To include it in the
IDE select the environment Everything. You can also use StdEnv and manually add StdMaybe

from the directory {Application}\Libraries\StdLib. On the console on Linux or Mac
you can build with:

clm -IL ../lib/StdLib skeleton2

1 Type Constructor Classes

On Blackboard you find a skeleton that provides useful definitions for this assignment. In
the skeleton a type constructor class Container is defined:

class Container t where
Cinsert :: a (t a) → t a | < a

Ccontains :: a (t a) → Bool | <, Eq a

Cshow :: (t a) → [String] | toString a

Cnew :: t a

A container has elements of type a. There can be several implementations of Container

with one uniform interface. A simple implementation of the container is just an unsorted
list. A more advanced implementation is a binary search tree.

1. Give implementations of this container type constructor class for the list type [] and
the binary tree type Tree, provided in the skeleton.

2. Test the correctness of you implementations by evaluating expressions such as:

Start = (Ccontains 3 c, Cshow c) where c = ..

2 Kinds

Given the following type definitions:

:: IntList = Empty | ConsInt Int IntList

:: List a = Nil | Cons a (List a)
:: Tree a b = Leaf a | Node (Tree a b) b (Tree a b)
:: T1 a b = C11 (a b) | C12 b

:: T2 a b c = C2 (a (T1 b c))
:: T3 a b c = C3 (a b c)
:: T4 a b c = C4 (a (b c))

What is the kind of the following types: IntList, List, List IntList, Tree, T1, T2, T3, and T4?

1

3 Generic Printing

A generic based show function with continuations takes a value and a continuation, a list of
strings, and produces a list of strings containing the generic representation of that value.

show :: a → [String] | show_ a

show a = show_ a []

class show_ a where show_ :: a [String] → [String]

instance show_ Int where show_ i c = ["Int" : toString i : c]
instance show_ Bool where show_ b c = ["Bool" : toString b : c]
instance show_ UNIT where show_ _ c = ["UNIT" : c]

As discussed in the lecture, we extend the generic representation with constructor names.

:: CONS a = CONS String a

:: ListG a :==EITHER (CONS UNIT) (CONS (PAIR a [a])) // generic type for list

fromList :: [a] → ListG a

fromList [] = LEFT (CONS "Nil" UNIT)
fromList [a:as] = RIGHT (CONS "Cons" (PAIR a as))

Give the necessary instances of the class show_ in order to show the generic representation
of lists – [a] –, trees – Tree a –, and tuples – (a,b) –.

4 Generic Parsing

Define a generic parser that transforms the list of strings generated by show to the original
data type. The result of parsing is either Fail, or a Match with the result of parsing and
the remaining input.

:: Result a = Fail | Match a [String]
class parse a :: [String] → Result a

instance parse UNIT where
parse ["UNIT" : r] = Match UNIT r

parse _ = Fail

instance parse Int where
parse ["Int", i : r] = Match (toInt i) r

parse _ = Fail

Complete the class parse such that you are able to use it for elements of the types Int,
Bool, (a,b), [a], and (Tree a). Do this via the generic representation, e.g. the show for a list
transforms the list to type ListG using fromList. The corresponding parse function parses
the generic representation, ListG, and transforms the result to a list by toList.

Deadline

The deadline for this exercise is September 21, 13:30.

2

