
Advanced Programming (I00032)

Generic programming by overloading for different kinds

and Clean generics

Assignment 3

iTasks test

This is a preparation for the next assignment, to make sure that everyone has iTasks work-
ing and can work on the assignment next week. To setup iTasks follow the instruction in
<Clean Directory>/lib/iTasks-SDK/Installation/<OS version>/INSTALL.txt. Win-
dows user should use the 32-bit version! To test the installation copy iTasksTest.icl and
iTasksTest.prj to the same directory and compile either using the IDE or on the con-
sole: cpm iTasksTest.cpm. This should generate the executable test.exe and running
it should give:

*** test HTTP server ***

Running at http://localhost:8080/

Open this URL with a web browser. You should now get a message that you successfully
setup iTasks. If you cannot get it running, please send me a mail (s.michels@science.ru.nl).

Preparation

The skeletons use the module StdMaybe, which is not part of StdEnv, and skeleton3b.icl

also requires the generic extensions. To include it in the IDE select the environment
Everything. On the console on Linux or Mac you can build with:

clm -IL ../lib/StdLib -IL ../lib/Generics skeleton3b

1 Generic printing and parsing

Use skeleton3a for part 1 and 2 of this assignment. In this assignment we implement the
classes show and parse from the previous assignment based on generics with different classes
for each kind. Here we use the standard type Maybe,

:: Maybe a :==Nothing | Just a

instead of a tailor-made data type Result. The new result is:

:: Result a :==Maybe (a, [String])

In the new implementation you should use kinds as explained in the lecture. This implies
that you need a show_ and a parse for the kinds *, * → * and * → * → *. For kind * we
have

class show_0 a :: a [String] → [String]
class parse0 a :: [String] → Result a

1

1.1 With tags

Construct classes for show_ and parse for the other kinds that you need in generic program-
ming and define instances for the generic types (UNIT, PAIR, EITHER, and CONS). Implement
a version that uses tags: a tag is a string that indicates what (generic) constructor is
printed. This makes parsing easy: there is always a tag that tells what generic construc-
tor to expect. The expression [1] is shown as:

["RIGHT","CONS","Cons","PAIR","Int","1","LEFT","CONS","Nil","UNIT"]

Implement show_ and parse at least for the types Int, Bool, T, Color, Tree a, [a], and (a,b)

using generic programming.

:: T = C

:: Color = Red | Yellow | Blue

:: Tree a = Tip | Bin a (Tree a) (Tree a)

Test the correct behavior of your functions by evaluating

test :: t → Bool | eq0, show_0, parse0 t

test x

= case parse0 (show x) of
Just (y, []) = eq0 x y

_ = False

for some relevant expressions (e.g. Start = test [1..3] should yield True). Here we use the
new equality classes from the lecture. These classes are listed in the provided prelude.

1.2 Without tags

For the implementation of the parser it is quite convenient if all generic information is avail-
able. An ordinary user of the generic system is not interested in the generic information at
all. Change the implementation of part 1.1 in such a way that it works correctly without
the generic information. The expression [1] should now be shown as ["Cons","1","Nil"].

The only tricky instance is the parser for EITHER. Just try the parser for the left branch.
If it fails you should backtrack and use the parser for the right branch. It is sufficient to
hand in only the solution for the parser without tags.

2 Generic map

In the lecture slides you will find a generic map for various kinds. These definitions are also
listed in the skeleton.

• Use these definitions to map the factorial function over the expressions [1..10],
Bin 2 Tip (Bin 4 Tip Tip) and ([1..10] , Bin 2 Tip (Bin 4 Tip Tip)).

• Use the generic map to apply λi.(i,fac i) to all elements in the list [1..10].

3 Generic printing and parsing using Clean generics

Use skeleton3b for part 3 and 4. In this part of the assignment you use the built-in generics
of Clean to implement show_ and parse. Do not forget to set the environment of your project
to Everything. Just like in part 1.2, this version should not show generic constructs (like
LEFT and UNIT), and hence, parsing expects strings without such tags. Constructor with
arguments should be surrounded by parenthesis. Constructors without arguments should
not have parenthesis. The necessary information can be found in the GenericConsDescriptor

2

from StdGeneric. You can use it in a function definition after the of keyword within a
generic specializer:

show_{|CONS of {gcd_name, gcd_arity}|} . . .= . . .
Your parser should use the information provided by the generic system in the instance

for CONS to check whether the input contains the correct constructor name.
Test this implementation in a similar way as the previous show_ and parse.

4 Extra challenge

If you like some additional challenge you can implement a special case for of show_ and
parse for tuples. When you derive everything the expression (1,True) will be shown as
["(","_Tuple2","1","True",")"]. Change the generic show_ and parse such that this is shown
as ["(","1",",","True",")"] and that this list of strings is parsed correctly.

Deadline

The deadline for this exercise is September 28, 13:30h.

3

