
Advanced Programming (I00032)

iTasksLite

Assignment 6

Preparation

Please, use the provided .prj files, also if you work on the console. The clm tool will
not work, because some necessary modules make use of hirarchic module names (e.g.
Control.Monad), which are not suppoted by clm. So compile your code with:

cpm skeleton6a.prj

1 iTasksLite Using a Unique State

In this assignment you will implement a simplified version of the iTask system, using the
console for user interaction instead of webforms. We make use of the following state:

:: *TaskState = { console :: !*File

, store :: Map String Dynamic

}

As discussed during the lecture, the console is represented as a unique File. Additionally,
there is a store which is used to implement tasks for storing and retrieving values, similar
to the shared stores you have used to store a list of ideas in the previous assignment. You
do not have to care about how this store works as the following functions are provided in
the skeleton:

store_ :: a (StoreID a) (Map String Dynamic) → Map String Dynamic | TC a

retrieve_ :: (StoreID a) (Map String Dynamic) → a | TC a

However, if you are curious how the store works and are not familiar with Clean’s dynamics,
have a look at Chapter 8 of the language report (<clean home>/doc/CleanLangRep.2.2.pdf).
The type Map is a key-value store and in this case maps String identifiers of stores to the dy-
namic representation of their value (see <clean home>/lib/clean-platform/OS-Independent/Data/Map.dcl).

1.1 viewInformation

Implement the task viewInformation with the following type:

viewInformation :: Description a TaskState → TaskResult a | iTasksLite a

The Description type is just a synonym for strings:

:: Description :==String

The result of type TaskResult a contains the unique state discussed above and a result of
type a:

1

:: *TaskResult a :== (a, TaskState)

The class iTasksLite finally includes all classes neccessary for making the system work, in
the same way as the iTask class in the real iTask system:

class iTasksLite a | print a & parse a & TC a

The printing and parsing functions are used for user interaction on the console. Instances
for a few types are provided in the skeleton. Of course, it would be nicer to use generic
functions here, but printing/parsing are not the focus in this assignment and the sim-
ple implementations work well enough. For printing to the console you can use the <<<

operator, shown in the lecture.
With the implementation the first test task in the skeleton should work:

task1 :: (TaskState → TaskResult Int)
task1 = viewInformation "The answer is" 42

This should give something like:

Welcome to iTasksLite

The answer is: 42

The result of the task is 42.

Why is the type of task1 (TaskState → TaskResult Int) and not TaskState → TaskResult Int?

1.2 enterInformation

Implement enterInformation:

enterInformation :: Description TaskState → TaskResult a | iTasksLite a

In case the parser fails (yields Nothing), ask the user to provide a value again. Use freadline
to let the user input data.

The second test program should now work:

task2 :: TaskState → TaskResult Int

task2 st

(x, st) = enterInformation "Enter the answer" st

= viewInformation "The anser is" x st

The program should behave like this:

Welcome to iTasksLite

Enter the answer: there is none

Wrong format, try again.

Enter the answer: 42

The anser is: 42

The result of the task is 42.

2

1.3 store & retrieve

Implement the tasks to store and retrieve values from a store, using the provided
functions store_ and retrieve_:

store :: a (StoreID a) TaskState → TaskResult a | iTasksLite a

retrieve :: (StoreID a) TaskState → TaskResult a | iTasksLite a

The type StoreID a is actually just a string identifier, with an attached type, to indicate
which type of values can be stored:

:: StoreID a :==String

The type a is also called a phantom type, as no data of this type is actually contained.
Still such types can increase type safety.

Consider the following test program:

task3 :: TaskState → TaskResult Int

task3 st

(_, st) = store 1 intStore st

= retrieve intStore st

where
intStore :: StoreID Int

intStore = "intStore"

We define a store containing integers and use it to store and retrieve an integer. Running
the program should give:

Welcome to iTasksLite

The result of the task is 1.

Using such stores can cause runtime errors. Consider the following program:

task3Fail = retrieve intStore

where
intStore :: StoreID Int

intStore = "intStore"

This causes an error, as the store is empty and has therefore no value one can retrieve.
In retrieve_ the program is just ended using an abort. As you can see by looking at the
code, there is also another error message, for the case the type of the stored value does not
match the asked one. Write a task task3TypeFail that causes this error message.

Finally, test task4, which lets the user enter one idea after another and adds them to
a store:

task4 :: TaskState → TaskResult [Int]
task4 st

(_, st) = store [] ideaStore st

= addIdea st

where
addIdea st

(ideas, st) = retrieve ideaStore st

(_, st) = viewInformation "All ideas" ideas st

(idea, st) = enterInformation "Enter new idea" st

(_, st) = store (ideas ++ [toString (length ideas+1) +++". "+++idea]) ideaStore st

= addIdea st

3

ideaStore :: StoreID [String]
ideaStore = "ideas"

Remove the strictness annotation ! of the console field and run task4 again. What does
change and why?

2 iTasksLite Using a Monad

In the task definitions above, the state is visible. It can be hidden by using a task monad.
This allows task definitions similar to what you have seen before in iTasks. For instance
the last task can then be written like:

task4 :: Task Void

task4 =
store [] ideaStore

>>| addIdea

where
addIdea =

retrieve ideaStore

>>=λideas → viewInformation "All ideas" ideas

>>| enterInformation "Enter new idea"

>>=λidea → store (ideas ++ [toString (length ideas+1) +++". "+++idea]) ideaStore

>>| addIdea

ideaStore :: StoreID [String]
ideaStore = "ideas"

All test tasks from the first part are provided in this style in skeleton6b.icl.

2.1 The Task Monad

Define a type Task a that is suited to contain operations on the task state, similar
to the state monad shown in the lecture. Provide instances of Functor, Applicative

and Monad for this type. Note that this provides you also with >>=, >>| and return for
tasks. The task task0 should already work with a proper monad instance.

2.2 Task Implementations

Implement the tasks viewInformation, enterInformation, store and retrieve. For
instance, the type of viewInformation becomes:

viewInformation :: Description a → Task a | iTasksLite a

Test your implementation with task0 – task4. They should behave the same way as the
tasks in the first part of the assignment.

3 Bonus: Exceptions

Add the possibility to throw exceptions with the task:

throw :: Exception → Task a | iTasksLite a

Exceptions can just be strings:

4

:: Exception :==String

Implement a task for catching exceptions:

tryCatch :: (Task a) (Exception → Task a) → Task a | iTasksLite a

The second argument is only executed in case an exception occurs. Adapt also the retrieve
task, such that it does not crash using abort, but throws exceptions in case of errors.
Provide a small task that illustrates how exceptions are used.

Deadline

The deadline for this exercise is October 19, 13:30h.

5

