
Advanced Programming (I00032)

Deep Embedding of a DSL for Sets

Assignment 7

Preparation

The skeleton comes with a project file, you can use if you work on the console. In case
you use the IDE, please create a new project and choose the iTasks environment.

1 A DSL for Sets

In this exercise you will develop an evaluator for a special purpose language for sets. Using
iTasks expressions in this language can be created and evaluated. Runtime errors in the
evaluation should result in (somewhat) appropriate error messages.

1.1 Set Language

As explained in the lecture, in deep embeddings the language is represented by a family of
data structures. These data structures represent the abstract syntax tree of the language.
Usually they are a direct representation of the syntax. Our set language has expressions
of type Expression.

:: Expression

= New

| Insert Element Set

| Delete Element Set

| Variable Ident

| Union Set Set

| Difference Set Set

| Intersection Set Set

| Integer Int

| Size Set

| Oper Element Op Element

| (=.) infixl 2 Ident Expression

:: Op = +. | -. | *.

:: Set :==Expression

:: Element :==Expression

:: Ident :==String

The Expression type shows that there are two kind of values: integers and sets. The type
cannot be checked at compile time, but has to be encoded by the data structure. Define
a type Val, which contains either integers or sets of integers.

1.2 State

The state of the evaluator for expressions is a binding of variables to values. In contrast to
the state used in the lecture (which was just a function), the state used in this assignment

1

must be a data structure that can be easily inspected and changed. For instance, you can
use the Map type used in the previous assignment or a list of pairs of a name and a value.
Define a type (or synonym) State containing such binding.

1.3 State Manipulations

Define a type Sem a that can be used as a monad, used to transform the state defined above
and producing results. As runtime errors can occur, as in:

Insert New (Oper New +. (Union (Integer 7) (Size (Integer 9)))),

the result can also be an error with an error string. Note that in this assignment the result
will always be of type Val, but the monad class nevertheless requires a type parameter.

Define instances for Functor, Applicative and Monad for Sem. Implement further following
operations to store and read variable values:

store :: Ident Val → Sem Val

read :: Ident → Sem Val

Further, add a function throwing an error:

fail :: String → Sem a

This should be used in case of type-errors.

1.4 Evaluator

Implement the evaluator in monadic form:

eval :: Expression → Sem Val

assigning a semantics to expressions. Also you finally need a function to run the monad
on a given expression and state:

evalExpr :: Expression State → ?

2 Priting

Implement another view on expressions, which is a string representing it. Just choose
some syntax you find suited. Wrint the print function in continuation style. To efficiently
concatenate the list of strings together to a single string use:

’Text’.concat :: [String] → String

3 Simulation

Write a simulator for the language implemented above using the iTask system. The iTask
library uses a special monad class, so there are name clashes between the monad module
and the iTask library. To work around this in the skeleton, new names are introduced for
some iTask functions:

>>>= >>=

>>>| >>|

treturn return

So you can write for instance enterInformation "input" [] >>>= viewInformation "output" [] .
You can just use the combinators>>*, -||-, ||- and -||. If you need more constructs from
the iTask library, you can add them in the same way as:

2

ActionOk :== ’iTasks’.ActionOk

Write a simulator for the evaluation of expressions. The user should see an expression
that can be edited and evaluated (which updates the state) by a click on the button.
Furthermore, the user should get a view on the contents of the variable-value binding and
the result of the expression (or an error message). Also show a string representing the
expression, using your print-implementation of the previous part. Add the possibility to
reset the state to its initial value and the option to quit. You do not have to use shared
stores, it is fine that all views are updated when the user clicks a button.

Deadline

The deadline for this assignment is November 9, 13:30h.

3

