MIPRO 2019, May 20-24, 2019, Opatija Croatia

Multitasking on Microcontrollers using
Task Oriented Programming

Mart Lubbers, Pieter Koopman and Rinus Plasmeijer
Institute for Computing and Information Sciences
Radboud University
P.O. Box 9010, 6500 GL Nijmegen

Email: {mart, pieter,rinus}@cs.ru.nl

Abstract—Microcontroller Units (MCUs) are all around us
powering many of our so called smart devices. Most programs
running on MCUs are control applications performing multiple
jobs at the same time. Examples of these jobs are: blinking
a status LED, reading button states, talking to sensors or
communicating with the world. Often these jobs are dependent
on each other and require communication between them. Small
MCUs have no support for multiple threads, therefore the
programmer needs to manually interleave the tasks. The job
structure bears great similarities with tasks in Task Oriented
Programming (TOP). Tasks representing work that needs to be
done, can be interleaved and combined to form compound tasks.
The embedded Domain Specific Language (eDSL) mTask is a
TOP language that works on even the smallest of MCUs. This
paper explains how to write multi-task control applications for
MCUs using a TOP language such as mTask.

I. INTRODUCTION

Smart devices are all around us and they are often powered
by MCUs. They connect to the Internet of Things (IoT),
sense the environment and act thereupon. Most of these
computing devices are hidden in thermostats, smoke alarms,
doorknobs, wearables, light bulbs and other household items.
The MCUs powering them are cheap and energy efficient. As
a consequence, they are weak in terms of computing power. A
fair share of the programs for MCUs are control applications,
doing many things at the same time. It is very intuitive to
program these separate jobs as processes or threads. However,
the severe hardware restrictions disallow the use of a feature
rich OS. There are methods that allow for the specification of
light-weight threads but they come with the cost of flexibility
such as lack of local state or absence of possible dependencies
between jobs. Without the support for threads, the programmer
needs to divide all tasks in short pieces of work and manually
interleave them. This is an error prone process and results in
spaghetti code that is not very well maintainable.

TOP is a novel programming paradigm in which the basic
building blocks are tasks. Tasks represent observable work
that needs to be done by human beings or computer systems.
They function as lightweight communicating threads and can
be automatically interleaved because the work is inherently
divided up into small rewrite steps. A programming language
providing TOP for the web is iTasks [1], an eDSL hosted
in Clean [2]. Data can be safely shared between tasks using

Shared Data Sources (SDSs). Developing software using TOP
gives the programmer a high separation of concerns.

The mTask eDSL is a TOP language for MCUs [3]. The lan-
guage is shallowly embedded using class-based, or tagless [4],
embedding. As a result, it supports multiple independent
backends such as Arduino code generation, pretty printing,
symbolic simulation and bytecode generation. The hardware
requirements for mTask are very low which makes it suitable
for very small MCUs.

Research Contribution: In this paper we show that many
components in MCU development map directly on TOP com-
ponents. Furthermore, we show by means of a case study how
to write multithreaded control applications using a TOP lan-
guage. This shows that TOP yields concise and maintainable
MCU code. As a bonus it integrates well with TOP for the
web.

II. MICROCONTROLLER PROGRAMMING

This section shows some examples of traditional MCU
programming and reveals a problem. The code examples will
be given in the Arduino C++ dialect!.

A. Blink

The first program one writes when trying a novel pro-
gramming language often is the Hello World! program. Said
program is unusable for MCUs since they do not have screens.
Nevertheless, most MCUs do have a one-pixel screen, namely
an LED. In the blink program, an LED is turned on and off
repeatedly. Listing 1 shows a typical implementation of the
blink program that blinks the built-in LED, connected to the
digital General Purpose Input/Output (GPIO) pin 13 on the
Arduino UNO, every 500 milliseconds.

void setup () {
pinMode(13, OUIPUT);
}

void loop() {
digitalWrite(13, HIGH);
delay(500);
digitalWrite(13, LOW);
delay(500);

Listing 1. Blink in Arduino

Uhttps://www.arduino.cc

1587



An Arduino program requires two functions to be defined,
namely setup and loop. The setup function is executed
once at the boot of the device and usually contains code to
initialize the global state and setup the peripherals. In this
blink program the pin mode of the digital GPIO pin 13 is
set to output so that it is put in low-impedance state and that
it can provide substantial current. When the setup function
is finished, the loop function is continuously called. It first
sets the state of the digital pin to true, turning the LED on
to be followed by waiting 500 milliseconds. After that the
digital pin state is reverted to false just to wait another 500
milliseconds. Because the loop function is called continuously,
the LED is blinking.

B. Threaded Blinking

Now say that we want to blink multiple blinking patterns on
different LEDs concurrently. For example, blink three LEDs
connected to pins 1,2 and 3 at intervals of 500, 300 and 800
milliseconds. Intuitively you want to lift the blinking behaviour
to a function and call this function three times with different
parameters as done in Listing 2

wvoidsetup () { ... }

voidblink @nt pin int wait) {
digitalWrite(pin HIGH);
delay (wait) ;
digitalWrite@in LOW);
delay (wait) ;

}

wvoid loop() {
blink (1, 500);
blink (2, 300);
blink (3, 800);

Listing 2. Naive approach to multiple blinking patterns in Arduino

Unfortunately, this does not work because the delay func-
tion blocks all further execution. The resulting program will
blink the LEDs after each other instead of at the same time. To
overcome this, it is necessary to slice up the blinking behaviour
in very small fragments so it can be manually interleaved [5].
Listing 3 shows how three different blinking patterns might
be achieved in Arduino using the slicing method. If we want
the blink function to be a separate parametrizable function
we need to explicitly provide all references to the required
state. Furthermore, the delay function can not be used and
polling millis is required. The millis function returns the
number of milliseconds that have passed since the boot of the
MCU. Some devices use very little energy when in delay
or sleep state. Resulting in millis potentially affects power
consumption since the processor is basically busy looping
all the time. In the simple case of blinking three LEDs on
fixed intervals, it might be possible to calculate the delays
in advance using static analysis and generate the appropriate
delay code. Unfortunately, this is very hard when for example
the blinking patterns are determined at runtime.

long ledl = 0, led2 = 0, led3 =0;
bool stl = false st2 = falseg st3 = false;

voidblink@nt pin int delay, long *lastrur bool xst) {
if (illis() — *lastrun > delay) {
digitalWrite(@in =xst = !xst);
*«lastrun += delay;

}

wvoid loop() {

blink(1l, 500, &ledl, &stl);
blink(2, 300, &led?, &stl);
blink(3, 800, &led3 &stl);

Listing 3. Threading three blinking patterns in Arduino

This method is very error prone, requires a lot of pointer
juggling and generally results into spaghetti code. Further-
more, it is very difficult to represent dependencies between
threads, often state machines have to be explicitly programmed
by hand to achieve this.

III. TASK ORIENTED PROGRAMMING

TOP is a novel flavour of declarative and functional pro-
gramming that describes work as tasks. In TOP, tasks repre-
sents an actual piece of observable work. The observability
implies from the fact that other tasks can view the fask value
of the task in progress. Tasks are modelled as stateful rewrite
engines. Single rewrite steps are very small and tasks can
therefore be interleaved. Events triggering a rewrite can be
anything ranging from user input, clocks or an event within the
host system such as a peripheral. Tasks can be represented as
trees that consist of basic or leaf tasks (e.g. reading input) and
combinators, (e.g. a combinator running two tasks in parallel).

Every task emits a three state task value on every rewrite
step representing either no value, an unstable value or a stable
value. No value means that the task is unable to emit a
complete value. E.g. a serial port without data. Unstable values
represent complete values that may change in the future. These
values in a basic task often represent a side effect. An example
of a task emitting an unstable value is the task for reading an
analog pin. A stable value never changes, often found in a
finished side effect such as a finalized web form. Not all state
transitions are legal, Figure 1 shows the state diagram.

/—\
NoValue «—— Unstable — Stable
Figure 1. State diagram for the legal transitions of task values

Tasks share data via their task values or via SDSs. SDSs
form a read/write abstraction on, possibly impure, data. In
iTasks there are SDSs for files, time, random data, database
tables but also SDSs to provide introspection on the system
such as for the list of running tasks. Tasks can register or watch
an SDS, subscribing to events for the SDS. When the SDS is
written to, the registered task is triggered for a rewrite. As well
as tasks, SDSs can be transformed with SDS combinators and
transformers.

1588



IV. MTASK

The mTask eDSL is a TOP language for MCUs [3]. It
is shallowly embedded using a class-based, or tagless [4],
embedding. The technique allows for multiple independent
backends such as Arduino code generation, pretty printing,
symbolic simulation and bytecode generation.

All constructs in mTask are expressed as type classes. A
backend in mTask, e.g. a pretty printer for printing the code,
is a type implementing some of the type classes. Adding
functionality does not interfere with existing backends and is
as easy as defining a new class and implement it with some
backends. Analogously, adding a backend does not interfere
with existing functionality, a new backend is just a new type
implementing some of the classes. The eDSL functions are
often the same function as in the original host language and
therefore a disambiguating name is required. This is done by
postfixing the function with a full stop. For example, addition
in mTask is named +. to not clash with the existing + function
in the host language.

An mTask program is always of the form MTask v t where
v is the backend and t is the type of the task. Not all
types are suitable for MCUs. Therefore, many eDSL functions
have class constraints on the type of the task or expression.
Amongst other things, these constraints restrict the use of
functions as values, recursive data, make sure serialization
is possible. Listing 4 shows an example function in mTask
that does include this constraint together with some expression
examples.

class arith v where
lit ::t - vt | typet
(+.) 2 (vt) (vt) = vt |typet &+t &zerot

fourtytwo = 1it 37 +. 1it 5

factorial =
fun AMfac=Ax—If (x =. 1lit 0) (it 1) (x . fac (x —. lit 1)))
In {main=fac (1it 5))}

Listing 4. Arithmetic function with class constraints

The mTask eDSL contains constructs for expressions, func-
tions and tasks. All functions are defined on the top level,
cannot be used in a curried fashion and are strict in their
arguments. Functions can be defined recursively and full tail-
call optimization is available. The : :
a} is used to enforce the top-level definition restriction. To
safeguard for curried use, the arguments are always repre-
sented as tuples instead of higher-arity host functions. For task
support, mTask has basic tasks and task combinators. They
will be explained on demand with the examples. All details
regarding the exact types and the actual class definitions can
be found in the repository?.

Main a = {main

A. Translating the Blink Program to mTask

Tasks are represented as trees and rewrite on every event that
interests them. Nodes in this tree are called task combinators

Zhttps://gitlab.science.ru.nl/mlubbers/mtask/tags/4cows 18

and leafs are called basic tasks. Rewriting is always done
recursively, starting from the root node down to all the leafs.
Since delays, and all other tasks, are non blocking, rewrite
steps are quick. Different branches of the task tree executed
are therefore highly interleaved.

While counter intuitive and not very maintainable, it is
possible to literally translate the blink program to mTask as
is done in Listing 5. This arises from the fact that most
Arduino functions have a similar mTask counterpart. For
example, sequencing tasks is done with the >>| . combinator.
It first executes the left-hand side and when that side is
stable, executes rewrites to the right-hand side. Nonetheless,
the semantics of the translated program are very much different
because of the different execution model. For instance, there
is no notion of setup or loop code in mTask. loop like
functionality can be simulated using the ever function. This
task will rewrite the argument task until it is stable and when it
is, it will start all over again with the original task. The ever
function is just a regular task and therefore multiple loops
can be simulated with ease.

blink :: MIask v ()
blink = fmain=ever (
delay (Lit 500)
>>| . writeD D13 (lit True)
>>|. delay (1it 500)
>>| . writeD D13 (1it True)
)}

Listing 5. A literal mTask translation of blink

B. Threaded Blinking

The delay task does not block the execution but just
emits no value when the target waiting time has not yet
passed and emits a stable value when the time is met. In
contrast, the delay function on the Arduino is blocking which
prohibits interleaving. To make code reuse possible and make
the implementation more intuitive, the blinking behaviour is
lifted to a recursive function instead of using the imperative
ever construct. The function is parametrized with the current
state, the pin to blink and the waiting time. Creating recursive
functions like this is not possible in the Arduino language
because the program would run out of stack in an instant and
nothing can be interleaved. With a parallel combinator, tasks
can be executed in an interleaved fashion. Therefore, blinking
three different blinking patterns is as simple as combining the
three calls to the blink function with their arguments as seen
in Listing 6.

thlink :: Mlask v ()
thlink = fun Ablink=(Q\ (st, pin wait) —
delay wait
>>|. writeD d13 st
>>|. blink (Not st, pin, wait
{fmain = blink (1it True, D1, 1lit 500
.1 blink (1it True D2, 1it 300
.||.blink (1it Trusg D3, 1it 800

) In

Listing 6. Threaded blinking in mTask

1589



C. Combinators

In the examples, tasks are sequenced using the >>|.
combinator. Introduced above, the >>|. combinator is a
specialization of the step combinator (>>«.), the Swiss army
knife of sequential combination (Listing 7). The right hand
side is observing the task value of the left hand side. The
value produced by the task on the left-hand side is matched
against the continuations (: : Step) on the right-hand side. If
a predicate matches, the task steps and rewrites to the task in
the matched predicate.

The >>=. combinator is a specialization of the >>x.
combinator and is similar to the monadic bind. If the left hand
side is stable, it feeds the value to the function on the right
hand side and rewrites to the resulting task. >>|. is similar
but does not use the argument, i.e. monadic sequence.

(>>+.) infixl 1 :: Mlfask v t) [Stepv t u] — Mlask v u
::Stepvtu
= IfValue ((vt) — v Bool)
| ...
| Always (MTask v u)

((vt) — Mlask v u)

>>=.) 1 r=1>%*. [IfValue A\ _—lit True) r]
>, 1 r=1>=. [IfValue \_—lit True) \_—r]
stepExample = readA A3

>>% [IfValue (\x—x >. 1it 100) Ax—writeA A4 (x /. 2)]

Listing 7. Sequential task combination

There are two combinators in mTask to achieve parallel
execution of tasks. Disjunction (. | | .), first rewrites the left
hand side and then the right hand side. Conjunction (. &s&.),
also combines two tasks but also combines the values into
a tuple meaning that both sides must have a value. The
stability is determined by the disjunction and conjunction
respectively of the stability of the arguments. Since blink is
not terminating, the behaviour of . ||. and .&&. is identical
in Listing 6.

D. Shared Data Sources

As of now, mTask supports SDSs representing global, well-
typed variables but no SDS specific combinators or trans-
formers yet. These SDSs may represent iTasks SDSs that are
automatically synchronized with the server. SDSs are used
to share data between tasks having no sequential relation.
Listing 8 contains an example of a blink program for which
the delay can be set using a button. It first defines an SDS
containing the current blinking interval. This is followed by
a modified blink function that first reads the number of
milliseconds it needs to wait from the SDS before actually
blinking. Two tasks run in parallel, the first task is the blinking
itself. The second task is constantly checking the button state
using the pressed task. If a button is pressed, the SDS
containing the increment is updated.

sblink =
sds Alag=500 In
fun Xolink=Q\ (st, pin)—
getSds lag

>>=, dwait—delay wait

>>| . writeD d13 st

>>|. blink (Mot st, pin)) In

{fmain = blink (1it True D13)
. ever (
pressed ucButton  >>x [IfValue id (rtrn (Lit 100))]
. |'|. pressed downButton >>+ [IfValue id (rtrn (1it —100))
(SN ]

>>=. AMincr—getSds lag
>>=, \oint—setSds lag (oint +. incr))}

Listing 8. SDSs interface

V. THERMOSTAT

As a case study, this section will describe the development
of a thermostat in mTask. The proposed thermostat has multi-
ple jobs to take care of at the same time, namely the viewer,
heater and updater. The viewer will read the temperature
from the connected Digital Humidity and Temperature sensor
(DHT) and show it on the connected LCD. The heater checks
if the temperature is meeting the goal temperature. If the
temperature is lower than the goal temperature, the heater turns
on and conversely if the temperature is higher. The heating unit
is connected via a relay to digital pin 0. The updater checks
whether the up or down button is pressed and changes the goal
temperature accordingly.

A. Defining the SDSs and Peripherals

An mTask program always starts with the global definitions
such as peripherals, SDSs and functions. This preamble shows
similarities with the setup function in Arduino but is com-
pletely declarative. There are two peripherals connected to the
MCU, namely the LCD and the DHT. They are defined with
a similar technique as SDSs are declared using host language
lambdas so that they are used in a type-safe way. With the
dht function, the DHT is declared, being connected to digital
GPIO pin 1. The 2 x 16 character LCD is defined after that
using the 1cd function connected to the standard pins. There
are two data sources that need to be shared between tasks and
are represented as SDS. The current temperature (temp) and
the target temperature (goal). Both SDSs store values of type
Int and represent the temperature in degrees Celcius.
themostat :: Main MIask v ())
thermostat =

DHT D1 DHT22 Adht—

D162 [] Alcd>

sds Atemp=0 In
sds Agoal=20 In

B. The Main Tasks

The main program is divided into four tasks that are
connected using the parallel disjunction operator. The tasks
very closely match the jobs that were described. All tasks are
created using (recursive) functions to either have a reuse of
code or to keep an intermediate state.

fun Aviewer=( ... ) In
fun Aheater=( ... ) In
fun Aupdate=( ... ) In

1590



viewer (Lit 0)
. heater (lit False)
. ever (update (lit UpButton 1lit 1))
. ever (uodate (lit DownButton 1lit -1))}

Listing 9. Thermostat main tasks

C. Viewer

The viewer reads the temperature and communicates that to
the user using the LCD. The viewer function is parametrized
with the old temperature, which is 0 on the first call. The
task it generates first reads the temperature from the DHT
using the temperature task. This task reads the temperature
continuously and emits it as an unstable task value. The
>>x. combinator is used to only continue execution when
the temperature is not the same as the old temperature. This
makes sure the LCD and SDS are not continuously written.
When the >>*. steps, the temp SDS is set and the value is
written to the LCD. Finally a recursive call to itself is done
with the new temperature so that it will continuously execute.

fun Aviewer=(

Aoldtemp—temperature dht
>>x. [IfValue At—t !=. oldtenmp) (setSds temp)]

>>=. Antenp—printAt led (1it 0) (1it 0) ntemp
>>| . viewer ntemp) In

Listing 10. Measure and show the temperature

D. Heater

The second job is the control of the heater and this is written
as a single task that calls the heater function. This function
takes the current state as an argument and is initialized with
the off state. It reads the temp and goal SDSs in conjunction
instead of in sequence to make sure the latest values are always
checked. If the temperature is over the goal and the heater is
turned on, the heater is turned off. If the temperature is under
the goal and the heater is off, the heater is turned on. After
the step, the heater function is called recursively with the
new heater state so that it will run forever.

fun Aheater=(
Aon—getSds temp .&&. getSds goal
>>x. [IfValue (tup A (temy goal) —temp >. goal &. on)
A_—writeD d0 false
,IfValue (tup \ (temp goal) —temp <. goal &. Not on)

A\_—writeD dO truel
>>=. Anst—heater nst) In

Listing 11. Control of the heater

E. Update

The third and last job is controlling the goal temperature
and this is split up in two tasks that are both built using the
update function. This task is lifted to a function solely to be
reused with different arguments. The update function checks
whether a button is pressed using the pressed task. This task
returns an unstable Bool value representing the button state.
If the given button is pressed, the goal SDS is updated with
the given value. This step value is either 1 for the up button
or —1 for the down button. There is no recursive call which
means that the function only executes once. To make sure the
buttons are always checked, the task is wrapped in an ever.

fun Aupdate=(
A (outton, step) —pressed button
>>k . [IfValue id A_—getSds goal]
>>=, Anv—setSds goal (v +. step)
>>=. A\nvoprintAt led (1it 1) (it 0)) nv In
viewer (lit 0)
.||. heater (lit False)
.||.ever (update (lit UpButton 1it 1))
.||.ever (update (1it DownButton lit -1))}

Listing 12. Monitoring the buttons

VI. INTEGRATION WITH AN ITASKS SERVER

Another strong point of the TOP approach is that the
thermostat is programmed using an abstraction that also works
for other domains. The iTasks framework is a TOP implemen-
tation for collaborative web applications and supports seamless
integration with mTask [6]. SDSs can be shared between
iTasks and mTask and mTask tasks can be lifted to iTasks
tasks. Therefore, creating a web interface to set and view the
thermostat can be done just by changing a few lines of code.
The resulting program will show a web interface in which the
user can change the target temperature and view the current
temperature (Figure 2).

themmostat :: (Shared Int) (Shared Int) — Main MTask v ())
thermmostat tempref goalref =

1iftsds Atemp=tarpref In
1iftsds Agoal=goalref In

webThermostat :: Task Int
webThermostat =
withShared 0 Atemp—
withShared 20 Agoal—
withDevice {ITYSettings | defaultValue
& devicePath = "/dev/ttyUSB0", baudrate = B115200} Adev—
liftnTask dev (thermostat temp goal)
—| |- viewSharedInformation '"Tenmperature” [] temp
—| |- updateSharedInformation "Target” [1 goal

Listing 13. Integration with iTasks

Temperature
18

Target

20

Continue

Figure 2. Thermostat web interface

VII. RELATED WORK
A. Functional Programming on Microcontrollers

Pure lazy functional programming is seldom used on MCUs
because it has high memory requirements. Nevertheless, mi-
croscheme is a subset of scheme that offers a compiler for even
the smallest of the Arduino family [7]. It does not support
multithreading however. Functional Reactive Programming
(FRP) [8] shows similarities with TOP and Juniper offers
FRP for MCUs [9]. In FRP there are behaviours and events.
Behaviours are declarative descriptions that hold on time and
can reason over time. Events can come from within the system

1591



but can also be predicates on behaviours. TOP differs from
FRP in the sense that tasks are not modelled explicitly after
time but after progress.

B. EDSLs for Microcontrollers

In the eDSL field there are many solutions for providing
a higher level of abstraction for programming MCUs. Grebe
et al. created Haskino, a remote monad in Haskell executing
imperative code on the Arduino [10]. It differs from mTask
in the sense that the threads are imperative and have their
own stack and thread-safe communication between them has
to be done explicitly. In mTask the expressions are not
interleaved, only the tasks are and therefore all communication
is automatically safe because of the SDS semantics. Ivory is
an eDSL written in a functional language that provides a safe
C interface to program embedded systems [11]. It does not
support threading.

C. Multi-threading on MCUs

Threading on MCUs is approached in multiple ways rang-
ing in flexibility and memory requirements. Protothreads are
stackless threads that provide an abstraction over state machine
processes for sensor networks and can be interleaved [12].
Protothreads are similar to tasks in the sense that they can
be interleaved but differ in the sense that they are imperative
programs and share their stack with other threads but therefore
cannot have local variables. Moreover, they must always be
defined within the same function. There are also more general
solutions available for doing multiple things at the same time
on MCUs that generally do not work anymore on the very
small ones. TinyOS is an OS designed for sensor systems
that compiles to a static firmware for MCUs [13]. Threads
in TinyOS differ from tasks in the sense that they are im-
perative and event driven using explicit atomicity annotations.
Other solutions use a full-fledged Real-time Operating System
(RTOS) such as ChibiOS, mbed or RTOS that just do not run
on small MCUs. For example, QDuino that builds on the Quest
kernel [14] or RT-Arduino, the Arduino extension offering an
interface to the RTOS provided by the Erika kernel [15]. All
these solutions have real threads and therefore require much
faster MCUs than required for mTask.

D. Future Work

Stutterheim et al. described Task Oriented Software Devel-
opment as an approach for developing TOP/iTasks applications
in the multi-user web application domain [16]. The extension
of mTask for integration with iTasks servers was hinted at
in Section VI. This extension allows all layers of IoT to be
programmed in one abstraction level, namely TOP. Different
layers in TOP for web development match different stakes in
software development. It might be the case that this holds for
the MCU domain or both domains at the same time as well.

Gay et al. described how to implement several design
patterns from Object Oriented Programming in TinyOS [17]. It
would be interesting to see whether some of the design patterns
have a dual in Functional and Task Oriented Programming as
well by implementing them in mTask.

VIII. CONCLUSION

Creating multi tasking applications on MCUs is difficult
with conventional means. The solutions either limits the flexi-
bility or require much faster hardware. In TOP, tasks provide
an abstraction on work that needs to be done. Task can be
executed in parallel since they are automatically divided in
atomic rewrite steps. The case study supports that creating
multi-tasking applications for MCUs is very intuitive using a
TOP language such as mTask. There is a high separation of
concerns due to the fact that data, peripherals and tasks are
modelled independently. The jobs that need to be done can of-
ten be literally translated to mTask tasks such that the program
is very close to the design. Moreover, the seamless integration
with iTasks allows entire systems to be programmed from one
abstraction level.

REFERENCES

[1] R. Plasmeijer, P. Achten, and P. Koopman, “iTasks: executable specifi-
cations of interactive work flow systems for the web,” ACM SIGPLAN
Notices, vol. 42, no. 9, pp. 141-152, 2007.

R. Plasmeijer, M. van Eekelen, and J. van Groningen, “Clean

language report version 2.2 (2011),” 2011. [Online]. Available:

https://clean.cs.ru.nl/download/doc/CleanLangRep.2.2.pdf

[3] P. Koopman, M. Lubbers, and R. Plasmeijer, “A Task-Based DSL for
Microcomputers,” in Proceedings of the Real World Domain Specific
Languages Workshop 2018.  ACM Press, 2018, pp. 1-11.

[4] J. Carette, O. Kiselyov, and C. c. Shan, “Finally tagless, partially

evaluated: Tagless staged interpreters for simpler typed languages,”

Journal of Functional Programming, vol. 19, no. 5, pp. 509-543, 2009.

L. Feijs, “Multi-tasking and Arduino: why and how?” Design and

semantics of form and movement, vol. 119, 2013.

[6] M. Lubbers, P. Koopman, and P. Rinus, “Task oriented programming
and the internet of things,” in Proceedings of the 30th Symposium on
Implementation and Application of Functional Programming Languages.
ACM, 2018, p. 12.

[7]1 R. Suchocki and S. Kalvala, “Microscheme: Functional programming for
the Arduino,” in 2014 SCHEME AND FUNCTIONAL PROGRAMMING
WORKSHOP, 2015.

[2

—_

[5

[t}

[8] C. Elliott and P. Hudak, “Functional reactive animation,” in ACM
SIGPLAN Notices, vol. 32.  ACM, 1997, pp. 263-273.
[9] C. Helbling and S. Z. Guyer, “Juniper: a functional reactive program-

ming language for the Arduino,” in Proceedings of the 4th International
Workshop on Functional Art, Music, Modelling, and Design. ~ACM,
2016, pp. 8-16.

[10] M. Grebe and A. Gill, “Threading the arduino with haskell,” in Post-
Proceedings of Trends in Functional Programming, 2017.

[11] T. Elliott, L. Pike, S. Winwood, P. Hickey, J. Bielman, J. Sharp,
E. Seidel, and J. Launchbury, “Guilt free ivory,” in ACM SIGPLAN
Notices, vol. 50. ACM, 2015, pp. 189-200.

[12] A. Dunkels, O. Schmidt, and T. Voigt, “Using protothreads for sensor
node programming,” in Proceedings of the REALWSN, vol. 5, 2005.

[13] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo,
D. Gay, J. Hill, M. Welsh, E. Brewer e al., “Tinyos: An operating
system for sensor networks,” in Ambient intelligence. Springer, 2005,
pp. 115-148.

[14] Z. Cheng, Y. Li, and R. West, “Qduino: A multithreaded arduino
system for embedded computing,” in Real-Time Systems Symposium,
2015 IEEE. 1EEE, 2015, pp. 261-272.

[15] P. Buonocunto, A. Biondi, and P. Lorefice, “Real-time multitasking in
Arduino,” in Proceedings of the 9th IEEE International Symposium on
Industrial Embedded Systems (SIES 2014). Pisa: IEEE, Jun. 2014, pp.
1-4.

[16] J. Stutterheim, P. Achten, and R. Plasmeijer, “Maintaining Separation
of Concerns Through Task Oriented Software Development,” in Trends
in Functional Programming, M. Wang and S. Owens, Eds. Cham:
Springer International Publishing, 2018, vol. 10788, pp. 19-38.

[17] D. Gay, P. Levis, and D. Culler, “Software design patterns for TinyOS,”
ACM SIGPLAN Notices, vol. 40, no. 7, pp. 40-49, 2005.

1592



