
Orchestrating the Internet of Things
with Task-Oriented Programming

a purely functional rhapsody

Proefschrift

ter verkrijging van de graad van doctor
aan de Radboud Universiteit Nijmegen

op gezag van de rector magnificus prof. dr. J.H.J.M. van Krieken,
volgens besluit van het college van decanen

in het openbaar te verdedigen

op
om 12:00 uur precies

door

Mart Lubbers
geboren op 27 mei 1992 te Oldenzaal, Nederland



Promotor:
prof. dr. dr.h.c. ir. M.J. (Rinus) Plasmeijer

Copromotoren:
dr. P.W.M. (Pieter) Koopman
dr. J.M. (Jan Martin) Jansen (Nederlandse Defensie Academie)

Manuscriptcommissie:
prof. dr. S.-B. (Sven-Bodo) Scholz
prof. dr. G.K. (Gabrielle) Keller (Universiteit Utrecht)
prof. dr. M. (Mary) Sheeran (Chalmers Tekniska Högskola)

This research was partly funded by the Royal Netherlands Navy.

Typeset using LATEX 2ε

ISBN:

Copyright © Mart Lubbers, 2023

martlubbers.net

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 In-
ternational License. To view a copy of this license, visit http://creativecommons.org/
licenses/by-nd/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain
View, CA 94042, USA.

https://martlubbers.net
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/


iii

The world is indeed comic, but the
joke is on mankind.

H.P. (Howard) Lovecraft

Рукописи не горят.
(Manuscripts don’t burn.)

М.А. (Михаил) Булгаков
(M.A. (Mikhail) Bulgakov)

You start a question, and it’s like
starting a stone. You sit quietly on
the top of a hill; and away the
stone goes, starting others; . . .

R.L. (Robert) Stevenson

I never thought, when I used to
read books, what work it was to
write them. . . It’s work enough to
read them sometimes. . . As to the
writing, it has its own charms.

C.J.H. (Charles) Dickens

als ik dan van al dat schrijven
toch wel erg ben afgemat
ga ik lekker zitten lezen
o, wat heerlijk lijkt mij dat

H.M. (Dick) Bruna



iv



Contents

1 Prelude 1
1.1 Reading guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Internet of things . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Domain-specific languages . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Task-oriented programming . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

I Étude — Domain-Specific Languages 15

2 Deep embedding with class 17
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Deep embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Shallow embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Lifting the interpretations . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 Existential data types . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.6 Transformation semantics . . . . . . . . . . . . . . . . . . . . . . . 25
2.7 Generalised algebraic data types . . . . . . . . . . . . . . . . . . . 28
2.8 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.A Reprise: reducing boilerplate . . . . . . . . . . . . . . . . . . . . . 33
2.B Data types and definitions . . . . . . . . . . . . . . . . . . . . . . . 36

3 First-class data types in shallow embedded domain-specific lan-
guages using metaprogramming 39
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Tagless-final embedding . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3 Template metaprogramming . . . . . . . . . . . . . . . . . . . . . . 44
3.4 Metaprogramming for generating DSL functions . . . . . . . . . . 46
3.5 Pattern matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.6 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59



vi CONTENTS

II Orchestrating the Internet of Things using Task-Orien-
ted Programming 61

4 An introduction to edge device programming 63
4.1 TOP for the IoT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2 Hello world! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3 Multitasking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4 Conclusion and reading guide . . . . . . . . . . . . . . . . . . . . . 68

5 The mTask language 71
5.1 Class-based shallow embedding . . . . . . . . . . . . . . . . . . . . 72
5.2 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.3 Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.4 Tasks and task combinators . . . . . . . . . . . . . . . . . . . . . . 78
5.5 Interpretations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6 The integration of mTask and iTask 87
6.1 Connecting edge devices . . . . . . . . . . . . . . . . . . . . . . . . 88
6.2 Lifting mTask tasks . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.3 Lowering iTask shared data sources . . . . . . . . . . . . . . . . . . 91
6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.5 Home automation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7 The implementation of mTask 97
7.1 Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.2 Compilation rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.3 Run-time system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.4 C code generation for communication . . . . . . . . . . . . . . . . 112
7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

8 Green computing with mTask 115
8.1 Green IoT computing . . . . . . . . . . . . . . . . . . . . . . . . . . 116
8.2 Rewrite interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
8.3 Task scheduling in the mTask engine . . . . . . . . . . . . . . . . . 122
8.4 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
8.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

9 Finale 129
9.1 Finale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
9.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
9.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
9.4 History of mTask . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136



CONTENTS vii

III Tiered versus Tierless Programming 139

10 Could tierless languages reduce IoT development grief? 141
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
10.2 Background and related work . . . . . . . . . . . . . . . . . . . . . 144
10.3 Tierless languages . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
10.4 Task-oriented and IoT programming in Clean . . . . . . . . . . . . 151
10.5 UoG smart campus case study . . . . . . . . . . . . . . . . . . . . 160
10.6 Is tierless IoT programming easier than tiered? . . . . . . . . . . . 164
10.7 Could tierless IoT programming be more reliable than tiered? . . . 171
10.8 Comparing tierless languages for resource-rich/constrained sensor

nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
10.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

11 Coda 181
11.1 Reflections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

Appendix 183

A Clean for Haskell programmers 185
A.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
A.2 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

B Auxiliary mTask type classes 193
B.1 Peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

C Bytecode instruction set 197

Bibliography 201

Summary 215

Samenvatting 217

Acknowledgements 219

Research data management 221

Curriculum Vitæ 223

Glossary 225



viii CONTENTS



CONTENTS ix

voor Roos, Lotte en Elvira



x CONTENTS



1

Chapter 1

Prelude

This chapter introduces the dissertation by providing:
• a general introduction to the topics and research directions;
• a reading guide;
• background material on the internet of things, domain-specific

languages, task-oriented programming, iTask, and mTask;
• and a detailed overview of the scientific contributions of this

dissertation.

This dissertation is about orchestrating internet of things (IoT) systems safely and
efficiently. There are at least 13.4 billion devices connected to the internet at the
time of writing (Transforma Insights, 2023). Each of these devices sense, act, or
otherwise, interact with people, computers, and the environment. Despite their
immense diversity, they are all computers and they all require software to operate.

An increasing number of these connected devices are so-called edge devices
that operate in the IoT. Edge devices are the leaves of the IoT systems. They
perform the interaction with the physical world. It is not uncommon for edge
devices to be physically embedded in the fabric itself. Typically, they reside
in hard-to-reach places such as light bulbs, clothing, smart electricity meters,
buildings, or even farm animals. The majority of edge devices are powered by
microcontrollers. Microcontrollers are equipped with a lot of connectivity for
integrating peripherals such as sensors and actuators. The connectivity makes
them very suitable to interact with their surroundings. These miniature computers
contain integrated circuits that accommodate a microprocessor designed for use in
embedded applications. As a consequence, microcontrollers are cheap; tiny; have
little memory; and contain a slow, but energy-efficient processor.

When coordinating an orchestra of edge devices, there is room for little error.
Edge devices come and go, perform their own pieces, or are sometimes instructed
to perform a certain piece, they might even operate without a central authority.



2 1.1. Reading guide

In a traditional setting, an IoT engineer has to program each device and their
interoperation using different programming paradigms, programming languages,
and abstraction levels. This results in semantic friction, which makes programming
and maintaining IoT systems a complex and error-prone process.

This dissertation describes the research carried out around orchestrating these
complex IoT systems using task-oriented programming (TOP). TOP is an inno-
vative tierless programming paradigm for interactive multi-layered systems. By
utilising advanced compiler technologies, much of the internals, communication,
and interoperation between the tiers or layers of the applications are automatically
generated. The compiler makes an application controlling all interconnected compo-
nents from a single declarative specification of the required work. For example, the
TOP system iTask is used to program all layers of multi-user distributed web appli-
cations from a single source specification. It is implemented in the general-purpose
lazy functional programming language Clean, and therefore requires relatively
powerful hardware. The inflated hardware requirements are no problem for regular
computers but impractical for the average edge device.

This is where an additional domain-specific languages (DSLs) must play its
part. DSLs are programming languages tailored to a specific domain. Consequently,
jargon is not expressed in terms of the language itself, but are built-in language
features. Furthermore, the DSL can eschew language or system features that are
irrelevant for the domain. Using DSLs, hardware requirements can be drastically
lowered, even while maintaining a high abstraction level for the specified domain.

To incorporate the plethora of edge devices in the orchestra of a TOP system,
the mTask system is used. The mTask language is a novel programming language
for programming IoT edge devices using TOP. Where iTask abstracts away from the
gritty details of multi-tier web applications, mTask has domain-specific abstractions
for IoT edge devices, maintaining the high abstraction level that TOP offers. As
it is integrated with iTask, it allows for all layers of an IoT application to be
programmed from a single source.

1.1 Reading guide
This work is structured as a purely functional rhapsody. The Wikipedia contributors
(2022) define a musical rhapsody is defined as follows:

A rhapsody in music is a one-movement work that is episodic yet inte-
grated, free-flowing in structure, featuring a range of highly contrasted
moods, colour, and tonality.

This dissertation consists of three episodes. Episode I is a paper-based—otherwise
known as cumulative—episode containing chapters that provide insight in advanced
DSL embedding techniques for functional programming (FP) languages. The
chapters can be read independently of each other. Episode II is a monograph
showing mTask, a TOP DSL for the IoT. Hence, the chapters in this episode are
best read in order. It introduces IoT edge device programming, shows the complete
mTask language, provides details on how mTask is integrated with iTask, shows



Chapter 1. Prelude 3

presentation

application

perception
netw

ork

Figure 1.1: A layered IoT architecture.

how the byte code compiler is implemented, presents a guide for green computing
with mTask, and ends with a conclusion and overview of future and related work.
Episode III consists of a single chapter that is based on a journal article. The
chapter provides a qualitative and quantitative comparison of traditional tiered
IoT programming and tierless programming using a real-world application. The
chapter is readable independently.

The following sections in this prelude provide background material on the IoT,
DSLs, and TOP after which a detailed overview of the contributions is presented.

1.2 Internet of things
The IoT is growing rapidly, and it is changing the way people and machines interact
with each other and the world. While the term IoT briefly gained interest around
1999 to describe the communication of radio-frequency identification (RFID) devices
(Ashton, 1999, 2009), it probably already popped up halfway the eighties in a
company speech by Lewis (1985):

The internet of things, or IoT, is the integration of people, processes
and technology with connectable devices and sensors to enable remote
monitoring, status, manipulation and evaluation of trends of such de-
vices.

Much later, CISCO states that the IoT started when there were as many
connected devices as there were people on the globe, i.e. around 2008 (Evans, 2011).
Today, IoT is the term for a system of devices that sense the environment, act
upon it, and communicate with each other and the world they operate in. These
connected devices are already in households all around us in the form of smart
electricity meters, fridges, phones, watches, home automation, &c.

When describing IoT systems, a tiered—or layered—architecture is often used
for compartmentalisation. The number of tiers depends on the required complexity
of the model. For the intents and purposes of this thesis, the layered architecture
as shown in figure 1.1 is used.



4 1.2. Internet of things

To explain the tiers, an example IoT application—home automation—is dis-
sected. Closest to the end-user is the presentation layer. This layer provides the
interface between the user and the IoT system. In home automation this may be a
web interface, an app used on a phone, or wall-mounted tablet to interact with
edge devices and view sensor data.

The application layer is the core of the system. It provides the application
programming interfaces (APIs), data interfaces, data storage processing, and data
processing of IoT systems. A cloud server or local server provides this layer in a
typical home automation application.

The perception layer—also called edge layer—collects the data and interacts
with the environment. It consists of edge devices such as microcontrollers equipped
with various sensors and actuators. In home automation this layer consists of all
devices hosting sensors and actuators such as smart light bulbs, actuators to open
doors, or temperature and humidity sensors.

All layers are connected using the network layer. In some applications this is
implemented using conventional networking techniques such as Wi-Fi or Ethernet.
However, network technology that is tailored to the needs of the specific intercon-
nection between two layers is increasingly popular. Examples of this are BLE,
LoRa, ZigBee, and LTE-M as a communication protocol for connecting the percep-
tion layer to the application layer using IoT transport protocols such as MQTT.
Protocols such as HTTP, AJAX, and WebSocket connecting the presentation layer
to the application layer that are designed for the use in web applications.

Across the layers, the devices are a large heterogeneous collection of differ-
ent platforms, protocols, paradigms, and programming languages. As a result,
impedance problems or semantic friction occurs between layers and the maintain-
ability is severely hampered (Ireland et al., 2009). Even more so, the perception
layer itself is often a heterogeneous collection of microcontrollers in itself, each
having their own peculiarities, programming language of choice, and hardware
interfaces. As edge hardware needs to be cheap, small scale, and energy efficient,
the microcontrollers used to power them do not have a lot of computational power,
only a smidge of memory, and little communication bandwidth. Typically, these
devices are unable to run a full-fledged general-purpose OS. Rather they employ
compiled firmware written in imperative languages that combines all tasks on the
device in a single program. While devices are getting a bit faster, smaller, and
cheaper, they keep these properties to an extent. For example, more powerful mi-
crocontrollers are capable of running real-time OSs (RTOSs), but this still requires
a lot of resources and fixes the programs at compile time. As a consequence, the
flexibility is greatly reduced for dynamic systems in which tasks are created on the
fly, executed on demand, require parallel execution, or have dynamic scheduling
behaviour. As program memory is mostly flash-based and only lasts a couple of
thousands of writes before it wears out, it is not suitable for repeated reconfiguring
and reprogramming.

Memory wear problems can be mitigated by dynamically sending code to be
interpreted to the microcontroller. With interpretation, a specialised interpreter is
flashed in the program memory once it receives the program code to execute at
run time. Therefore, as the programs are not stored in the flash memory, it does



Chapter 1. Prelude 5

domain-specific language

standalone embedded

heterogeneous homogeneous

Figure 1.2: A hyponymy of DSLs (adapted from Verna (2013, p. 2)).

not wear out. It is challenging to create interpreters for small edge devices due to
the severe hardware restrictions. This dissertation describes a DSL that includes
the high-level programming concepts of TOP, while it can be executed on edge
devices with very limited hardware requirements. It does so by compiling the DSL
to byte code that is executed in a feather-light domain-specific OS.

1.3 Domain-specific languages

Programming languages can be divided up into two categories: DSLs and general-
purpose languages (GPLs) (Fowler, 2010). Where GPLs are not made with a
demarcated area in mind, DSLs are tailor-made for a specific domain. Writing
idiomatic domain-specific code in a DSL is easier and requires less GPL knowledge
for a domain expert. This does come at the cost of the DSL being sometimes less
expressive to an extent that it may not even be Turing complete. DSLs come in two
main flavours: standalone and embedded (section 1.3.1).1 Standalone languages
are languages for which the complete toolchain has been developed, just as for
any other GPL. Embedded languages piggyback on an existing language, they
are defined in terms of their host language. Embedded domain-specific languages
(eDSLs) can further be classified into heterogeneous and homogeneous languages
(section 1.3.2). In homogeneous languages all components are integrated whereas
in heterogeneous DSLs, some parts are agnostic of the other systems, e.g. a DSL
that generates code for execution on a totally different system. This hyponymy is
shown in figure 1.2.

1.3.1 Standalone and embedded
DSLs were historically created as standalone languages, meaning that all machinery
is developed solely for the language. The advantage of this approach is that the
language designer is free to define the syntax and type system of the language as
they wish, not being restricted by any constraint. Unfortunately it also means
that they need to develop a compiler or interpreter, and all the scaffolding for the
language, making standalone DSLs costly to create. Examples of standalone DSLs
are TEX, make, yacc, XML, SQL, &c.

1Standalone and embedded are also called external and internal respectively.



6 1.4. Task-oriented programming

The dichotomous approach to standalone DSLs is embedding the DSL in a host
language, i.e. eDSLs (Hudak, 1998). By defining the language as constructs in the
host language, much of the machinery is inherited (Krishnamurthi, 2001). This
greatly reduces the cost of creating embedded languages and shields the user from
having to learn the host language and toolchain. However, there are two sides to
this coin. If the syntax of the host language is not very flexible, the syntax of the
DSL can become clumsy. Furthermore, DSL errors shown to the programmer may
be larded with host language errors, making it difficult for a non-expert of the host
language to work with the DSL. FP languages are especially suitable for hosting
embedded DSLs. They offer tooling for building abstraction levels by a strong and
versatile type system, minimal but flexible syntax, and referential transparency.

1.3.2 Heterogeneity and homogeneity
Tratt (2008) applies a notion from metaprogramming (Sheard, 2001) to eDSLs to
define homogeneity and heterogeneity of eDSLs as follows:

A homogeneous system is one where all the components are specifically
designed to work with each other, whereas in heterogeneous systems at
least one of the components is largely, or completely, ignorant of the
existence of the other parts of the system.

Homogeneous eDSLs are languages that are solely defined as an extension to
their host language. They often restrict features of the host language to provide
a safer interface or capture an idiomatic pattern in the host language for reuse.
The difference between a library and a homogeneous eDSLs is not always clear.
Examples of homogeneous eDSLs are libraries such as ones for sets, regions, but
also more complex tasks such as graphical user interfaces (GUIs).

On the other hand, heterogeneous eDSLs are languages that are not executed
in the host language. For example, Elliott et al. (2003) describe the language Pan,
for which the final representation in the host language is a compiler that will, when
executed, generate code for a completely different target platform.

Both iTask and mTask are eDSLs. Programs written in iTask run in the host
language, and it is a homogeneous DSL. Tasks written using mTask are dynamically
compiled to byte code for an edge device, making it a heterogeneous DSL. The
interpreter running on the edge device has no knowledge of the higher level task
specification. It just interprets the byte code it was sent and takes care of the
communication.

1.4 Task-oriented programming
TOP is a declarative programming paradigm for modelling interactive systems
(Plasmeijer et al., 2012). Instead of dividing problems into layers, TOP deals with
separation of concerns in a novel way. This approach to software development is
called task-oriented software development (TOSD) (Stutterheim et al., 2018).



Chapter 1. Prelude 7

UI

Tasks

UoD

SDSsTypes

Figure 1.3: Separation of concerns in TOSD (adapted from (Stutterheim et al.,
2018, p. 20)).

Types: As can be seen from figure 1.3, types are the pivotal component in TOP.
From the data types, utilising various type-parametrised concepts, all other
aspects are handled automatically. Hence, all other components arise from and
depend on the types in the program.

Tasks: In TOP languages, tasks are the basic building blocks. A task is an
abstract representation of a piece of work that needs to be done. It provides
an abstraction over work in the real world. The nature of tasks makes them
observable during execution. It is possible to observe the current task value
act upon it, e.g. taking a partial result as good enough, or by starting new
tasks. Examples of tasks are filling forms, sending emails, reading sensors or
even doing physical tasks. Just as with real-life tasks, multiple tasks can be
combined in various ways such as in parallel or in sequence to form workflows.
Such combination operators are called task combinators.

Shared data sources (SDSs): Tasks mainly communicate using their observable
task values. However, some collaboration patterns are more easily expressed by
tasks that share common data. SDSs fill this gap, they offer a safe abstraction
over any data. An SDS can represent typed data stored in a file, a chunk
of memory, a database, &c. SDSs can also represent external impure data
such as the time, random numbers or sensor data. In many TOP languages,
combinators are available to filter, combine, transform, and focus SDSs.

User interface (UI): The UI of the system is automatically generated from the
structural representation of the types. Though, practical TOP systems allow
tweaking afterwards to suit the specific needs of the application.

Universe of discourse (UoD): The UoD is explicitly and separately modelled
by the data types and relations that exist in the functions of the host language.

Figure 1.3 differs from the presented IoT architecture shown in figure 1.1 because
it represents different concepts. The IoT architecture is an execution architecture
whereas TOSD is a software development model. E.g. from a software development
perspective, a task is a task, whether it is executed on a microcontroller, a server,
or a client. Only when a task is executed, the location of the execution becomes
important, but this is taken care of by the system. Some concepts from the TOSD



8 1.4. Task-oriented programming

model can be mapped upon the IoT architecture in two ways. Firstly, edge devices
can be seen as simple resources, thus accessed through SDSs. The second view
is that edge devices contain miniature TOP systems in itself. The individual
components in the miniature systems, the tasks, the SDSs, are, in the eventual
execution, connected to the main system.

1.4.1 The iTask system

The concept of TOP originated from the iTask framework, a declarative TOP
language for defining interactive distributed web applications. The iTask system is
implemented as an eDSL in the programming language Clean (Plasmeijer et al.,
2007b, 2012).2 It is under development for over fifteen years and has proven itself
through use in industry as well. For example, it is the main language of VIIA,
an advanced application for monitoring coasts (Software, 2023). Browsers are
powering iTask’s presentation layer. The browser runs the actual iTask code using
an interpreter that operates on Clean’s intermediate language ABC (Staps et al.,
2019). It is built on top of standard web techniques such as JavaScript, HTML,
and CSS. From the structural properties of the data types and the current status
of the work to be done, the UI and all interaction is automatically generated.

Tasks in iTask have either no value, an unstable or a stable task value. For
example, an editor for filling in a form initially has no value. Once the user enters
a complete value, its value becomes an unstable value. It can still be changed or
even reverted to no value by emptying the editor again. Only when for example
a continue button is pressed, a task value becomes stable, fixing its value. The
allowed task value transitions are shown in figure 1.4.

As an example, listing 1.1 and figure 1.5 show the code and UI for an interactive
to-do list application. The user modifies a shared to-do list through an editor
directly or using some predefined actions. Furthermore, in parallel, the length of
the list is shown to demonstrate SDSs. Using iTask, complex collaborations of
users and tasks are described on a high level. In this way, the iTask system is
a tierless system taking care of both the presentation and application layer (see
figure 1.1).

From the data type definitions (line 1), using generic programming (line 2),
the UIs for the data types are automatically generated. Then, using the parallel
task combinator (-||) the task for updating the to-dos (line 8) and the task for
viewing the length are combined (line 9, shown as Length: 2 in the bottom of the
figure). This particular parallel combinator uses the result of the left-hand side
task. Both tasks operate on the to-do SDS (line 5). The task for updating the
to-do list is an editor (line 12) combined using a step combinator (lines 13 to 15).
The actions either change the value, sorting or clearing it, or terminate the task by
returning the current value of the SDS, visualised as three buttons on the bottom
right of the UI. Special combinators (e.g. @>> at line 12) are used to tweak the UI
and display informative labels.

2Appendix A contains a guide for Clean tailored to Haskell programmers.



Chapter 1. Prelude 9

no value unstable stable

Figure 1.4: Transition diagram for task values in iTask.

1 :: ToDo = {description :: String, date :: Date}
2 derive class iTask ToDo
3

4 todos :: SimpleSDSLens [ToDo]
5 todos = sharedStore "todos" []
6

7 toDoTask :: Task [ToDo]
8 toDoTask = upToDos
9 -|| viewSharedInformation [ViewAs length] todos <<@ Label "Length"

10

11 upToDos :: Task [ToDo]
12 upToDos = updateSharedInformation [] todos <<@ Title "My todo−list "
13 >>* [ OnAction (Action "Sort") (hasValue \_�upd sort todos >-| upToDos)
14 , OnAction (Action "Clear") (always (set [] todos >-| upToDos))
15 , OnAction (Action "Quit") (always (get todos))
16 ]
17 where sort list = sortBy (\x y�x.ToDo.date < y.ToDo.date) list

Listing (Clean) 1.1: The code for a shared to-do list in iTask.

Figure 1.5: The UI for the shared to-do list in iTask.



10 1.4. Task-oriented programming

1.4.2 The mTask system

The work for IoT edge devices can often be succinctly described by TOP programs.
Software on microcontrollers is usually composed of smaller basic tasks, are interac-
tive, and share data with other components or the server. The iTask system seems
an obvious candidate for bringing TOP to IoT edge devices. However, an iTask
application contains many features that are not needed on edge devices such as
higher-order tasks, support for a distributed architecture, a multi-user web server,
and facilities to generate GUIs for any user-defined type. Furthermore, IoT edge
devices are in general not powerful enough to run or interpret Clean/ABC code,
they just lack the processor speed and memory. To bridge this gap, mTask is
developed, a domain-specific TOP system for IoT edge devices that is integrated in
iTask (Koopman et al., 2018). The iTask language abstracts away from details such
as user interfaces, data storage, client-side platforms, and persistent workflows. On
the other hand, mTask offers abstractions for edge layer-specific details such as the
heterogeneity of architectures, platforms, and frameworks; peripheral access; task
scheduling; and lowering energy consumption.

The mTask system is seamlessly integrated with iTask. Tasks in mTask are
integrated in such a way that they function as regular iTask tasks. Furthermore,
SDSs on the device can proxy iTask SDSs. Using mTask, the programmer can
define all layers of an IoT system as a single declarative specification. The mTask
language is written in Clean as a multi-view eDSL and hence there are multiple
interpretations possible. This thesis mostly discusses the byte code compiler. From
an mTask task constructed at run time, a compact binary representation of the
work that needs to be done is compiled. And while the byte code for mTask is
generated at run time, the type system of the host language Clean prevents type
errors in the generated code. This byte code is then sent to a device that running
the mTask run-time system (RTS). This feather-light domain-specific OS is written
in portable C with a minimal device specific interface and it executes the tasks
using interpretation and rewriting.

To illustrate iTask/mTask, an example application is shown. The application is
an interactive application for blinking a LED on the microcontroller at a certain
frequency that can be set and updated at run time. Listing 1.2 and figure 1.6
show the iTask part of the code and a screenshot. Using enterInformation, the
connection specification of the TCP device is queried through a web editor (line 2
and figure 1.6a). Line 3 defines an SDS to communicate the blinking interval
between the server and the edge device. The mTask device is connected using
withDevice at line 4. Once connected, the intBlink task is sent to the device (line 5)
and, in parallel, a web editor is shown that updates the value of the interval SDS
(line 6 and figure 1.6b). To allow terminating of the task, the iTask task ends with
a sequential operation that returns a constant value when the button is pressed,
making the task stable.

The intBlink task (listing 1.3) is the mTask part of the application. It blinks
an LED on the edge device with the delay that is dynamically adjustable by the
user via an iTask editor in the browser. It has its own tasks, SDSs, and UoD. This
task first defines general-purpose input/output (GPIO) pin 13 to be of the output



Chapter 1. Prelude 11

1 interactiveBlink :: Task ()
2 interactiveBlink = enterDevice
3 >>? \spec�withShared 500 \iInterval�
4 withDevice spec \dev�
5 liftmTask (intBlink iInterval) dev
6 -|| (Hint " Interval (ms)" @>> updateSharedInformation [] iInterval)
7 >>* [OnAction (Action "Stop") (always (return ()))]
8

9 enterDevice :: Task TCPSettings
10 enterDevice = enterInformation [] <<@ Hint "Enter connection info"

Listing (Clean) 1.2: The iTask code for the interactive blinking application.

(a) Device selection. (b) Changing the interval.

Figure 1.6: The UI for the interactive blink application in mTask.

type (line 13). Then the iTask SDS is lifted to an mTask SDS (line 14), enabling
the machinery to keep the SDS in sync both on the device and the server. The
main expression of the program calls the blink function with an initial state. This
function on lines 15 to 19 first reads the interval SDS, waits the specified delay,
writes the state to the GPIO pin, and calls itself recursively using the inverse of
the state in order to run continuously. The >>|. operator denotes the sequencing
of tasks in mTask.

11 intBlink :: (Shared sds Int) � Main (MTask v Int) | mtask v & · · ·
12 intBlink iInterval =
13 declarePin D2 PMOutput \ledPin�
14 lowerSds \mInterval = iInterval
15 In fun \blink = (\st�
16 getSds mInterval
17 >>=. \i�delay i
18 >>|. writeD ledPin st
19 >>|. blink (Not st))
20 In {main = blink true}

Listing (Clean) 1.3: The mTask code for the interactive blinking application.



12 1.5. Contributions

1.4.3 Other TOP languages
While iTask conceived TOP, it is no longer the only TOP system. Some TOP
languages were created to fill a gap encountered in practise. Toppyt (Lijnse, 2022)
is a general purpose TOP language written in Python used to host frameworks for
modelling command & control systems. The hTask system is a TOP system written
in Haskell used as a vessel for experimenting with asynchronous SDSs (Lubbers,
2022b). Furthermore, some TOP systems arose from Master’s and Bachelor’s
thesis projects. For example, µTask (Piers, 2016), a TOP language for modelling
non-interruptible embedded systems in Haskell, and LTasks (van Gemert, 2022),
a TOP language written in the dynamically typed programming language Lua.
Finally, there are TOP languages with strong academic foundations. TopHat
is a fully formally specified TOP language designed to capture the essence of
TOP (Steenvoorden et al., 2019). Such a formal specification allows for symbolic
execution, hint generation, but also the translation to iTask for actually performing
the work (Steenvoorden, 2022).

1.5 Contributions
This section provides a thorough overview of the relation between the scientific
publications and the contents of this thesis.

1.5.1 Episode I: Étude — Domain-Specific Languages
The mTask system is an eDSL and during the development of it, several novel
basal techniques for embedding DSLs in FP languages have been found. This
paper-based episode contains the following papers:

1. Deep Embedding with Class (Lubbers, 2022a) is the basis for chapter 2.
It shows a novel deep embedding technique for DSLs where the resulting
language is extendible both in constructs and in interpretation just using type
classes and existential data types. The related work section is updated with
the research found after publication. Section 2.A was added after publication
and contains a (yet) unpublished extension of the embedding technique for
reducing the required boilerplate at the cost of requiring some advanced type
system extensions. The paper was published at the International Symposium
on Trends in Functional Programming (TFP) 2022 in Krakow, Poland (moved
to online).

2. First-Class Data Types in Shallow Embedded Domain-Specific Languages
(Lubbers, Koopman and Plasmeijer, 2023a) is the basis for chapter 3. It
shows how to inherit data types from the host language in eDSLs using meta-
programming by providing a proof-of-concept implementation using Haskell’s
metaprogramming system: Template Haskell. The chapter also serves as a
gentle introduction to, and contains a thorough literature study on Template
Haskell. The paper was published at the Symposium on Implementation and
Application of Functional Languages (IFL) 2022 in Kopenhagen, Denmark.



Chapter 1. Prelude 13

Contribution: The papers are written by me, there were weekly meetings with
co-authors in which we discussed and refined the ideas.

1.5.2 Episode II: Orchestrating the Internet of Things using
Task-Oriented Programming

This episode is a monograph that shows the design, properties, implementation and
usage of the mTask system and TOP for the IoT. It is compiled from the following
publications:

3. A Task-Based DSL for Microcomputers (Koopman, Lubbers and Plasmeijer,
2018) is the initial TOP/mTask paper. It provides an overview of the initial
TOP mTask language and shows first versions of some interpretations. The
paper was published at the International Workshop on Real World Domain
Specific Languages (RWDSL) 2018 in Vienna, Austria.

4. Task Oriented Programming for the Internet of Things (Lubbers, Koopman
and Plasmeijer, 2018)3 shows how a simple imperative variant of mTask was
integrated with iTask. While the language differs a lot from the current
version, the integration mechanism is still used. The paper was published at
the Symposium on Implementation and Application of Functional Languages
(IFL) 2018 in Lowell, MA, USA.

5. Multitasking on Microcontrollers using Task Oriented Programming (Lub-
bers, Koopman and Plasmeijer, 2019)4 is a short paper on the multitasking
capabilities of mTask comparing it to traditional multitasking methods for
Arduino.
The paper was published at the COnference on COmposability, COmpre-
hensibility and COrrectness of Working Software (4COWS) 2019 in Opatija,
Croatia.

6. Simulation of a Task-Based Embedded Domain Specific Language for the
Internet of Things (Koopman, Lubbers and Plasmeijer, 2023)4 are the revised
lecture notes for a course on the mTask simulator provided at the 2018 3COWS
winter school in Košice, Slovakia, January 22–26, 2018.

7. Writing Internet of Things Applications with Task Oriented Programming
(Lubbers, Koopman and Plasmeijer, 2023b)4 are the revised lecture notes
from a course on programming IoT systems using mTask provided at the
2019 3COWS summer school in Budapest, Hungary, June 17–21, 2019.

8. Interpreting Task Oriented Programs on Tiny Computers (Lubbers, Koopman
and Plasmeijer, 2021) shows an implementation of the byte code compiler and
RTS of mTask. The paper was published at the Symposium on Implementation
and Application of Functional Languages (IFL) 2019 in Singapore.

9. Reducing the Power Consumption of IoT with Task-Oriented Programming
(Crooijmans, Lubbers and Koopman, 2022) shows how to create a scheduler

3This work is an extension of my Master’s thesis (Lubbers, 2017).
4This work acknowledges the support of the ERASMUS+ project “Focusing Education on

Composability, Comprehensibility and Correctness of Working Software”, no. 2017–1–SK01–
KA203–035402.



14 1.5. Contributions

so that devices running mTask tasks can go to sleep more automatically and
how interrupts are incorporated in the language. The paper was published at
the International Symposium on Trends in Functional Programming (TFP)
2022 in Krakow, Poland (moved to online).

10. Green Computing for the Internet of Things (Lubbers and Koopman, 2022)5

are the revised lecture notes from a course on sustainable IoT programming
with mTask provided at the 2022 SusTrainable summer school in Rijeka,
Croatia, July 4–8, 2022.

Contribution: The original mTask language, and their initial interpretations
were developed by Pieter Koopman and Rinus Plasmeijer. I extended the language,
developed the byte code interpreter, the integration with iTask, and the RTS. The
papers of which I am first author are solely written by me, there were weekly
meetings with the co-authors in which we discussed and refined the ideas.

1.5.3 Episode III: Tiered versus Tierless Programming
Episode III is based on a journal paper that quantitatively and qualitatively
compares traditional IoT architectures with TOP IoT architectures.

11. Could Tierless Programming Reduce IoT Development Grief? (Lubbers,
Koopman, Ramsingh, Singer and Trinder, 2023c) is an extended version
of paper 12. It compares programming traditional tiered architectures to
tierless architectures by illustrating a qualitative and a quantitative four-way
comparison of a smart-campus application. The paper was published in the
ACM Transactions on Internet of Things (TIoT) journal.

12. Tiered versus Tierless IoT Stacks: Comparing Smart Campus Software Archi-
tectures (Lubbers, Koopman, Ramsingh, Singer and Trinder, 2020)6 compares
traditional tiered programming to tierless architectures by comparing two
implementations of a smart-campus application. The paper was published in
the International Conference on the Internet of Things (IoT) 2020 in Malmö,
Sweden (moved to online).

Contribution: Writing the paper was performed by all authors. I created
the server application, the Clean/iTask/mTask implementation (CWS), and the
Clean/iTask implementation (CRS); Adrian Ramsingh created the MicroPython
implementation (PWS); the original Python implementation (PRS) and the server
application were created by Hentschel et al. (2016).

5This work acknowledges the support of the ERASMUS+ project “SusTrainable—Promoting
Sustainability as a Fundamental Driver in Software Development Training and Education”, no.
2020–1–PT01–KA203–078646.

6This work was partly funded by the 2019 Radboud-Glasgow Collaboration Fund.



Episode I: Étude

Domain-Specific Languages

15





17

Chapter 2

Deep embedding with class

The two flavours of DSL embedding are shallow and deep embed-
ding. In functional languages, shallow embedding models the language
constructs as functions in which the semantics are embedded. Adding
semantics is therefore cumbersome while adding constructs is a breeze.
Upgrading the functions to type classes lifts this limitation to a certain
extent.

Deeply embedded languages represent their language constructs as
data and the semantics are functions on it. As a result, the language
constructs are embedded in the semantics, hence adding new language
constructs is laborious where adding semantics is trouble free.

This chapter shows that by abstracting the semantics functions in
deep embedding to type classes, it is possible to easily add language
constructs as well. So-called classy deep embedding results in DSLs
that are extensible both in language constructs and in semantics while
maintaining a concrete abstract syntax tree. Additionally, little type-
level trickery or complicated boilerplate code is required to achieve
this.

2.1 Introduction
The two flavours of DSL embedding are deep and shallow embedding (Boulton
et al., 1992). In FP languages, shallow embedding models language constructs as
functions in the host language. As a result, adding new language constructs—extra
functions—is easy. However, the semantics of the language is embedded in these
functions, making it troublesome to add semantics since it requires updating all
existing language constructs.

On the other hand, deep embedding models language constructs as data in the
host language. The semantics of the language are represented by functions over the



18 2.2. Deep embedding

data. Consequently, adding new semantics, i.e. novel functions, is straightforward.
It can be stated that the language constructs are embedded in the functions that
form a semantics. If one wants to add a language construct, all semantics functions
must be revisited and revised to avoid ending up with partial functions.

This juxtaposition has been known for many years (Reynolds, 1978) and
discussed by many others (Krishnamurthi et al., 1998) but most famously dubbed
the expression problem by Wadler (1998):

The expression problem is a new name for an old problem. The goal
is to define a data type by cases, where one can add new cases to the
data type and new functions over the data type, without recompiling
existing code, and while retaining static type safety (e.g., no casts).

In shallow embedding, abstracting the functions to type classes disentangles
the language constructs from the semantics, allowing extension both ways. This
technique is dubbed tagless-final embedding (Carette et al., 2009), nonetheless it is
no silver bullet. Some semantics that require an intensional analysis of the syntax
tree, such as transformation and optimisations, are difficult to implement in shallow
embedding due to the lack of an explicit data structure representing the abstract
syntax tree. The semantics of the DSL have to be combined and must hold some
kind of state or context, so that structural information is not lost (Kiselyov, 2012).

2.1.1 Research contribution
This chapter shows how to apply the technique observed in tagless-final embedding
to deep embedding. The presented basic technique, christened classy deep embed-
ding, does not require advanced type system extensions to be used. However, it is
suitable for type system extensions such as generalised ADTs (GADTs). While
this chapter is written as a literate Haskell (Peyton Jones, 2003) program using
some minor extensions provided by Glasgow Haskell compiler (GHC) (GHC Team,
2021b), the idea is applicable to other languages as well.1

2.2 Deep embedding
Pick a DSL, any DSL, pick the language of literal integers and addition. In deep
embedding, terms in the language are represented by data in the host language.
Hence, defining the constructs is as simple as creating the following algebraic data
type.2

data Expr0
= Lit0 Int
| Add0 Expr0 Expr0

1Lubbers, M. (2021): Literate Haskell/lhs2TEX source code of the paper “Deep Embedding
with Class”: TFP 2022. DANS. https://doi.org/10.5281/zenodo.5081386.

2All data types and functions are subscripted to indicate the evolution. When definitions are
omitted for version n, version n − 1 is assumed.

https://doi.org/10.5281/zenodo.5081386


Chapter 2. Deep embedding with class 19

Semantics are defined as functions on the Expr0 data type. For example, a
function transforming the term to an integer—an evaluator—is implemented as
follows.

eval0 :: Expr0 � Int
eval0 (Lit0 e) = e
eval0 (Add0 e1 e2) = eval0 e1 + eval0 e2

Adding semantics—e.g. a printer—just means adding another function while
the existing functions remain untouched. I.e. the key property of deep embedding.
The following function, transforming the Expr0 data type to a string, defines a
simple printer for our language.

print0 :: Expr0 � String
print0 (Lit0 v) = show v
print0 (Add0 e1 e2) = "(" ++ print0 e1 ++ "−" ++ print0 e2 ++ ")"

While the language is concise and elegant, it is not very expressive. Traditionally,
extending the language is achieved by adding a case to the Expr0 data type. So,
adding subtraction to the language results in the following revised data type.

data Expr0
= Lit0 Int
| Add0 Expr0 Expr0
| Sub0 Expr0 Expr0

Extending the DSL with language constructs exposes the Achilles’ heel of deep
embedding. Adding a case to the data type means that all semantics functions
have become partial and need to be updated to be able to handle this new case.
This does not seem like an insurmountable problem, but it does pose a problem if
either the functions or the data type itself are written by others or are contained
in a closed library.

2.3 Shallow embedding
Conversely, let us see how this would be done in shallow embedding. First, the data
type is represented by functions in the host language with embedded semantics.
Therefore, the evaluators for literals and addition both become a function in the
host language as follows.

type Sems = Int

lits :: Int � Sems
lits i = i

adds :: Sems � Sems � Sems
adds e1 e2 = e1 + e2

Adding constructions to the language is done by adding functions. Hence, the
following function adds subtraction to our language.



20 2.3. Shallow embedding

subs :: Sems � Sems � Sems
subs e1 e2 = e1 - e2

Adding semantics on the other hand—e.g. a printer—is not that simple because
the semantics are part of the functions representing the language constructs. One
way to add semantics is to change all functions to execute both semantics at the
same time. In our case this means changing the type of Sems to be (Int, String)
so that all functions operate on a tuple containing the result of the evaluator and
the printed representation at the same time. Alternatively, a single semantics can
be defined that represents a fold over the language constructs (Gibbons and Wu,
2014), delaying the selection of semantics to the moment the fold is applied.

2.3.1 Tagless-final embedding
Tagless-final embedding overcomes the limitations of standard shallow embedding.
To upgrade to this embedding technique, the language constructs are changed from
functions to type classes. For our language this results in the following type class
definition.
class Exprt s where

litt :: Int � s
addt :: s � s � s

Semantics become data types implementing these type classes, resulting in the
following instance for the evaluator.3

newtype Evalt = Et Int

instance Exprt Evalt where
litt v = Et v
addt (Et e1) (Et e2) = Et (e1 + e2)

Adding constructs—e.g. subtraction—just results in an extra type class and
corresponding instances.
class Subt s where

subt :: s � s � s

instance Subt Evalt where
subt (Et e1) (Et e2) = Et (e1 - e2)

Finally, adding semantics such as a printer over the language is achieved by
providing a data type representing the semantics accompanied by instances for the
language constructs.
newtype Printert = Pt String

3In this case newtypes are used instead of regular data declarations. A newtype is a
special data type with a single constructor containing a single value only to which it is isomorphic.
It allows the programmer to define separate class instances that the instances of the isomorphic
type without any overhead. During compilation the constructor is completely removed (Peyton
Jones, 2003, section 4.2.3).



Chapter 2. Deep embedding with class 21

instance Exprt Printert where
litt i = Pt (show i)
addt (Pt e1) (Pt e2) = Pt ("(" ++ e1 ++ "+" ++ e2 ++ ")")

instance Subt Printert where
subt (Pt e1) (Pt e2) = Pt ("(" ++ e1 ++ "−" ++ e2 ++ ")")

2.4 Lifting the interpretations
Let us rethink the deeply embedded DSL design. Remember that in shallow embed-
ding, the semantics are embedded in the language construct functions. Obtaining
extensibility both in constructs and semantics was accomplished by abstracting
the semantics functions to type classes, making the constructs overloaded in the
semantics. In deep embedding, the constructs are embedded in the semantics
functions instead. So, let us apply the same technique, i.e. make the semantics
overloaded in the language constructs by abstracting the semantics functions to
type classes. The same effect may be achieved when using similar techniques such
as explicit dictionary passing or ML style modules. In our language this results in
the following type class.
class Eval1 v where

eval1 :: v � Int

data Expr1
= Lit1 Int
| Add1 Expr1 Expr1

Implementing the semantics type class instances for the Expr1 data type is an
elementary exercise. By a copy-paste and some modifications, we come to the
following implementation.
instance Eval1 Expr1 where

eval1 (Lit1 v) = v
eval1 (Add1 e1 e2) = eval1 e1 + eval1 e2

Subtraction can now be defined in a separate data type, leaving the original
data type intact. Instances for the additional semantics can now be implemented
separately as instances of the type classes.
data Sub1 = Sub1 Expr1 Expr1

instance Eval1 Sub1 where
eval1 (Sub1 e1 e2) = eval1 e1 - eval1 e2

2.5 Existential data types
The astute reader might have noticed that we have dissociated ourselves from the
original data type. It is only possible to create an expression with a subtraction on



22 2.5. Existential data types

the top level. The recursive knot is left untied and as a result, Sub1 can never be
reached from an Expr1 .

Luckily, we can reconnect them by adding a special constructor to the Expr1

data type for housing extensions. It contains an existentially quantified (Mitchell
and Plotkin, 1988) type with type class constraints (Läufer, 1994, 1996) for all
semantics type classes (GHC Team, 2021b, section 6.4.6) to allow it to house not
just subtraction but any future extension.

data Expr2
= Lit2 Int
| Add2 Expr2 Expr2
| forall x. Eval2 x ⇒ Ext2 x

The implementation of the extension case in the semantics type classes is in
most cases just a matter of calling the function for the argument as can be seen in
the semantics instances shown below.

instance Eval2 Expr2 where
eval2 (Lit2 v) = v
eval2 (Add2 e1 e2) = eval2 e1 + eval2 e2
eval2 (Ext2 x) = eval2 x

Adding language construct extensions in different data types does mean that an
extra Ext2 tag is introduced when using the extension. This burden can be relieved
by creating a smart constructor for it that automatically wraps the extension with
the Ext2 constructor so that it is of the type of the main data type.

sub2 :: Expr2 � Expr2 � Expr2
sub2 e1 e2 = Ext2 (Sub2 e1 e2)

In our example this means that the programmer can write4:

e2 :: Expr2
e2 = Lit2 42 `sub2` Lit2 1

instead of having to write

e2
′ :: Expr2

e2
′ = Ext2 (Lit2 42 `Sub2` Lit2 1)

2.5.1 Unbraiding the semantics from the data
This approach does reveal a minor problem. Namely, that all semantics type classes
are braided into our datatypes via the Ext2 constructor. Say if we add the printer
again, the Ext2 constructor has to be modified to contain the printer type class
constraint as well.5 Thus, if we add semantics, the main data type’s type class
constraints in the Ext2 constructor need to be updated. To avoid this, the type
classes can be bundled in a type class alias or type class collection as follows.

4Backticks are used to use functions or constructors in an infix fashion (Peyton Jones, 2003,
section 4.3.3).

5Resulting in the following constructor: forall x.(Eval2 x, Print2 x) ⇒ Ext2 x.



Chapter 2. Deep embedding with class 23

class (Eval2 x, Print2 x) ⇒ Semantics2 x

data Expr2
= Lit2 Int
| Add2 Expr2 Expr2
| forall x. Semantics2 x ⇒ Ext2 x

The class alias removes the need for the programmer to visit the main data
type when adding additional semantics. Unfortunately, the compiler does need to
visit the main data type again. Some may argue that adding semantics happens
less frequently than adding language constructs but in reality it means that we
have to concede that the language is not as easily extensible in semantics as in
language constructs. More exotic type system extensions such as constraint kinds
(Bolingbroke, 2011; Yorgey et al., 2012) can untangle the semantics from the data
types by making the data types parametrised by the particular semantics. However,
by adding some boilerplate, even without this extension, the language constructs
can be parametrised by the semantics by putting the semantics functions in a data
type. First the data types for the language constructs are parametrised by the
type variable d as follows.

data Expr3 d
= Lit3 Int
| Add3 (Expr3 d) (Expr3 d)
| forall x. Ext3 (d x) x

data Sub3 d = Sub3 (Expr3 d) (Expr3 d)

The d type variable is inhabited by an explicit dictionary for the semantics, i.e.
a witness to the class instance. Therefore, for all semantics type classes, a data
type is made that contains the semantics function for the given semantics. This
means that for Eval3 , a dictionary with the function EvalDict3 is defined, a type
class HasEval3 for retrieving the function from the dictionary and an instance for
HasEval3 for EvalDict3 .

newtype EvalDict3 v = EvalDict3 (v � Int)

class HasEval3 d where
getEval3 :: d v � v � Int

instance HasEval3 EvalDict3 where
getEval3 (EvalDict3 e) = e

The instances for the type classes change as well according to the change in the
datatype. Given that there is a HasEval3 instance for the witness type d, we can
provide an implementation of Eval3 for Expr3 d.

instance HasEval3 d ⇒ Eval3 (Expr3 d) where
eval3 (Lit3 v) = v
eval3 (Add3 e1 e2) = eval3 e1 + eval3 e2
eval3 (Ext3 d x) = getEval3 d x



24 2.5. Existential data types

instance HasEval3 d ⇒ Eval3 (Sub3 d) where
eval3 (Sub3 e1 e2) = eval3 e1 - eval3 e2

Because the Ext3 constructor from Expr3 now contains a value of type d, the
smart constructor for Sub3 must somehow come up with this value. To achieve
this, a type class is introduced that allows the generation of such a dictionary.

class GDict a where
gdict :: a

This type class has individual instances for all semantics dictionaries, linking
the class instance to the witness value. I.e. if there is a type class instance known,
a witness value can be conjured using the gdict function.

instance Eval3 v ⇒ GDict (EvalDict3 v) where
gdict = EvalDict3 eval3

With these instances, the semantics function can be retrieved from the Ext3

constructor and in the smart constructors they can be generated as follows:

sub3 :: GDict (d (Sub3 d)) ⇒ Expr3 d � Expr3 d � Expr3 d
sub3 e1 e2 = Ext3 gdict (Sub3 e1 e2)

Finally, we reached the end goal, orthogonal extension of both language con-
structs as shown by adding subtraction to the language and in language semantics.
Adding the printer can now be done without touching the original code as follows.
First the printer type class, dictionaries and instances for GDict are defined.

class Print3 v where
print3 :: v � String

newtype PrintDict3 v = PrintDict3 (v � String)

class HasPrint3 d where
getPrint3 :: d v � v � String

instance HasPrint3 PrintDict3 where
getPrint3 (PrintDict3 e) = e

instance Print3 v ⇒ GDict (PrintDict3 v) where
gdict = PrintDict3 print3

Then the instances for Print3 of all the language constructs can be defined.

instance HasPrint3 d ⇒ Print3 (Expr3 d) where
print3 (Lit3 v) = show v
print3 (Add3 e1 e2) = "(" ++ print3 e1 ++ "+" ++ print3 e2 ++ ")"
print3 (Ext3 d x) = getPrint3 d x

instance HasPrint3 d ⇒ Print3 (Sub3 d) where
print3 (Sub3 e1 e2) = "(" ++ print3 e1 ++ "−" ++ print3 e2 ++ ")"



Chapter 2. Deep embedding with class 25

2.6 Transformation semantics
Most semantics convert a term to some final representation and can be expressed
just by functions on the cases. However, the implementation of semantics such as
transformation or optimisation may benefit from a so-called intentional analysis
of the abstract syntax tree. In shallow embedding, the implementation for these
types of semantics is difficult because there is no tangible abstract syntax tree. In
off-the-shelf deep embedding this is effortless since the function can pattern match
on the constructor or structures of constructors.

To demonstrate intensional analyses in classy deep embedding we write an
optimiser that removes addition and subtraction by zero. In classy deep embedding,
adding new semantics means first adding a new type class housing the function
including the machinery for the extension constructor.

class Opt3 v where
opt3 :: v � v

newtype OptDict3 v = OptDict3 (v � v)

class HasOpt3 d where
getOpt3 :: d v � v � v

instance HasOpt3 OptDict3 where
getOpt3 (OptDict3 e) = e

instance Opt3 v ⇒ GDict (OptDict3 v) where
gdict = OptDict3 opt3

The implementation of the optimiser for the Expr3 data type is no complicated
task. The only interesting bit occurs in the Add3 constructor, where we pattern
match on the optimised children to determine whether an addition with zero is
performed. If this is the case, the addition is removed.

instance HasOpt3 d ⇒ Opt3 (Expr3 d) where
opt3 (Lit3 v) = Lit3 v
opt3 (Add3 e1 e2) = case (opt3 e1, opt3 e2) of

(Lit3 0, e2
′ ) � e2

′

(e1
′, Lit3 0) � e1

′

(e1
′, e2

′ ) � Add3 e1
′ e2

′

opt3 (Ext3 d x) = Ext3 d (getOpt3 d x)

Replicating this for the Opt3 instance of Sub3 seems a clear-cut task at first
glance.

instance HasOpt3 d ⇒ Opt3 (Sub3 d) where
opt3 (Sub3 e1 e2) = case (opt3 e1, opt3 e2) of

(e1
′, Lit3 0) � e1

′

(e1
′, e2

′ ) � Sub3 e1
′ e2

′

Unsurprisingly, this code is rejected by the compiler. When a literal zero is
matched as the right-hand side of a subtraction, the left-hand side of type Expr3 is



26 2.6. Transformation semantics

returned. However, the type signature of the function dictates that it should be of
type Sub3 . To overcome this problem we add a convolution constructor.

2.6.1 Convolution
Adding a loopback case or convolution constructor to Sub3 allows the removal of
the Sub3 constructor while remaining the Sub3 type. It should be noted that a
loopback case is only required if the transformation actually removes tags. This
changes the Sub3 data type as follows.

data Sub4 d
= Sub4 (Expr4 d) (Expr4 d)
| SubLoop4 (Expr4 d)

instance HasEval4 d ⇒ Eval4 (Sub4 d) where
eval4 (Sub4 e1 e2) = eval4 e1 - eval4 e2
eval4 (SubLoop4 e1) = eval4 e1

With this loopback case in the toolbox, the following Sub instance optimises
away subtraction with zero literals.

instance HasOpt4 d ⇒ Opt4 (Sub4 d) where
opt4 (Sub4 e1 e2) = case (opt4 e1, opt4 e2) of

(e1
′, Lit4 0) � SubLoop4 e1

′

(e1
′, e2

′ ) � Sub4 e1
′ e2

′

opt4 (SubLoop4 e) = SubLoop4 (opt4 e)

2.6.2 Pattern matching
Pattern matching within datatypes and from an extension to the main data type
works out of the box. Cross-extensional pattern matching on the other hand—
matching on a particular extension—is something that requires a bit of extra care.
Take for example negation propagation and double negation elimination. Pattern
matching on values with an existential type is not possible without leveraging
dynamic typing (Abadi et al., 1991; Baars and Swierstra, 2002). To enable dynamic
typing support, the Typeable type class as provided by Data.Dynamic (GHC Team,
2021a) is added to the list of constraints in all places where we need to pattern
match across extensions. As a result, the Typeable type class constraints are added
to the quantified type variable x of the Ext4 constructor and to ds in the smart
constructors.

data Expr4 d
= Lit4 Int
| Add4 (Expr4 d) (Expr4 d)
| forall x. Typeable x ⇒ Ext4 (d x) x

First let us add negation to the language by defining a datatype representing it.
Negation elimination requires the removal of negation constructors, so a convolution
constructor is defined as well.



Chapter 2. Deep embedding with class 27

data Neg4 d
= Neg4 (Expr4 d)
| NegLoop4 (Expr4 d)

neg4 :: (Typeable d, GDict (d (Neg4 d))) ⇒ Expr4 d � Expr4 d
neg4 e = Ext4 gdict (Neg4 e)

The evaluation and printer instances for the Neg4 datatype are defined as follows.

instance HasEval4 d ⇒ Eval4 (Neg4 d) where
eval4 (Neg4 e) = negate (eval4 e)
eval4 (NegLoop4 e) = eval4 e

instance HasPrint4 d ⇒ Print4 (Neg4 d) where
print4 (Neg4 e) = "(~" ++ print4 e ++ ")"
print4 (NegLoop4 e) = print4 e

The Opt4 instance contains the interesting bit. If the sub expression of a
negation is an addition, negation is propagated downwards. If the sub expression
is again a negation, something that can only be found out by a dynamic pattern
match, it is replaced by a NegLoop4 constructor.

instance (Typeable d, GDict (d (Neg4 d)), HasOpt4 d) ⇒ Opt4 (Neg4 d) where
opt4 (Neg4 (Add4 e1 e2))

= NegLoop4 (Add4 (opt4 (neg4 e1)) (opt4 (neg4 e2)))
opt4 (Neg4 (Ext4 d x))

= case fromDynamic (toDyn (getOpt4 d x)) of
Just (Neg4 e) � NegLoop4 e
_ � Neg4 (Ext4 d (getOpt4 d x))

opt4 (Neg4 e) = Neg4 (opt4 e)
opt4 (NegLoop4 e) = NegLoop4 (opt4 e)

Loopback cases do make cross-extensional pattern matching less modular in
general. For example, Ext4 d (SubLoop4 (Lit4 0)) is equivalent to Lit4 0 in the
optimisation semantics and would require an extra pattern match. Fortunately,
this problem can be mitigated—if required—by just introducing an additional
optimisation semantics that removes loopback cases. Luckily, one does not need to
resort to these arguably blunt matters often. Dependent language functionality
often does not need to span extensions, i.e. it is possible to group them in the same
data type.

2.6.3 Chaining semantics
Now that the data types are parametrised by the semantics a final problem needs to
be overcome. The data type is parametrised by the semantics, thus, using multiple
semantics, such as evaluation after optimising is not straightforwardly possible.
Luckily, a solution is readily at hand: introduce an ad-hoc combination semantics.

data OptPrintDict4 v = OPD4 (OptDict4 v) (PrintDict4 v)

instance HasOpt4 OptPrintDict4 where



28 2.7. Generalised algebraic data types

getOpt4 (OPD4 v _) = getOpt4 v
instance HasPrint4 OptPrintDict4 where

getPrint4 (OPD4 _ v) = getPrint4 v

instance (Opt4 v, Print4 v) ⇒ GDict ( OptPrintDict4 v) where
gdict = OPD4 gdict gdict

And this allows us to write print4 (opt4 e1) resulting in "((~42)+(~38))"
when e1 represents (∼ (42 + 38 )) − 0 and is thus defined as follows.
e1 :: Expr4 OptPrintDict4
e1 = neg4 (Lit4 42 `Add4` Lit4 38) `sub4` Lit4 0

When using classy deep embedding to the fullest, the ability of the compiler to
infer very general types expires. As a consequence, defining reuseable expressions
that are overloaded in their semantics requires quite some type class constraints
that cannot be inferred by the compiler (yet) if they use many extensions. Solving
this remains future work. For example, the expression ∼ (42 − 38 ) + 1 has to be
defined as:
e3 :: (Typeable d, GDict (d (Neg4 d)), GDict (d (Sub4 d))) ⇒ Expr4 d
e3 = neg4 (Lit4 42 `sub4` Lit4 38) `Add4` Lit4 1

2.7 Generalised algebraic data types
GADTs are enriched data types that allow the type instantiation of the constructor
to be explicitly defined (Cheney and Hinze, 2003; Hinze, 2003). Leveraging GADTs,
deeply embedded DSLs can be made statically type safe even when different
value types are supported. Even when GADTs are not supported natively in the
language, they can be simulated using embedding-projection pairs or equivalence
types (Cheney and Hinze, 2002, section 2.2). Where some solutions to the expression
problem do not easily generalise to GADTs (see section 2.8), classy deep embedding
does. Generalising the data structure of our DSL is fairly straightforward and to
spice things up a bit, we add an equality and boolean negation language construct.
To make the existing DSL constructs more general, we relax the types of those
constructors. For example, operations on integers now work on all numerals instead.
Moreover, the Litg constructor can be used to lift values of any type to the DSL
domain as long as they have a Show instance, required for the printer. Since some
optimisations on Notg remove constructors and therefore use cross-extensional
pattern matches, Typeable constraints are added to a. Furthermore, because the
optimisations for Addg and Subg are now more general, they do not only work for
Ints but for any type with a Num instance, the Eq constraint is added to these
constructors as well. Finally, not to repeat ourselves too much, we only show the
parts that substantially changed. The omitted definitions and implementation can
be found in section 2.B.
data Exprg d a where

Litg :: Show a ⇒ a � Exprg d a
Addg :: (Eq a, Num a) ⇒ Exprg d a � Exprg d a � Exprg d a



Chapter 2. Deep embedding with class 29

Extg :: Typeable x ⇒ d x � x a � Exprg d a
data Negg d a where

Negg :: (Typeable a, Num a) ⇒ Exprg d a � Negg d a
NegLoopg :: Exprg d a � Negg d a

data Notg d a where
Notg :: Exprg d Bool � Notg d Bool
NotLoopg :: Exprg d a � Notg d a

The smart constructors for the language extensions inherit the class constraints
of their data types and include a Typeable constraint on the d type variable for it
to be useable in the Extg constructor as can be seen in the smart constructor for
Negg :
negg :: (Typeable d, GDict (d (Negg d)), Typeable a, Num a) ⇒

Exprg d a � Exprg d a
negg e = Extg gdict (Negg e)

notg :: (Typeable d, GDict (d (Notg d))) ⇒
Exprg d Bool � Exprg d Bool

notg e = Extg gdict (Notg e)

Upgrading the semantics type classes to support GADTs is done by an easy
textual search and replace. All occurrences of v are now parametrised by type
variable a:
class Evalg v where

evalg :: v a � a
class Printg v where

printg :: v a � String
class Optg v where

optg :: v a � v a

Now that the shape of the type classes has changed, the dictionary data types
and the type classes need to be adapted as well. The introduced type variable
a is not an argument to the type class, so it should not be an argument to the
dictionary data type. To represent this type class function, a rank-2 polymorphic
function is needed (GHC Team, 2021b, section 6.4.15)(Odersky and Läufer, 1996).
Concretely, for the evaluator this results in the following definitions:
newtype EvalDictg v = EvalDictg (forall a. v a � a)
class HasEvalg d where

getEvalg :: d v � v a � a
instance HasEvalg EvalDictg where

getEvalg (EvalDictg e) = e

The GDict type class is general enough, so the instances can remain the same.
The Evalg instance of GDict looks as follows:
instance Evalg v ⇒ GDict (EvalDictg v) where

gdict = EvalDictg evalg

Finally, the implementations for the instances can be ported without complica-
tion show using the optimisation instance of Notg :



30 2.8. Related work

instance (Typeable d, GDict (d (Notg d)), HasOptg d) ⇒ Optg (Notg d) where
optg (Notg (Extg d x))

= case fromDynamic (toDyn (getOptg d x)) :: Maybe (Notg d Bool) of
Just (Notg e) � NotLoopg e
_ � Notg (Extg d (getOptg d x))

optg (Notg e) = Notg (optg e)
optg (NotLoopg e) = NotLoopg (optg e)

2.8 Related work
Embedded DSL techniques in functional languages have been a topic of research
for many years, thus we do not claim a complete overview of related work.

Clearly, classy deep embedding bears most similarity to the Datatypes à la
Carte (Swierstra, 2008). In Swierstra’s approach, semantics are lifted to type classes
similarly to classy deep embedding. Each language construct is their own datatype
parametrised by a type parameter. This parameter contains some type level
representation of language constructs that are in use. In classy deep embedding,
extensions only have to be enumerated at the type level when the term is required
to be overloaded, in all other cases they are captured in the extension case. Because
all the constructs are expressed in the type system, nifty type system tricks need
to be employed to convince the compiler that everything is type safe and the class
constraints can be solved. Furthermore, it requires some boilerplate code such as
functor instances for the data types. In return, pattern matching is easier and does
not require dynamic typing. Classy deep embedding only strains the programmer
with writing the extension case for the main data type and the occasional loopback
constructor.

Löh and Hinze (2006) proposed a language extension that allows open data
types and open functions, i.e. functions and data types that can be extended with
more cases later on. They hinted at the possibility of using type classes for open
functions but had serious concerns that pattern matching would be crippled because
constructors are becoming types, thus ultimately becoming impossible to type.
In contrast, this chapter shows that pattern matching is easily attainable—albeit
using dynamic types—and that the terms can be typed without complicated type
system extensions.

A technique similar to classy deep embedding was proposed by Najd and Peyton
Jones (2017) to tackle a slightly different problem, namely that of reusing a data
type for multiple purposes in a slightly different form. For example to decorate the
abstract syntax tree of a compiler differently for each phase of the compiler. They
propose to add an extension descriptor as a type variable to a data type and a type
family that can be used to decorate constructors with extra information and add
additional constructors to the data type using an extension constructor. Classy
deep embedding works similarly but uses existentially quantified type variables to
describe possible extensions instead of type variables and type families. In classy
deep embedding, the extensions do not need to be encoded in the type system and
less boilerplate is required. Furthermore, pattern matching on extensions becomes



Chapter 2. Deep embedding with class 31

a bit more complicated but in return it allows for multiple extensions to be added
orthogonally and avoids the necessity for type system extensions.

Tagless-final embedding is the shallowly embedded counterpart of classy deep
embedding and was invented for the same purpose; overcoming the issues with
standard shallow embedding (Carette et al., 2009). Classy deep embedding was
organically grown from observing the evolution of tagless-final embedding. The
main difference between tagless-final embedding and classy deep embedding—and
in general between shallow and deep embedding—is that intensional analyses of
the abstract syntax tree is more difficult because there is no tangible abstract
syntax tree data structure. In classy deep embedding, it is possible to define
transformations even across extensions. Furthermore, in classy deep embedding,
defining (mutual) dependent interpretations is automatically supported whereas in
tagless-final embedding this requires some amount of code duplication (Sun et al.,
2022).

Hybrid approaches between deep and shallow embedding exist as well. For
example, Svenningsson and Axelsson (2013) show that by expressing the deeply
embedded language in a shallowly embedded core language, extensions can be made
orthogonally as well. Classy deep embedding differs from the hybrid approaches in
the sense that it does not require the language extensions to be expressible in the
core language.

2.8.1 Comparison

No DSL embedding technique is the silver bullet, there is no way of perfectly
satisfying all requirements programmers have. Sun et al. (2022) provided a thorough
comparison of embedding techniques including more axes than just the two stated
in the expression problem.

Table 2.1 shows a variant of their comparison table. The first two rows describe
the two axes of the original expression problem and the third row describes the
added axis of modular dependency handling as stated by Sun et al. The poly. style
of embedding—including tagless-final—falls short of this requirement.

Intensional analysis is an umbrella term for pattern matching and transforma-
tions. In shallow embedding, intensional analysis is more complex and requires
stateful views describing context, but it is possible to implement though.

Simple type system describes the whether it is possible to encode this embedding
technique without many type system extensions. In classy deep embedding, there
is either a bit more scaffolding and boilerplate required or advanced type system
extensions need to be used.

Little boilerplate denotes the amount of scaffolding and boilerplate required.
For example, hybrid embedding requires a transcoding step between the deep
syntax and the shallow core language.



32 2.9. Conclusion

Table 2.1: Comparison of embedding techniques, extended from Sun et al. (2022,
section 3.6).

Shallow Deep Hybrid Poly. Comp. à la Classy

Extend constructs  # G#
1

    

Extend views #       

Modular dependencies #   #    

Intensional analysis G#
2

  G#
2

G#
2

  
3

Simple type system   #   #  
4

Little boilerplate   #   #  
4

1 Only if the extension is expressible in the core language.
2 Requires ingenuity and are sometimes awkward to write.
3 Cross-extensional pattern matching requires safe dynamic typing.
4 Either a simple type system or little boilerplate.

2.9 Conclusion

Classy deep embedding is a novel organically grown embedding technique that
alleviates deep embedding from the extensibility problem in most cases.

By abstracting the semantics functions to type classes they become overloaded
in the language constructs. Thus, making it possible to add new language constructs
in a separate type. These extensions are brought together in a special extension
constructor residing in the main data type. This extension case is overloaded
by the language construct using a data type containing the class dictionary. As
a result, orthogonal extension is possible for language constructs and semantics
using only little syntactic overhead or type annotations. The basic technique only
requires—well established through history and relatively standard—existential data
types. However, if needed, the technique generalises to GADTs as well, adding
rank-2 types to the list of type system requirements as well. Finally, the abstract
syntax tree remains observable which makes it suitable for intensional analyses,
albeit using occasional dynamic typing for truly cross-extensional transformations.

Defining reuseable expressions overloaded in semantics or using multiple seman-
tics on a single expression requires some boilerplate still, getting around these issues
remains future work. Section 2.A shows how the boilerplate can be minimised
using advanced type system extensions.

Acknowledgements

This research is partly funded by the Royal Netherlands Navy. Furthermore, I
would like to thank Pieter and Rinus for the fruitful discussions, Ralf for inspiring
me to write a functional pearl, and the anonymous reviewers for their valuable and
honest comments.



Chapter 2. Deep embedding with class 33

2.A Reprise: reducing boilerplate
One of the unique selling points of this novel DSL embedding technique is that it,
in its basic form, does not require advanced type system extensions nor a lot of
boilerplate. However, generalising the technique to GADTs arguably unleashes a
cesspool of unsafe compiler extensions. If we are willing to work with extensions,
almost all the boilerplate can be inferred or generated.

In classy deep embedding, the DSL datatype is parametrised by a type variable
providing a witness to the interpretation on the language. When using multi-
ple interpretations, these need to be bundled in a data type. Using the GHC’s
ConstraintKind extension, we can make these witnesses explicit, tying into Has-
kell’s type system immediately. Furthermore, this constraint does not necessarily
have to be a single constraint, after enabling DataKinds and TypeOperators, we
can encode lists of witnesses instead (Yorgey et al., 2012). The data type for this
list of witnesses is Record as shown in listing 2.1. This GADT is parametrised by
two type variables. The first type variable (dt) is the type or type constructor on
which the constraints can be applied and the second type variable (clist) is the list
of constraints constructors itself. This means that when Cons is pattern matched,
the overloading of the type class constraint for c dt can be solved by the compiler.
KindSignatures is used to force the kinds of the type parameters and the kind of
dt is polymorphic (PolyKinds) so that the Record data type can be used for DSLs
using type classes but also type constructor classes (e.g. when using GADTs).

data Record (dt :: k) (clist :: [k � Constraint]) where
Nil :: Record dt '[]
Cons :: c dt ⇒ Record dt cs � Record dt (c ': cs)

Listing (Haskell) 2.1: Data type for a list of constraints.

To incorporate this type in the Expr type, the Ext constructor changes from
containing a single witness dictionary to a Record type containing all the required
dictionaries.

data Expr c
= Lit Int
| Add (Expr c) (Expr c)
| Ext (Record x c) x

Listing (Haskell) 2.2: Main data type with extension constructor.

Furthermore, we define a type class (In) that allows us to extract explicit
dictionaries Dict from these records if the constraint can is present in the list. Since
the constraints become available as soon as the Cons constructor is matched, the
implementation is a type-level list traversal.

class c `In` cs where
project :: Record dt cs � Dict (c dt)

instance {−# OVERLAPPING #−} c `In` (c ': cs) where
project (Cons _) = Dict

instance {−# OVERLAPPING #−} c `In` cs ⇒ c `In` (b ': cs) where



34 2.A. Reprise: reducing boilerplate

project (Cons xs) = project xs
Listing (Haskell) 2.3: Membership functions for constraints.

The final scaffolding is a multi-parameter type class CreateRecord (requiring
the MultiParamTypeclasses and FlexibleInstances extension) to create these
Record witnesses automatically. This type class creates a record structure cons by
cons if and only if all type class constraints are available in the list of constraints.
It is not required to provide instances for this for specific records or type classes,
the two instances describe all the required constraints.
class CreateRecord dt c where

createRecord :: Record dt c
instance CreateRecord d '[] where

createRecord = Nil
instance (c (d c0), CreateRecord (d c0) cs) ⇒

CreateRecord (d c0) (c ': cs) where
createRecord = Cons createRecord

Listing (Haskell) 2.4: Functions for creating the witness records.

The class constraints for the interpretation instances can now be greatly simpli-
fied, as shown in the evaluation instance for Expr. The implementation remains
the same, only that for the extension case, a trick needs to be applied to convince
the compiler of the correct instances. Using `In`’s project function, a dictionary
can be brought into scope. This dictionary can then subsequently be used to
apply the type class function on the extension using the withDict function from the
Data.Constraint library.6 The ScopedTypeVariables extension is used to make
sure the existentially quantified type variable for the extension is matched to the
type of the dictionary. Furthermore, because the class constraint is not smaller
than the instance head, UndecidableInstances should be enabled.
class Eval v where

eval :: v � Int

instance Eval `In` s ⇒ Eval (Expr s) where
eval (Lit i) = i
eval (Add l r) = eval l + eval r
eval (Ext r (e :: x)) = withDict (project r :: Dict (Eval x)) eval e

Smart constructors need to be adapted as well, as can be seen from the
smart constructor subst. Instead of a GDict class constraint, a CreateRecord
class constraint needs to be added.
subst :: (Typeable c, CreateRecord (Subt c) c)

⇒ Expr c � Expr c � Expr c
subst l r = Ext createRecord (l `Subt` r)

Finally, defining terms in the language can be done immediately if the inter-
pretations are known. For example, if we want to print and/or optimise the term
( (42 + (38 − 4 ))), we can define it as follows:

6withDict :: Dict c � (c ⇒ r) � r



Chapter 2. Deep embedding with class 35

e0 :: Expr '[Print,Opt]
e0 = neg (neg (Lit 42 `Add` (Lit 38 `subt` Lit 4)))

It is also possible to define terms in the DSL as being overloaded in the
interpretation. This does require enumerating all the CreateRecord type classes for
every extension similarly as was required for GDict. At the call site, the concrete
list of constraints must be known.

e1 :: (Typeable c, CreateRecord (Neg c) c, CreateRecord (Subst c) c)
⇒ Expr c

e1 = neg (neg (Lit 42 `Add` (Lit 38 `subt` Lit 4)))

Finally, using the TypeFamilies extension, type families can be created for
bundling `In` constraints (UsingExt) and CreateRecord constraints (DependsOn),
making the syntax even more descriptive. E.g. UsingExt '[A, B, C] c expands to
(CreateRecord (A c) c, CreateRecord (B c) c, CreateRecord (C c) c). Simi-
larly, DependsOn '[A, B, C] s expands to (A `In` s, B `In` s, C `In` s).

type family UsingExt cs c :: Constraint where
UsingExt '[] c = ()
UsingExt (d ': cs) c = (CreateRecord (d c) c, UsingExt cs c)

type family DependsOn cs c :: Constraint where
DependsOn '[] c = ()
DependsOn (d ': cs) c = (d `In` c, DependsOn cs c)

Defining the previous expression can now be done with the following shortened
type that describes the semantics better:

e1 :: (Typeable c, UsingExt '[Neg, Subst]) ⇒ Expr c

Giving an instance for Interp for DataType that uses the extensions e_1, e2, · · ·
and depends on interpretations i_1,i_2, · · · is done as follows:

instance ( UsingExt '[e_1, e_2, · · · ] s, DependsOn '[i_1, i_2, · · · ] s)
⇒ Interp (DataType s) where

· · ·

With these enhancements, there is hardly any boilerplate required to use classy
deep embedding. The Record data type; the CreateRecord type class; and the
UsingExt and DependsOn type families can be provided as a library only requir-
ing the programmer to create the extension constructors with their respective
implementations and smart constructors for language construct extensions. The
source code for this extension can be found here: https://gitlab.com/mlubbers/
classydeepembedding.7 It contains examples for expressions, expressions using
GADTs, detection of sharing in expressions (modelled after Kiselyov (2011)), a
GADT version of sharing detection, and a region DSL (modelled after Sun et al.
(2022)).

7Lubbers, M. (2022): Library and examples for enhanced classy deep embedding. Zenodo.
10.5281/zenodo.7277498.

https://gitlab.com/mlubbers/classydeepembedding
https://gitlab.com/mlubbers/classydeepembedding
https://doi.org/10.5281/zenodo.7277498


36 2.B. Data types and definitions

2.B Data types and definitions
This appendix collects all definitions omitted for brevity.
data Subg d a where

Subg :: (Eq a, Num a) ⇒ Exprg d a � Exprg d a � Subg d a
SubLoopg :: Exprg d a � Subg d a

data Eqg d a where
Eqg :: (Typeable a, Eq a) ⇒ Exprg d a � Exprg d a � Eqg d Bool
EqLoopg :: Exprg d a � Eqg d a

Listing (Haskell) 2.5: Data type definitions.

subg :: (Typeable d, GDict (d (Subg d)), Eq a, Num a) ⇒
Exprg d a � Exprg d a � Exprg d a

subg e1 e2 = Extg gdict (Subg e1 e2)

eqg :: (Typeable d, GDict (d (Eqg d)), Eq a, Typeable a) ⇒
Exprg d a � Exprg d a � Exprg d Bool

eqg e1 e2 = Extg gdict (Eqg e1 e2)

Listing (Haskell) 2.6: Smart constructors.

newtype PrintDictg v = PrintDictg (forall a.v a � String)

class HasPrintg d where
getPrintg :: d v � v a � String

instance HasPrintg PrintDictg where
getPrintg (PrintDictg e) = e

newtype OptDictg v = OptDictg (forall a.v a � v a)

class HasOptg d where
getOptg :: d v � v a � v a

instance HasOptg OptDictg where
getOptg (OptDictg e) = e

Listing (Haskell) 2.7: Semantics classes and data types.

instance Printg v ⇒ GDict (PrintDictg v) where
gdict = PrintDictg printg

instance Optg v ⇒ GDict (OptDictg v) where
gdict = OptDictg optg

Listing (Haskell) 2.8: GDict instances.

instance HasEvalg d ⇒ Evalg (Exprg d) where
evalg (Litg v) = v
evalg (Addg e1 e2) = evalg e1 + evalg e2
evalg (Extg d x) = getEvalg d x

instance HasEvalg d ⇒ Evalg (Subg d) where
evalg (Subg e1 e2) = evalg e1 - evalg e2
evalg (SubLoopg e) = evalg e



Chapter 2. Deep embedding with class 37

instance HasEvalg d ⇒ Evalg (Negg d) where
evalg (Negg e) = negate (evalg e)
evalg (NegLoopg e) = evalg e

instance HasEvalg d ⇒ Evalg (Eqg d) where
evalg (Eqg e1 e2) = evalg e1 == evalg e2
evalg (EqLoopg e) = evalg e

instance HasEvalg d ⇒ Evalg (Notg d) where
evalg (Notg e) = not (evalg e)
evalg (NotLoopg e) = evalg e

Listing (Haskell) 2.9: Evaluator instances.

instance HasPrintg d ⇒ Printg (Exprg d) where
printg (Litg v) = show v
printg (Addg e1 e2) = "(" ++ printg e1 ++ "+" ++ printg e2 ++ ")"
printg (Extg d x) = getPrintg d x

instance HasPrintg d ⇒ Printg (Subg d) where
printg (Subg e1 e2) = "(" ++ printg e1 ++ "−" ++ printg e2 ++ ")"
printg (SubLoopg e) = printg e

instance HasPrintg d ⇒ Printg (Negg d) where
printg (Negg e) = "(negate " ++ printg e ++ ")"
printg (NegLoopg e) = printg e

instance HasPrintg d ⇒ Printg (Eqg d) where
printg (Eqg e1 e2) = "(" ++ printg e1 ++ "==" ++ printg e2 ++ ")"
printg (EqLoopg e) = printg e

instance HasPrintg d ⇒ Printg (Notg d) where
printg (Notg e) = "(not " ++ printg e ++ ")"
printg (NotLoopg e) = printg e

Listing (Haskell) 2.10: Printer instances.

instance HasOptg d ⇒ Optg (Exprg d) where
optg (Litg v) = Litg v
optg (Addg e1 e2) = case (optg e1, optg e2) of

(Litg 0, e2′ ) � e2′

(e1′, Litg 0) � e1′

(e1′, e2′ ) � Addg e1′ e2′

optg (Extg d x) = Extg d (getOptg d x)

instance HasOptg d ⇒ Optg (Subg d) where
optg (Subg e1 e2) = case (optg e1, optg e2) of

(e1′, Litg 0) � SubLoopg e1′

(e1′, e2′ ) � Subg e1′ e2′

optg (SubLoopg e) = SubLoopg (optg e)

instance (Typeable d, GDict (d (Negg d)), HasOptg d) ⇒ Optg (Negg d) where
optg (Negg (Addg e1 e2))

= NegLoopg (Addg (optg (negg e1)) (optg (negg e2)))
optg (Negg (Extg d x))

= case fromDynamic (toDyn (getOptg d x)) of
Just (Negg e) � NegLoopg e



38 2.B. Data types and definitions

_ � Negg (Extg d (getOptg d x))
optg (Negg e) = Negg (optg e)
optg (NegLoopg e) = NegLoopg (optg e)

instance HasOptg d ⇒ Optg (Eqg d) where
optg (Eqg e1 e2) = Eqg (optg e1) (optg e2)
optg (EqLoopg e) = EqLoopg (optg e)

Listing (Haskell) 2.11: Optimisation instances.



39

Chapter 3

First-class data types in
shallow embedded
domain-specific languages
using metaprogramming

FP languages are excellent for hosting eDSLs because of their rich
type systems, minimal syntax, and referential transparency. However,
data types defined in the host language are not automatically available
in the embedded language. To do so, all the operations on the data
type must be ported to the eDSL resulting in a lot of boilerplate.

This chapter shows that by using metaprogramming, all first-order
user-defined data types can be automatically made first class in shallow
eDSLs. We show this by providing an implementation in Template Has-
kell (TH) for a typical DSL with two different semantics. Furthermore,
we show that by utilising quasiquotation, there is hardly any burden
on the syntax. Finally, the chapter also serves as a gentle introduction
to TH.

3.1 Introduction
FP languages are excellent candidates for hosting eDSLs because of their rich type
systems, minimal syntax, and referential transparency. By expressing the language
constructs in the host language, the parser, the type checker, and the run time can
be inherited from the host language. Unfortunately, data types defined in the host
language are not automatically available in the eDSL.



40 3.1. Introduction

The two main strategies for embedding DSLs in an FP language are deep
embedding (also called initial) and shallow embedding (also called final). Deep
embedding represents the constructs in the language as data types and the semantics
as functions over these data types. This makes extending the language with new
semantics effortless: just add another function. In contrast, adding language
constructs requires changing the data type and updating all existing semantics
to support this new construct. Shallow embedding on the other hand models the
language constructs as functions with the semantics embedded. Consequently,
adding a construct is easy, i.e. it only entails adding another function. Contrarily,
adding semantics requires adapting all language constructs. Lifting the functions to
type classes, i.e. parametrising the constructs over the semantics, allows extension
of the language both in constructs and in semantics orthogonally. This advanced
style of embedding is called tagless-final or class-based shallow embedding (Kiselyov,
2012).

While it is often possible to lift values of a user-defined data type to a value in
the DSL, it is not possible to interact with it using DSL constructs, since they are
not first-class citizens.

Concretely, it is not possible to 1. construct values from expressions using a
constructor, 2. deconstruct values into expressions using a deconstructor or pattern
matching, 3. test which constructor the value holds. The functions for this are
simply not available automatically in the embedded language. For some semantics—
such as an interpreter—it is possible to directly lift the functions from the host
language to the DSL. In other cases—e.g. compiling DSLs such as a compiler or a
printer—this is not possible (Elliott et al., 2003). Thus, all the operations on the
data type have to be defined by hand requiring a lot of plumbing and resulting in
a lot of boilerplate code.

To relieve the burden of adding all these functions, metaprogramming—and
custom quasiquoters—can be used. Metaprogramming entails that some parts of the
program are generated by a program itself, i.e. the program is data. Quasiquotation
is a metaprogramming mechanism that allows entering verbatim code for which
a—possibly user defined—translation is used to convert the verbatim code to host
language abstract syntax tree (AST) nodes. Metaprogramming allows functions to
be added to the program at compile time based on the structure of user-defined
data types.

3.1.1 Contributions

This chapter shows that with the use of metaprogramming, all first-order user-
defined data types can automatically be made first class for shallow eDSLs. It
does so by providing an implementation in TH for a typical DSL with two different
semantics: an interpreter and a pretty printer. Furthermore, we show that by
utilising quasiquotation, there is hardly any burden on the syntax. Finally, the
chapter also serves as a gentle introduction to TH and reflects on the process of
using TH.



Chapter 3. First-class data types in shallow embedded domain-specific . . . 41

3.2 Tagless-final embedding
Tagless-final embedding is an upgrade to standard shallow embedding achieved by
lifting all language construct functions to type classes. As a result, views on the
DSL are data types implementing these classes.

To illustrate the technique, a simple DSL, a language consisting of literals and
addition, is outlined. This language, implemented according to the tagless-final
style (Carette et al., 2009) in Haskell (Peyton Jones, 2003) consists initially only
of one type class containing two functions. The lit function lifts values from the
host language to the DSL domain. The class constraint Show is enforced on the
type variable a to make sure that the value can be printed. The infix function +.
represents the addition of two expressions in the DSL.

class Expr v where
lit :: Show a ⇒ a � v a
(+.) :: Num a ⇒ v a � v a � v a

infixl 6 +.

The implementation of a view on the DSL is achieved by implementing the type
classes with the data type representing the view. In the case of our example DSL,
an interpreter accounting for failure may be implemented as an instance for the
Maybe type. The standard infix functor application and infix sequential application
are used so that potential failure is abstracted away from.1

instance Expr Maybe where
lit a = Just a
(+.) l r = (+) <$> l <*> r

3.2.1 Adding language constructs
To add an extra language construct we define a new class housing it. For example,
to add division we define a new class as follows:

class Div v where
(/.) :: Integral a ⇒ v a � v a � v a

infixl 7 /.

Division is an operation that is undefined if the right operand is equal to zero.
To capture this behaviour, the Nothing constructor from Maybe is used to represent
errors. Both sides of the division operator are evaluated. If the right-hand side is
zero, the division is not performed and an error is returned instead:

instance Div Maybe where
(/.) l r = l >>= \x�r >>= \y�

i f y == 0 then Nothing else Just (x `div` y)

1
<$> :: (a � b) � f a � f b
<*> :: f (a � b) � f a � f b
infixl 4 <$>, <*>



42 3.2. Tagless-final embedding

3.2.2 Adding semantics
To add semantics to the DSL, the existing classes are implemented with a novel
data type representing the view on the DSL. First a data type representing the
semantics is defined. In this case, the printer is kept very simple for brevity and
just defined as a newtype of a string to store the printed representation.2 Since
the language is typed, the printer data type has to have a type variable, but it is
only used during typing—i.e. a phantom type (Leijen and Meijer, 2000):

newtype Printer a = P { runPrinter :: String }

The class instances for Expr and Div for the pretty printer are straightforward
and as follows:

instance Expr Printer where
lit a = P (show a)
(+.) l r = P ("(" ++ runPrinter l

++ "+" ++ runPrinter r ++ ")")

instance Div Printer where
(/.) l r = P ("(" ++ runPrinter l

++ "/" ++ runPrinter r ++ ")")

3.2.3 Functions
Adding functions to the language is achieved by adding a multi-parameter class
to the DSL. The type of the class function allows for the implementation to only
allow first-order functions by supplying the arguments in a tuple. Furthermore,
with the :- operator the syntax becomes useable. Finally, by defining the functions
as a high-order abstract syntax (HOAS) type safety is achieved (Chlipala, 2008;
Pfenning and Elliott, 1988). The complete definition looks as follows:

class Function a v where
fun :: ((a � v s) � In (a � v s) (v u)) � v u

data In a b = a :- b
infix 1 :-

The Function type class is now used to define functions with little syntactic
overhead.3 The following listing shows an expression in the DSL utilising two
user-defined functions:

fun \increment� (\x �x +. lit 1)
:- fun \divide� (\(x, y)�x /. y )
:- increment (divide (lit 38, lit 5))

2In this case a newtype is used instead of regular data declarations. newtypes are special
data types only consisting a single constructor with one field to which the type is isomorphic.
During compilation the constructor is completely removed resulting in no overhead (Peyton Jones,
2003, section 4.2.3).

3The BlockArguments extension of GHC is used to reduce the number of brackets that allows
lambda’s to be an argument to a function without brackets



Chapter 3. First-class data types in shallow embedded domain-specific . . . 43

The interpreter only requires one instance of the Function class that works for
any argument type. In the implementation, the resulting function g is simulta-
neously provided to the definition def. Because the laziness of Haskell’s lazy let
bindings, this results in a fixed point calculation:
instance Function a Maybe where

fun def = let g :- m = def g in m

The given Printer type is not sufficient to implement the instances for the
Function class, it must be possible to generate fresh function names. After extending
the Printer type to contain some sort of state to generate fresh function names
and a MonadWriter [String]4 to streamline the output, we define an instance for
every arity. To illustrate this, the instance for unary functions is shown, all other
arities are implemented in similar fashion.
instance Function () Printer where · · ·
instance Function (Printer a) Printer where · · ·

fun def = freshLabel >>= \f�
let g :- m = def $ \a0�const undefined

<$> (tell [" f ", show f, " ("]
>> a0 >> tell [")"])

in tell [" l e t f ", f, " a0 = "]
>> g (const undefined <$> tell ["a0"])

>> tell [" in "] >> m
instance Function (Printer a, Printer b) Printer where · · ·

Running the given printer on the example code shown before produces roughly
the following output, running the interpreter on this code results in Just 8.

let f0 a1 = a1 + 1
in let f2 a3 a4 = a3 / a4
in f0 (f2 38 5)

3.2.4 Data types
Lifting values from the host language to the DSL is possible using the lit function as
long as the type of the value has instances for all the class constraints. Unfortunately,
once lifted, it is not possible to do anything with values of the user-defined data type
other than passing them around. It is not possible to construct new values from
expressions in the DSL, to deconstruct a value into the fields, nor to test of which
constructor the value is. Furthermore, while in our language the only constraint is
the automatically derivable Show, in real-world languages the class constraints may
be very difficult to satisfy for complex types, for example serialisation to a single
stack cell in the case of a compiler.

As a consequence, for user-defined data types—such as a programmer-defined
list type5—to become first-class citizens in the DSL, language constructs for
constructors, deconstructors and constructor predicates must be defined. Field

4 freshLabel :: Printer String
tell :: MonadWriter w m ⇒ w � m ()



44 3.3. Template metaprogramming

selectors are also useful functions for working with user-defined data types, they
are not considered for the sake of brevity but can be implemented using the
deconstructor functions. The constructs for the list type would result in the
following class definition:
class ListDSL v where

−− constructors
nil :: v (List a)
cons :: v a � v (List a) � v (List a)
−− deconstructors
unNil :: v (List a) � v b � v b
unCons :: v (List a) � (v a � v (List a) � v b) � v b
−− constructor predicates
isNil :: v (List a) � v Bool
isCons :: v (List a) � v Bool

Furthermore, instances for the DSL’s views need to be created. For example,
to use the interpreter, the following instance must be available. Note that at first
glance, it would feel natural to have isNil and isCons return Nothing since we are
in the Maybe monad. However, this would fail the entire expression and the idea is
that the constructor test can be done from within the DSL.
instance ListDSL Maybe where

nil = Just Nil
cons hd tl = Cons <$> hd <*> tl
unNil d f = d >>= \Nil�f
unCons d f = d >>= \(Cons hd tl)�f (Just hd) (Just tl)
isNil d = d >>= \case6

Nil � Just True
_ � Just False

isCons d = d >>= \case
Cons _ _ � Just True
Nil � Just False

Adding these classes and their corresponding instances is tedious and results in
boilerplate code. We therefore resort to metaprogramming, and in particular TH
(Sheard and Peyton Jones, 2002) to alleviate this burden.

3.3 Template metaprogramming
Metaprogramming is a special flavour of programming where programs have the
ability to treat and manipulate programs or program fragments as data. There are
several techniques to facilitate metaprogramming, moreover it has been around
for many years now (Lilis and Savidis, 2019). Even though it has been around for
many years, it is considered complex (Sheard, 2001).

TH is GHC’s de facto metaprogramming system, implemented as a compiler
extension together with a library (Sheard and Peyton Jones, 2002)(GHC Team,

5For example: data List a = Nil | Cons {hd :: a, tl :: List a}
6\case is an abbreviation for \x�case x of · · · when using GHC’s LambdaCase extension.



Chapter 3. First-class data types in shallow embedded domain-specific . . . 45

2021b, section 6.13.1). Readers already familiar with TH can safely skip this
section.

TH adds four main concepts to the language, namely AST data types, splicing,
quasiquotation and reification. With this machinery, regular Haskell functions can
be defined that are called at compile time, inserting generated code into the AST.
These functions are monadic functions operating in the Q monad. The Q monad
facilitates failure, reification and fresh identifier generation for hygienic macros
(Kohlbecker et al., 1986). Within the Q monad, capturable and non-capturable
identifiers can be generated using the mkName and newName functions respectively.
The Peter Parker principle7 holds for the Q monad as well because it executes at
compile time and is very powerful. For example, it can subvert module boundaries,
thus accessing constructors that were hidden; access the structure of abstract types;
and it may cause side effects during compilation because it is possible to call IO
operations (Terei et al., 2012). To achieve the goal of embedding data types in a
DSL we refrain from using these unsafe features.

3.3.1 Data types
Firstly, for all of Haskell’s AST elements, data types are provided that are mostly
isomorphic to the actual data types used in the compiler. With these data types,
the entire syntax of a Haskell program can be specified. Often, a data type is
suffixed with the context, e.g. there is a VarE and a VarP for a variable in an
expression or in a pattern respectively. To give an impression of these data types,
a selection of data types available in TH is given below:
data Dec = FunD Name [Clause] | DataD Cxt Name · · · | SigD Name Type

| ClassD Cxt Name | · · ·
data Clause = Clause [Pat] Body [Dec]
data Pat = LitP Lit | VarP Name | TupP [Pat] | WildP | ListP [Pat] | · · ·
data Body = GuardedB [(Guard, Exp)] | NormalB Exp
data Guard = NormalG Exp | PatG [Stmt]
data Exp = VarE Name | LitE Lit | AppE Exp Exp | TupE [Maybe Exp]

| LamE [Pat] Exp | · · ·
data Lit = CharL Char | StringL String | IntegerL Integer | · · ·

To ease creating AST data types in the Q monad, lowercase variants of the
constructors are available that lift the constructor to the Q monad. For example,
for the LamE constructor, the following lamE function is available.
lamE :: [Q Pat] � Q Exp � Q Exp
lamE ps es = LamE <$> sequence ps <*> es

3.3.2 Splicing
Special splicing syntax ($( · · · )) marks functions for compile-time execution. Other
than that they always produce a value of an AST data type, they are regular
functions. Depending on the context and location of the splice, the result type

7With great power comes great responsibility.



46 3.4. Metaprogramming for generating DSL functions

is either a list of declarations, a type, an expression or a pattern. The result of
this function, when successful, is then spliced into the code and treated as regular
code by the compiler. Consequently, the code that is generated may not be type
safe, in which case the compiler provides a type error on the generated code. The
following listing shows an example of a TH function generating on-the-fly functions
for arbitrary field selection in a tuple. When called as $(tsel 2 4) it expands at
compile time to \(_, _, f, _)�f:
tsel :: Int � Int � Q Exp
tsel field total = do

f � newName " f "
lamE [ tupP [ i f i == field then varP f else wildP

| i�[0..total-1]]] (varE f)

3.3.3 Quasiquotation
Another key concept of TH is Quasiquotation, the dual of splicing (Bawden,
1999). While it is possible to construct entire programs using the provided data
types, it is a little cumbersome. Using Oxford brackets ([| . . . |]) or single
or double apostrophes, verbatim Haskell code can be entered that is converted
automatically to the corresponding AST nodes easing the creation of language
constructs. Depending on the context, different quasiquotes are used: • J · · · K or
Je · · · K for expressions • Jd · · · K for declarations • Jp · · · K for patterns • Jt · · · K for
types • ' · · · for function names • '' · · · for type names. It is possible to escape
the quasiquotes again by splicing. Variables defined within quasiquotes are always
fresh—as if defined with newName—but it is possible to capture identifiers using
mkName. For example, J\x�xK translates to newName "x" >>= \x�lamE [varP x] (
varE x) and does not interfere with other xs already defined.

3.3.4 Reification
Reification is the act of querying the compiler for information about a certain name.
For example, reifying a type name results in information about the type and the
corresponding AST nodes of the type’s definition. This information can then be
used to generate code according to the structure of data types. Reification is done
using the reify :: Name � Q Info function. The Info type is an algebraic data
type (ADT) containing all the—known to the compiler—information about the
matching type: constructors, instances, &c.

3.4 Metaprogramming for generating DSL func-
tions

With the power of metaprogramming, we can generate the boilerplate code for
our user-defined data types automatically at compile time. To generate the code
required for the DSL, we define the genDSL function. The type belonging to the
name passed as an argument to this function is made available for the DSL by



Chapter 3. First-class data types in shallow embedded domain-specific . . . 47

generating the typeDSL class and view instances. For the List type it is called as:
$(genDSL ''List).8

The genDSL function is a regular function—though TH requires that it is defined
in a separate module—that has type: Name � Q [Dec], i.e. given a name, it
produces a list of declarations in the Q monad. The genDSL function first reifies
the name to retrieve the structural information. If the name matches a type
constructor containing a data type declaration, the structure of the type—the type
variables, the type name and information about the constructors9—are passed to
the genDSL' function. The getConsName function filters out unsupported data types
such as GADTs and makes sure that every field has a name. For regular ADTs,
the adtFieldName function is used to generate a name for the constructor based on
the indices of the fields.10 From this structure of the type, genDSL' generates a
list of declarations containing a class definition (section 3.4.1), instances for the
interpreter (section 3.4.2), and instances of the printer (section 3.4.3) respectively.

genDSL :: Name � Q [Dec]
genDSL name = reify name >>= \case

TyConI (DataD cxt typeName tvs mkind constructors derives)
� mapM getConsName constructors >>= \d�genDSL' tvs typeName d

t � fail ("genDSL does not support : " ++ show t)

getConsName :: Con � Q (Name, [VarBangType])
getConsName (NormalC consName fs) = pure (consName,

[(adtFieldName consName i, b, t) | (i, (b, t))�[0..] `zip` fs])
getConsName (RecC consName fs) = pure (consName, fs)
getConsName c = fail ("genDSL does not support : " ++ show c)

genDSL' :: [TyVarBndr] � Name � [(Name, [VarBangType])] � Q [Dec]
genDSL' typeVars typeName constructors = sequence

[ mkClass, mkInterpreter, mkPrinter, · · · ]
where

(consNames, fields) = unzip constructors
· · ·

3.4.1 Class generation
The function for generating the class definition is defined in the where clause of the
genDSL' function. Using the classD constructor, a single type class is created with
a single type variable v. The classD function takes five arguments: 1. a context,
i.e. the class constraints, which is empty in this case 2. a name, generated from the
type name using the className function that simply appends the text DSL 3. a list
of type variables, in this case the only type variable is the view on the DSL, i.e.
v 4. functional dependencies, empty in our case 5. a list of function declarations,
i.e. the class members, in this case it is a concatenation of the constructors,

8'' is used instead of ' to instruct the compiler to look up the information for List as a type
and not as a constructor.

9Defined as type VarBangType = (Name, Bang, Type) by TH.
10adtFieldName :: Name � Integer � Name



48 3.4. Metaprogramming for generating DSL functions

deconstructors, and constructor predicates Depending on the required information,
either zipWith or map is used to apply the generation function to all constructors.

mkClass :: Q Dec
mkClass = classD (cxt []) (className typeName) [PlainTV (mkName "v")] []

( zipWith mkConstructor consNames fields
++ zipWith mkDeconstructor consNames fields
++ map mkPredicate consNames
)

In all class members, the view v plays a crucial role. Therefore, a definition for
v is accessible for all generation functions. Furthermore, the res type represents
the result type, it is defined as the type including all type variables. This result
type is derived from the type name and the list of type variables. In case of the
List type, res is defined as v (List a) and is available for as well:

v = varT (mkName "v")
res = v `appT` foldl appT (conT typeName)

(map getName typeVars)
where getName (PlainTV name) = varT name

getName (KindedTV name _) = varT name

3.4.1.1 Constructors

The constructor definitions are generated from just the constructor names and the
field information. All class members are defined using the sigD constructor that
represents a function signature. The first argument is the name of the constructor
function, a lowercase variant of the actual constructor name generated using the
constructorName function. The second argument is the type of the function. A
constructor Ck of type T where T tv0 . . . tvn = . . . | Ck a0 . . . am | . . . is defined
as a DSL function ck ::v a0 � . . . � v am � v (T v0 . . . vn). In the implementation,
first the view v is applied to all the field types. Then, the constructor type is
constructed by folding over the lifted field types with the result type as the initial
value using mkCFun.

mkConstructor :: Name � [VarBangType] � Q Dec
mkConstructor n fs = sigD (constructorName n) (mkCFun fs res)

mkCFun :: [VarBangType] � Q Type � Q Type
mkCFun fs res = foldr (\x y� Jt $x � $yK)

(map (\(_, _, t)�v `appT` pure t) fs)

3.4.1.2 Deconstructors

The deconstructor is generated similarly to the constructor as the function for
generating the constructor is the second argument modulo change in the result type.
A deconstructor Ck of type T is defined as a DSL function unCk :: v (T v0 . . . vn) �
(v a0 � . . . � v am � v b) � v b. In the implementation, mkCFun is reused to
construct the type of the deconstructor as follows:



Chapter 3. First-class data types in shallow embedded domain-specific . . . 49

mkDeconstructor :: Name � [VarBangType] � Q Dec
mkDeconstructor n fs = sigD (deconstructorName n)

Jt $res � $(mkCFun fs Jt $v $bK) � $v $bK
where b = varT (mkName "b")

3.4.1.3 Constructor predicates

The last part of the class definition are the constructor predicates, a function that
checks whether the provided value of type T contains a value with constructor Ck .
A constructor predicate for constructor Ck of type T is defined as a DSL function
isCk :: v (T v0 . . . vn) � v Bool. A constructor predicate—name prefixed by is—is
generated for all constructors. They all have the same type:

mkPredicate :: Name � Q Dec
mkPredicate n = sigD (predicateName n) Jt $res � $v BoolK

3.4.2 Interpreter instance generation
Generating the interpreter for the DSL means generating the class instance for
the Interpreter data type using the instanceD function. The first argument of the
instance is the context, this is left empty. The second argument of the instance is
the type, the Interpreter data type applied to the class name. Finally, the class
function instances are generated using the information derived from the structure
of the type. The structure for generating the function instances is very similar to
the class definition, only for the function instances of the constructor predicates,
the field information is required as well as the constructor names.

mkInterpreter :: Q Dec
mkInterpreter = instanceD (cxt [])

Jt $(conT (className typeName)) InterpreterK
( zipWith mkConstructor consNames fields
++ zipWith mkDeconstructor consNames fields
++ zipWith mkPredicate consNames fields)

where · · ·

3.4.2.1 Constructors

The interpreter is a view on the DSL that immediately executes all operations
in the Maybe monad. Therefore, the constructor function can be implemented by
lifting the actual constructor to the Maybe type using sequential application. I.e. for
a constructor Ck this results in the following constructor: ck a0 · · · am = pure Ck
<*> a0 <*> · · · <*> am. To avoid accidental shadowing, fresh names for all the

arguments are generated. The ifx function is used as a shorthand for defining infix
expressions.11

11 ifx :: String � Q Exp � Q Exp � Q Exp
ifx op a b = infixE (Just a) (varE (mkName op)) (Just b)



50 3.4. Metaprogramming for generating DSL functions

mkConstructor :: Name � [VarBangType] � Q Dec
mkConstructor consName fs = do

fresh � sequence [newName "a" | _�fs]
fun (constructorName consName) (map varP fresh)

(foldl (ifx "<∗>") Jpure $(conE consName)K
(map varE fresh))

3.4.2.2 Deconstructors

In the case of a deconstructor a function with two arguments is created: the object
itself (f) and the function doing something with the individual fields (d). To avoid
accidental shadowing first fresh names for the arguments and fields are generated.
Then, a function is created with the two arguments. First d is evaluated and bound
to a host language function that deconstructs the constructor and passes the fields
to f. I.e. a deconstructor function Ck is defined as: unCk d f = d >>= \(Ck a0 ..
am)�f (pure a0) · · · (pure am)).12

mkDeconstructor :: Name � [VarBangType] � Q Dec
mkDeconstructor consName fs = do

d � newName "d"
f � newName " f "
fresh � mapM (newName . nameBase . fst3) fs
fun (deconstructorName consName) [varP d, varP f]

J$(varE d) >>= \($(match f))�$(fapp f fresh)K
where fapp f = foldl appE (varE f) . map (\f� Jpure $(varE f)K)

match f = pure (ConP consName (map VarP f))

3.4.2.3 Constructor predicates

Constructor predicates evaluate the argument and make a case distinction on the
result to determine the constructor. To be able to generate a valid pattern in the
case distinction, the total number of fields must be known. To avoid having to
explicitly generate a fresh name for the first argument, a lambda function is used.
In general, the constructor selector for Ck results in the following code isCk f =
f >>= \case Ck _ · · · _ � pure True; _ � pure False. Generating this code is
done with the following function:

mkPredicate :: Name � [(Var, Bang, Type)] � Q Dec
mkPredicate n fs = fun (predicateName n) []

J\x�x >>= \case
$(conP n [wildP | _�fs]) � pure True
_ � pure FalseK

12The nameBase :: Name � String function from the TH library is used to convert a name
to a string.



Chapter 3. First-class data types in shallow embedded domain-specific . . . 51

3.4.3 Pretty printer instance generation
Generating the printer happen analogously to the interpreter, a class instance for
the Printer data type using the instanceD function.
mkPrinter :: Q Dec
mkPrinter = instanceD (cxt []) Jt $(conT (className typeName)) PrinterK

( zipWith mkConstructor consNames fields
++ zipWith mkDeconstructor consNames fields
++ map mkPredicate consNames)

To be able to define a printer that is somewhat more powerful, we provide
instances for MonadWriter; add a state for fresh variables and a context; and define
some helper functions the Printer datatype. The printLit function is a variant
of MonadWriters tell that prints a literal string, but it can be of any type (it is
a phantom type anyway). printCons prints a constructor name followed by an
expression, it inserts parenthesis only when required depending on the state. paren
always prints parenthesis around the given printer. >-> is a variant of the sequence
operator >> from the Monad class, it prints whitespace in between the arguments.
printLit :: String � Printer a
printCons :: String � Printer a � Printer a
paren :: Printer a � Printer a
(>->) :: Printer a1 � Printer a2 � Printer a3
pl :: String � Q Exp

3.4.3.1 Constructors

For a constructor Ck the printer is defined as: ck a0 · · · am = printCons "Ck"
(printLit "" >-> a0 >-> · · · >-> am). To generate the second argument to the
printCons function, a fold is used with printLit "" as the initial element to account
for constructors without any fields as well, e.g. Nil is translated to nil = printCons

" Nil " (printLit "").
mkConstructor :: Name � [VarBangType] � Q Dec
mkConstructor consName fs = do

fresh � sequence [newName " f " | _� fs]
fun (constructorName consName) (map varP fresh)

(pcons `appE` pargs fresh)
where pcons = JprintCons $(lift (nameBase consName))K

pargs fresh = foldl (ifx ">->") (pl "")
(map varE fresh)

3.4.3.2 Deconstructors

Printing the deconstructor for Ck is defined as:
unCk d f

= printLit "unCk d"
>-> paren (

printLit "\(Ck" >-> printLit "a0 · · · am" >> printLit ")� "



52 3.5. Pattern matching

>> f (printLit "a0") · · · (printLit "am")
)

The implementation for this is a little elaborate and it heavily uses the pl
function, a helper function that translates a string literal s to JprintLit $(lift s)
K, i.e. it lifts the printLit function to the TH domain.

mkDeconstructor :: Name � [VarBangType] � Q Dec
mkDeconstructor consName fs = do

d � newName "d"
f � newName " f "
fresh � sequence [newName "a" | _�fs]
fun (deconstructorName consName) (map varP [d, f])

J $(pl (nameBase (deconstructorName consName)))
>-> $(pl (nameBase d))
>-> paren ($(pl ('\\':'(':nameBase consName))

>-> $lam >> printLit ")� "
>> $(hoas f))K

where
lam = pl $ unwords [nameBase f | (f, _, _)�fs]
hoas f = foldl appE (varE f)

[pl (nameBase f) | (f, _, _)�fs]

3.4.3.3 Constructor predicates

For the printer, the constructor selector for Ck results in the following code isCk f
= printLit " isCk" >-> f.

mkPredicate :: Name � Q Dec
mkPredicate n = fun (predicateName n) []

J\x� $(pl $ nameBase $ predicateName n) >-> xK

3.5 Pattern matching
It is possible to construct and deconstruct values from other DSL expressions, and
to perform tests on the constructor but with a clunky and unwieldy syntax. They
have become first-class citizens in a grotesque way. For example, given that we
have some language constructs to denote failure and conditionals,13 writing a list
summation function in our DSL would be done as follows. For the sake of the
argument we take a little shortcut here and assume that the interpretation of the
DSL supports lazy evaluation by using the host language as a metaprogramming
language as well, allowing us to use functions in the host language to construct
expressions in the DSL.

13
class Support v where

if' :: v Bool � v a � v a � v a
bottom :: String � v a



Chapter 3. First-class data types in shallow embedded domain-specific . . . 53

program :: (ListDSL v, Support v, · · · ) ⇒ v Int
program

= fun \sum�(\l�if'(isNil l)
(lit 0)
(unCons l (\hd tl�hd +. sum tl)))

:- sum (cons (lit 38) (cons (lit 4) nil))

A similar Haskell implementation is much more elegant and less cluttered
because of the support for pattern matching. Pattern matching offers a convenient
syntax for doing deconstruction and constructor tests at the same time.
sum :: List Int � Int
sum Nil = 0
sum (List hd tl) = hd + sum tl

main = sum (Cons 38 (Cons 4 Nil))

3.5.1 Custom quasiquoters
The syntax burden of eDSLs can be reduced using quasiquotation. In TH, quasiquo-
tation is a convenient way to create Haskell language constructs by entering them
verbatim using Oxford brackets. However, it is also possible to create so-called
custom quasiquoters (Mainland, 2007). If the programmer writes down a fragment
of code between tagged Oxford brackets, the compiler executes the associated
quasiquoter functions at compile time. A quasiquoter is a value of the following
data type:
data QuasiQuoter = QuasiQuoter

{ quoteExp :: String � Q Exp
, quotePat :: String � Q Pat
, quoteType :: String � Q Type
, quoteDec :: String � Q Dec
}

The code between dsl brackets ( Jdsl · · · K) is preprocessed by the dsl quasiquoter.
Because the functions are executed at compile time, errors—thrown using the
MonadFail instance of the Q monad—in these functions result in compile time
errors. The AST nodes produced by the quasiquoter are inserted into the location
and checked as if they were written by the programmer.

To illustrate writing a custom quasiquoter, we show an implementation of a
quasiquoter for binary literals. The bin quasiquoter is only defined for expressions
and parses subsequent zeros and ones as a binary number and splices it back in the
code as a regular integer. Thus, Jbin 101010K results in the literal integer expression
42. If an invalid character is used, a compile-time error is shown. The quasiquoter
is defined as follows:
bin :: QuasiQuoter
bin = QuasiQuoter { quoteExp = parseBin }

where
parseBin :: String � Q Exp



54 3.5. Pattern matching

parseBin s = LitE . IntegerL <$> foldM bindigit 0 s

bindigit :: Integer � Char � Q Integer
bindigit acc '0' = pure (2 * acc)
bindigit acc '1' = pure (2 * acc + 1)
bindigit acc c = fail (" invalid char : " ++ show c)

3.5.2 Quasiquotation for pattern matching
Custom quasiquoters allow the DSL user to enter fragments verbatim, bypassing
the syntax of the host language. Pattern matching in general is not suitable for
a custom quasiquoter because it does not really fit in one of the four syntactic
categories for which custom quasiquoter support is available. However, a concrete
use of pattern matching, interesting enough to be beneficial, but simple enough for a
demonstration is the simple case expression, a case expression that does not contain
nested patterns and is always exhaustive. They correspond to multi-way conditional
expressions and can thus be converted to DSL constructs straightforwardly (Peyton
Jones, 1987, section 4.4).

In contrast to the binary literal quasiquoter example, we do not create the
parser by hand. The parser combinator library parsec is used instead to ease
the creation of the parser (Leijen and Meijer, 2001). First the location of the
quasiquoted code is retrieved using the location function that operates in the Q
monad. This location is inserted in the parsec parser so that errors are localised
in the source code. Then, the expr parser is called that returns an Exp in the
Q monad. The expr parser uses parsec’s commodity expression parser primitive
buildExpressionParser. The resulting parser translates the string directly into
TH’s AST data types in the Q monad. The most interesting parser is the parser
for the case expression that is an alternative in the basic expression parser basic.
A case expression is parsed when a keyword case is followed by an expression that
is in turn followed by a non-empty list of matches. A match is parsed when a
pattern (pat) is followed by an arrow and an expression. The results of this parser
are fed into the mkCase function that transforms the case into an expression using
DSL primitives such as conditionals, deconstructors and constructor predicates.
The above translates to the following skeleton implementation:
expr :: Parser (Q Exp)
expr = buildExpressionParser [ · · · ] basic

where
basic :: Parser (Q Exp)
basic = · · ·

<|> mkCase <$ reserved "case" <*> expr
<* reserved "of " <*> many1 match

<|> · · ·

match :: Parser (Q Pat, Q Exp)
match = (,) <$> pat <* reserved " � " <*> expr

pat :: Parser (Q Pat)



Chapter 3. First-class data types in shallow embedded domain-specific . . . 55

pat = conP <$> con <*> many var

Case expressions are transformed into constructors, deconstructors and con-
structor predicates, e.g. case e1 of Cons hd tl � e2; Nil � e3; is converted
to:

if' (isList e1)
(unCons e1 (\hd tl�e2))
(if' (isNil e1)

(unNil e1 e3)
(bottom "Exhausted case"))

The mkCase (line 1) function transforms a case expression into constructors,
deconstructors and constructor predicates. Line 3 first evaluates the patterns.
Then the patterns and their expressions are folded using the mkCase` function
(line 5). While a case exhaustion error is used as the initial value, this is never
called since all case expressions are exhaustive. For every case, code is generated
that checks whether the constructor used in the pattern matches the constructor
of the value using constructor predicates (line 11). If the constructor matches,
the deconstructor (line 12) is used to bind all names to the correct identifiers and
evaluate the expression. If the constructor does not match, the continuation ($rest)
is used (line 9).

1 mkCase :: Q Exp � [(Q Pat, Q Exp)] � Q Exp
2 mkCase name cases = do
3 pats � mapM fst cases
4 foldr (uncurry mkCase') Jbottom "Exhausted case"K
5 (zip pats (map snd cases))
6 where
7 mkCase' :: Pat � Q Exp � Q Exp � Q Exp
8 mkCase' (ConP cons fs) e rest
9 = Jif' $pred $then_ $restK

10 where
11 pred = varE (predicateName cons) `appE` name
12 then_ = J$(varE (deconstructorName cons))
13 $name $(lamE [pure f | f�fs] e)K

Finally, with this quasiquotation mechanism we can define our list summation
using a case expression. As a byproduct, syntactic cruft such as the special symbols
for the operators and calls to lit can be removed as well resulting in the following
summation implementation:

program :: (ListDSL v, DSL v, · · · ) ⇒ v Int
program

= fun \sum�(\l� Jdsl case l of
Cons hd tl � hd + sum tl
Nil � 0K)

:- sum (cons (lit 38) (cons (lit 4) nil))



56 3.6. Related work

3.6 Related work
Generic or polytypic programming is a promising technique at first glance for
automating the generation of function implementations (Lämmel and Peyton Jones,
2003). However, while it is possible to define a function that works on all first-order
types, adding a new function with a new name to the language is not possible. This
does not mean that generic programming is not useable for embedding pattern
matches. In generic programming, types are represented as sums of products and
using this representation it is possible to define pattern matching functions.

For example, Rhiger (2009) showed a method for expressing statically typed
pattern matching using typed higher-order functions. If not the host language
but the DSL contains higher order functions, the same technique could be applied
to port pattern matching to DSLs though using an explicit sums of products
representation. Atkey et al. describe embedding pattern matching in a DSL by
giving patterns an explicit representation in the DSL by using pairs, sums and
injections (Atkey et al., 2009, section 3.3).

McDonell et al. (2022) extends on this idea, resulting in a very similar but
different solution to ours. They used the technique that Atkey et al. showed
and applied it to deep embedding using the concrete syntax of the host language.
The scaffolding—e.g. generating the pairs, sums and injections—for embedding is
automated using generics but the required pattern synonyms are generated using
TH. The key difference to our approach is that we specialise the implementation
for each of the interpretations instead of providing a general implementation of
data type handling operations. Furthermore, our implementation does not require
a generic function to trace all constructors, resulting in problems with (mutual)
recursion.

Young et al. (2021) added pattern matching to a deeply eDSL using a compiler
plugin. This plugin implements an externalise :: a � E a function that allows
lifting all machinery required for pattern matching automatically from the host
language to the DSL. Under the hood, this function translates the pattern match
to constructors, deconstructors, and constructor predicates. The main difference
with this work is that it requires a compiler plugin while our metaprogramming
approach works on any compiler supporting a metaprogramming system similar to
TH.

3.6.1 Related work on Template Haskell
Metaprogramming in general is a very broad research topic and has been around
for years already. We therefore do not claim an exhaustive overview of related
work on all aspects of metaprogramming. However, we have tried to present most
research on metaprogramming in TH. Czarnecki et al. (2004) provide a more
detailed comparison of different metaprogramming techniques. They compare
staged interpreters, metaprogramming and templating by comparing MetaOCaml,
TH and C++ templates. TH has been used to implement related work. They all
differ slightly in functionality from our domain and can be divided into several
categories.



Chapter 3. First-class data types in shallow embedded domain-specific . . . 57

3.6.1.1 Generating extra code

Using TH or other metaprogramming systems it is possible to add extra code
to your program. The original TH paper showed that it is possible to create
variadic functions such as printf using TH that would be almost impossible to
define without (Sheard and Peyton Jones, 2002). Hammond et al. (2003) used
TH to generate parallel programming skeletons. In practise, this means that the
programmer selects a skeleton and, at compile time, the code is massaged to suit
the pattern and information about the environment is inlined for optimisation.

Polak and Jarosz (2006) implemented automatic GUI generation using TH.
Duregård and Jansson (2011) wrote a parser generator using TH and the custom
quasiquoting facilities. From a specification of the grammar, given in verbatim
using a custom quasiquoter, a parser is generated at compile time. Shioda et al.
(2014) used metaprogramming in the D programming language to create a DSL
toolkit. They also programmatically generate parsers and an interpretation for
either compiling or interpreting the intermediate representation (IR). Blanchette
et al. (2022) use TH to simplify the development of Liquid Haskell proofs. Folmer
et al. (2022) used TH to synthesize CλaSH (Baaij, 2015) ASTs to be processed.
In similar fashion, Materzok (2022) used TH to translate YieldFSM programs to
CλaSH.

3.6.1.2 Optimisation

Besides generating code, it is also possible to analyse existing code and perform
optimisations. Yet, this is dangerous territory because unwantedly, the semantics
of the optimised program may be slightly different from the original program.
For example, Lynagh (2003) implemented various optimisations in TH such as
automatic loop unrolling. The compile-time executed functions analyse the recursive
function and unroll the recursion to a fixed depth to trade execution speed for
program space. Also, O’Donnell (2004) embedded Hydra, a hardware description
language, in Haskell utilising TH. Using intensional analysis of the AST, it detects
cycles by labelling nodes automatically so that it can generate netlists. The authors
mention that alternatively this could have be done using a monad but this hampers
equational reasoning greatly, which is a key property of Hydra. Finally, Viera
et al. (2018) present a way of embedding attribute grammars in Haskell in a staged
fashion. Checking several aspects of the grammar is done at compile time using
TH while other safety checks are performed at runtime.

3.6.1.3 Compiler extension

Sometimes, expressing certain functionalities in the host languages requires a lot
of boilerplate, syntax wrestling, or other pains. Metaprogramming can relieve
some of this stress by performing this translation to core constructs automatically.
For example, implementing generic—or polytypic— functions in the compiler is
a major effort. Norell and Jansson (2004) used TH to implement the machinery
required to implement generic functions at compile time. Adams and DuBuisson
(2012) also explores implementing generic programming using TH to speed things



58 3.6. Related work

up considerably compared to regular generic programming. Clifton-Everest et al.
(2014) use TH with a custom quasiquoter to offer skeletons for workflows and
embed foreign function interfaces in a DSL. Eisenberg and Stolarek (2014) showed
that it is possible to programmatically lift some functions from the function domain
to the type domain at compile time, i.e. type families. Furthermore, Seefried
et al. (2004) argued that it is difficult to do some optimisations in eDSLs and
that metaprogramming can be of use there. They use TH to change all types to
unboxed types, unroll loops to a certain depth and replace some expressions by
equivalent more efficient ones. Torrano and Segura (2005) showed that it is possible
to use TH to perform a strictness analysis and perform let-to-case translation.
Both applications are examples of compiler extensions that can be implemented
using TH. Another example of such a compiler extension is shown by Gill (2009).
They created a meta level DSL to describe rewrite rules on Haskell syntax that are
applied on the source code at compile time.

3.6.1.4 Quasiquotation

By means of quasiquotation, the host language syntax that usually seeps through
the embedding can be hidden. The original TH quasiquotation paper (Mainland,
2007) shows how this can be done for regular expressions, not only resulting in
a nicer syntax but syntax errors are also lifted to compile time instead of run
time. Also, Kariotis et al. (2008) used TH to automatically construct monad stacks
without having to resort to the monad transformers library which requires advanced
type system extensions.

Najd et al. (2016) uses the compile time to be able to do normalisation for a DSL,
dubbing it quoted DSLs (QDSLs). They utilise the quasiquation facilities of TH to
convert Haskell DSL code to constructs in the DSL, applying optimisations such as
eliminating lambda abstractions and function applications along the way. Egi et al.
(2022) extended Haskell to support non-free data type pattern matching—i.e. data
type with no standard form, e.g. sets, graphs—using TH. Using quasiquotation,
they make a complicated embedding of non-linear pattern matching available
through a simple lens.

3.6.1.5 Typed Template Haskell

Typed Template Haskell (TTH) is a very recent extension/alternative to normal
TH (Pickering et al., 2019; Xie et al., 2022). Where in TH you can manipulate
arbitrary parts of the syntax tree, add top-level splices of data types, definitions
and functions, in TTH the programmer can only splice expressions but the AST
fragments representing the expressions are well-typed by construction instead of
untyped.

Pickering et al. (2020) implemented staged compilation for the generics-sop
(de Vries and Löh, 2014) generics library to improve the efficiency of the code using
TTH. Willis et al. (2020) used TTH to remove the overhead of parsing combinators.



Chapter 3. First-class data types in shallow embedded domain-specific . . . 59

3.7 Discussion
This chapter aims to be twofold, first, it shows how to inherit data types in a
DSL as first-class citizens by generating the boilerplate at compile time using TH.
Secondly, it introduces the reader to TH by giving an overview of the literature in
which TH is used and provides a gentle introduction by explaining the case study.

FP languages are especially suitable for embedding DSLs but adding user-
defined data types is still an issue. The tagless-final style of embedding offers
great modularity, extensibility and flexibility. However, user-defined data types
are awkward to handle because the built-in operations on them—construction,
deconstruction and constructor tests—are not inherited from the host language. We
showed how to create a TH function that will splice the required class definitions
and view instances. The code dataset also contains an implementation for defining
field selectors and provides an implementation for a compiler (see episode III).
Furthermore, by writing a custom quasiquoter, pattern matches in natural syntax
can be automatically converted to the internal representation of the DSL, thus
removing the syntax burden of the facilities. The use of a custom quasiquoter does
require the DSL programmer to write a parser for their DSL, i.e. the parser is
not inherited from the host language as is often the case in an embedded DSL.
However, by making use of modern parser combinator libraries, this overhead is
limited and errors are already caught at compilation.

3.7.1 Future work
For future work, it would be interesting to see how generating boilerplate for
user-defined data types translates from shallow embedding to deep embedding.
In deep embedding, the language constructs are expressed as data types in the
host language. Adding new constructs, e.g. constructors, deconstructors, and
constructor tests, for the user-defined data type therefore requires extending the
data type. Techniques such as data types à la carte (Swierstra, 2008) and open
data types (Löh and Hinze, 2006) show that it is possible to extend data types
orthogonally but whether metaprogramming can still readily be used is something
that needs to be researched. It may also be possible to implemented (parts) of the
boilerplate generation using TTH (see section 3.6.1.5) to achieve more confidence
in the type correctness of the implementation.

Another venue of research is to try to find the limits of this technique regarding
richer data type definitions. It would be interesting to see whether it is possible to
apply the technique on data types with existentially quantified type variables or
full-fledged generalised ADTs (Hinze, 2003). It is not possible to straightforwardly
lift the deconstructors to type classes because existentially quantified type variables
will escape. Rank-2 polymorphism offers tools to define the types in such a way
that this is not the case anymore. However, implementing compiling views on the
DSL is complicated because it would require inventing values of an existentially
quantified type variable to satisfy the type system which is difficult.

Finally, having to write a parser for the DSL is extra work. Future research
could determine whether it is possible to generate this using TH as well.



60 3.7. Discussion



Episode II:

Orchestrating the Internet of Things using
Task-Oriented Programming

61





63

Chapter 4

An introduction to edge
device programming

This chapter introduces the monograph. It compares traditional
edge device programming to TOP by:

• introducing edge device programming;
• showing how to create the Hello World! application for microcon-

trollers using Arduino and mTask;
• extending the idea to cooperative multitasking, uncovering prob-

lems using Arduino that do not exist in mTask;
• and concluding with a reading guide for the remainder of the

monograph.

The edge layer of IoT systems predominantly consists of microcontrollers. Microcon-
trollers are tiny computers designed specifically for embedded applications. They
differ significantly from regular computers in many aspects. For example, they are
much smaller; only have a fraction of the memory and processor speed; and run on
different architectures. Furthermore, they have much more energy-efficient sleep
modes, and support connecting and interfacing with peripherals such as sensors
and actuators. To illustrate the difference in characteristics, table 4.1 compares the
hardware properties of a typical laptop to the characteristics two popular micro-
controllers. As a consequence of these differences, development for microcontrollers
is unlike development for traditional computers. Programming microcontrollers
requires an elaborate multistep toolchain of compilation, linkage, binary image
creation, and burning this image onto the flash memory of the microcontroller in
order to run a program. Furthermore, as there is no OS to coordinate multiple
tasks running at the same time, the software is usually written as a cyclic executive.
Hence, all tasks must be manually combined into a single program.



64 4.1. TOP for the IoT

Table 4.1: Hardware characteristics of a laptop and two typical microcontrollers.

Laptop Atmega328P ESP8266
CPU speed 2 GHz to 4 GHz 16 MHz 80 MHz or 160 MHz
№ cores 4 to 8 1 1
Storage 1 TiB 32 KiB 0.5 MiB to 4 MiB
RAM 4 GiB to 16 GiB 2 KiB 160 KiB
Power 50 W to 100 W 0.13 mW to 250 mW 0.1 mW to 350 mW
Size ±1060 cm3 ±7.5 cm3 ±1.1 cm3

Display 1920 × 1080 × 24 1 × 1 × 1 1 × 1 × 1
Price N1500 N3 N4

All microcontroller models require their own vendor-provided drivers, hardware
abstraction layer, compilers and RTSs. To structure this jungle of tools, platforms
exist that provide an abstraction layer over the low-level toolchains. An example
of this is the Arduino environment.1 Originally it was designed for the in-house
developed open-source hardware with the same name, but the setup allows porting
to many architectures by vendor-provided cores. This set of tools is specifically
designed for education and prototyping and hence used here to illustrate tradi-
tional microcontroller programming. It consists of an IDE containing toolchain
automation, a dialect of C/C++, and libraries providing an abstraction layer for
microcontroller behaviour. With Arduino, the programmer can program multiple
types of microcontrollers using a single language. Using the IDE and toolchain
automation, code can be executed easily on many types of microcontrollers with a
single press of a button.

4.1 TOP for the IoT
TOP is a programming paradigm that allows multi-tier interactive systems to be
generated from a single declarative source (see section 1.4). An example of a TOP
system is iTask, a general-purpose TOP language for programming interactive
distributed web applications. Such web applications often form the core of the
topmost two layers of IoT applications: the presentation and application layer.
Furthermore, IoT edge devices are typically programmed with similar workflow-like
programs for which TOP is very suitable. Directly incorporating the perception
layer, and thus edge devices, in iTask however is not straightforward. All iTask
applications carry the weight of multi-user TOP programs that can generically
generate webpages, communication, and storage for all data types in the program.
As a result, the iTask system targeting relatively fast and hence energy-hungry
systems with large amounts of RAM and a speedy connection. Edge devices in
IoT systems are typically slow but energy efficient and do not have the memory
to run the naturally heap-heavy feature-packed functional programs that iTask

1https://www.arduino.cc, accessed on: 19th December, 2022

https://www.arduino.cc


Chapter 4. An introduction to edge device programming 65

programs are. The mTask system bridges this gap by providing a domain-specific
TOP language for IoT edge devices. Domain-specific knowledge is embedded in
the language and execution platform and unnecessary features for edge devices are
removed to drastically lower the hardware requirements. Programs in mTask are
written in the mTask DSL, a TOP language that offers a similar abstraction level
as iTask. Tasks in mTask operate as if they are iTask tasks, their task value is
observable by other tasks, and they can share data using iTask SDSs. This allows
for programming entire IoT systems from a single abstraction level, source code,
and programming paradigm.

4.2 Hello world!
Traditionally, the first program that one writes when trying a new language is
the so-called Hello World! program. This program has the single task of printing
the text Hello World! to the screen and exiting again. It helps the programmer
to become familiarised with the syntax of the language and to verify that the
toolchain and runtime environment are working. Microcontrollers usually do not
come with screens in the traditional sense. Nevertheless, almost always there is a
built-in 1 pixel screen with a 1 bit color depth, namely the on-board LED. The
Hello World! equivalent for microcontrollers blinks this LED.

Creating a blink program using C/C++ and the Arduino libraries result in the
code seen in listing 4.1. Arduino programs are implemented as cyclic executives
and hence, each program defines a setup and a loop function. The setup function
is executed only once on boot, the loop function is continuously called afterwards
and contains the event loop. In between the executions of the loop function, system
and maintenance code is executed. In the blink example, the setup function only
contains code for setting the GPIO pin to the correct mode. The loop function
alternates the state of the pin representing the LED between HIGH and LOW, turning
the LED off and on respectively. In between, it waits 500 ms so that the blinking
is actually visible for the human eye.
void setup() {

pinMode(D2, OUTPUT);
}
void loop() {

digitalWrite(D2, HIGH);
delay(500);
digitalWrite(D2, LOW);
delay(500);

}

Listing (C++) 4.1: Blinking an LED.

4.2.1 Blinking the LED in mTask
Naively translating the traditional blink program to mTask can be done by simply
substituting syntax as seen in listing 4.2. E.g. digitalWrite becomes writeD,



66 4.3. Multitasking

literals are prefixed with lit, and pinMode becomes declarePin. In contrast to the
imperative C++ dialect, mTask is a TOP language and therefore there is no such
thing as a loop, only task combinators to combine tasks. The task is not the single
cyclic executive and therefore consists of just a main expression. The task resulting
from the main expression is continuously executed by the RTS. To simulate a loop,
the rpeat task combinator is used as this task combinator executes the argument
task and, when stable, reinstates it. The body of the rpeat task contains a task
that writes to the pins and waits in between. The tasks are connected using the
sequential >>|. combinator that for all current intents and purposes executes the
tasks after each other.
blinkTask :: Main (MTask v ()) | mtask v
blinkTask = declarePin D2 PMOutput \ledPin�

{main = rpeat (
writeD ledPin true

>>|. delay (lit 500)
>>|. writeD ledPin false
>>|. delay (lit 500))

}
Listing (Clean) 4.2: Blinking the LED using the rpeat combinator.

The mTask DSL is hosted in a full-fledged FP language. It is therefore also
possible to define the blinking behaviour as a function. Listing 4.3 shows this more
natural translation. The main expression is a call to the blink mTask function
parametrised with the state. The blink function first writes the current state to
the LED, waits for the specific time, and calls itself recursively with the inverse
of the state, resulting in the blinking behaviour. Creating recursive functions like
this is not possible in the Arduino language because the program would run out of
stack quickly and combining multiple tasks defined like this would be very difficult.
blinkTask :: Main (MTask v ()) | mtask v
blinkTask = declarePin D2 PMOutput \ledPin�

fun \blink = (\st�
writeD ledPin st

>>|. delay (lit 500)
>>|. blink (Not st))

In {main = blink true}
Listing (Clean) 4.3: Blinking the LED using a function.

4.3 Multitasking
Now say that we want to blink multiple blinking patterns on different LEDs
concurrently. For example, blink three LEDs connected to GPIO pins 1 , 2 and 3
at intervals of 500 ms, 300 ms and 800 ms. Intuitively, you would want to lift the
blinking behaviour to a function in order to minimise duplicate code, and increase
modularity by calling this function three times with different parameters as shown
in listing 4.4.



Chapter 4. An introduction to edge device programming 67

void setup () { ... }
void blink(int pin, int wait) {

digitalWrite(pin, HIGH);
delay(wait);
digitalWrite(pin, LOW);
delay(wait);

}
void loop() {

blink (D1, 500);
blink (D2, 300);
blink (D3, 800);

}
Listing (C++) 4.4: Naive approach to multiple blinking patterns.

long led1 = 0, led2 = 0, led3 = 0;
bool st1 = false, st2 = false, st3 = false;

void setup () { ... }
void blink(int pin, int interval, long *lastrun, bool *st) {

if (millis() - *lastrun > interval) {
digitalWrite(pin, *st = !*st);
*lastrun += interval;

}
}
void loop() {

blink(D1, 500, &led1, &st1);
blink(D2, 300, &led2, &st1);
blink(D3, 800, &led3, &st1);

}
Listing (C++) 4.5: Threading three blinking patterns.

Unfortunately, this does not work because the delay function blocks all other
execution. The resulting program blinks the LEDs after each other instead of at
the same time. To overcome this, it is necessary to slice up the blinking behaviour
in small fragments and interleave it manually (Feijs, 2013).

Listing 4.5 shows how three different blinking patterns could be implemented in
Arduino using the slicing method. If we want the blink function to be a separate
parametrisable function we need to explicitly provide all references to the required
global state. Furthermore, the delay function can not be used and polling millis
is required. The millis function returns the number of milliseconds that have
passed since the boot of the microcontroller. If the delay passed to the delay
function is long enough, the firmware may decide to put the processor in sleep
mode, reducing the power consumption drastically. When polling millis is used,
this therefore potentially affects power consumption since the processor is busy



68 4.4. Conclusion and reading guide

looping all the time, not knowing when to go to sleep. Manually combining
tasks into a single modular program is very error-prone, requires a lot of pointer
juggling, and generally results into spaghetti code. Furthermore, it is very difficult
to represent dependencies between threads. Often state machines have to be
explicitly programmed and merged by hand to achieve this. In the simple case
of blinking three LEDs according to fixed intervals, it is possible to calculate
the delays in advance using static analysis and generate the appropriate delay
calls. Unfortunately, this is very hard when for example the blinking patterns are
determined at runtime.

4.3.1 Multitasking in mTask
In mTask, expressions are eagerly evaluated in an interpreter and tasks are executed
by small-step rewrite rules. In between these rewrite steps, other tasks are executed
and communication is handled. Consequently, and in contrast to Arduino, the
delay task in mTask does not block the execution. It has no observable value until
the target waiting time has passed, and is thence stable. As there is no global
state, the function is parametrised with the current status, the pin to blink and the
waiting time. With a parallel combinator, tasks are executed seemingly at the same
time, i.e. their very short small-step reduction steps are interleaved. Therefore,
blinking three different blinking patterns is as simple as combining the three calls
to the blink function with their arguments as seen in listing 4.6.

blinktask :: MTask v () | mtask v
blinktask =

declarePin D1 PMOutput \d1�
declarePin D2 PMOutput \d2�
declarePin D3 PMOutput \d3�
fun \blink = (\(st, pin, wait)�

delay wait
>>|. writeD pin st
>>|. blink (Not st, pin, wait))

In {main = blink (true, d1, lit 500)
.||. blink (true, d2, lit 300)
.||. blink (true, d3, lit 800)

}

Listing (Clean) 4.6: Threading three blinking patterns.

4.4 Conclusion and reading guide
This chapter introduced traditional edge device programming and programming
edge devices using mTask. The edge layer of IoT systems is powered by micro-
controllers. Microcontrollers have significantly different characteristics to regular
computers. Programming them happens through compiled firmwares using low-level
imperative programming languages. Due to the lack of an OS, writing applications
that perform multiple tasks at the same time is error-prone, becomes complex,



Chapter 4. An introduction to edge device programming 69

and requires a lot of boilerplate such as manual scheduling code. With the mTask
system, a TOP programming language for IoT edge devices, this limitation can
be overcome. Since a lot domain-specific knowledge is built into the language and
RTS, the hardware requirements can be kept relatively low while maintaining a
high abstraction level. Tasks in mTask are high-level specifications of the work
that needs to be done, they can be combined using task combinators, and share
data using SDSs. Furthermore, the programs are automatically integrated with
iTask, a TOP system for creating interactive distributed web applications, allowing
for data sharing, task coordination, and dynamic construction of tasks over all
layers of an IoT system.

The following chapters of this monograph thoroughly introduce all aspects of
the mTask system. First, the language setup and interface are shown in chapter 5.
Chapter 6 shows the integration of mTask and iTask. Then, chapter 7 provides the
implementation of the DSL, the compilation schemes, instruction set, and details on
the interpreter. Chapter 8 explains all green computing aspects of mTask, i.e. task
scheduling and processor interrupts. Finally, chapter 9 concludes, shows related
work, and provides a short history of mTask.



70 4.4. Conclusion and reading guide



71

Chapter 5

The mTask language

This chapter introduces the TOP language mTask by:
• introducing class-based shallow embedding and the setup of the

mTask language;
• describing briefly the various interpretations;
• demonstrating how the type system is leveraged to enforce all

constraints;
• showing the language interface for expressions, datatypes, and

functions;
• and explaining the tasks, task combinators, and SDSs.

Regular FP and TOP languages do not run on resource-constrained edge devices.
A DSL is therefore used as the basis of the mTask system, a complete TOP
programming environment for programming microcontrollers. It is implemented
as an eDSL in Clean using class-based—or tagless-final—embedding. This means
that the language interface, i.e. the language constructs, are a collection of type
classes. Interpretations of this interface are data types implementing these classes.
Due to the nature of this embedding technique, it is possible to have multiple
interpretations for programs written in the mTask language. Furthermore, this
particular type of embedding has the property that it is extensible both in language
constructs and in interpretations. Adding a language construct is as simple as
adding a type class. Adding an interpretation is done by creating a new data type
and providing implementations for the various type classes.

In order to reduce the hardware requirements for devices running mTask
programs, several measures have been taken. Programs in mTask are written in the
mTask DSL, separating them from the host iTask program. This allows the tasks
to be constructed at compile time in order to tailor-make them for the specific
work requirements. Furthermore, the mTask language is restricted: there are no



72 5.1. Class-based shallow embedding

recursive data structures, no higher-order functions, strict evaluation, and functions
and objects can only be declared at the top level.

5.1 Class-based shallow embedding
Let us illustrate this technique by taking the very simple language of literal values.
This language interface can be described using a single type constructor class with
a single function lit. This function is for lifting values, when it has a toString
instance, from the host language to our new DSL. The type variable v of the type
class represents the view on the language, the interpretation.
class literals v where

lit :: a � v a | toString a

Providing an evaluator is straightforward as can be seen in the following listing.
The evaluator is just a box holding a value of the computation, but it can also be
something more complex such as a monadic computation.
:: Eval a = Eval a

runEval :: (Eval a) � a
runEval (Eval a) = a

instance literals Eval where
lit a = Eval a

Extending the language with a printer is done by defining a new data type and
providing instances for the type constructor classes. The printer shown below only
stores a printed representation and hence the type variable is just a phantom type:
:: Printer a = Printer String

runPrinter :: (Printer a) � String
runPrinter (Printer a) = a

instance literals Printer where
lit a = Printer (toString a)

Adding language constructs happens by defining new type classes and giving
implementations for the interpretations. The following listing adds an addition
construct to the language and shows the implementations for the evaluator and
printer.
class addition v where

add :: v a � v a � v a | + a

instance addition Eval where
add (Eval l) (Eval r) = Eval (l + r)

instance addition Printer where
add (Printer l) (Printer r) = Printer ("(" +++ l +++ "+" +++ r +++ ")")



Chapter 5. The mTask language 73

Terms in our toy language can be overloaded in their interpretation, they are
just an interface. For example, 1 +5 is written as add (lit 1) (lit 5) and has the
type v Int | literals, addition v. However, due to the way let-polymorphism
is implemented in most functional languages, it is not always straightforward to
use multiple interpretations in one function. Creating such a function, e.g. one
that both prints and evaluates an expression, requires rank-2 polymorphism (see
listing 5.4).

5.2 Types
The mTask language is a tagless-final eDSL as well. As it is shallowly embedded,
the types of the terms in the language can be constrained by type classes. Types
in the mTask language are expressed as types in the host language, to make the
language type safe. However, not all types in the host language are suitable
for microcontrollers that may only have 2 KiB of RAM, so class constraints are
added to the DSL functions. Table 5.1 shows the mapping from Clean types to
C/C++ types. The most used class constraint is the type class collection containing
functions for serialisation, printing, iTask constraints, &c (Plasmeijer et al., 2021,
section 6.9). Most of these functions are automatically derivable using generic
programming but can be specialised when needed. An even stronger restriction
is defined for types that have a stack representation. This basicType class has
instances for many Clean basic types such as Int, Real and Bool. These class
constraints for values in mTask are omnipresent in all functions and therefore
usually omitted for brevity and clarity.

Table 5.1: Translation from Clean/mTask data types to C/C++ datatypes.

Clean/mTask C/C++ №bits
Bool bool 16
Char char 16
Int int16_t1 16
Real float 32
:: Long int32_t 32
:: T = A | B | C enum 16

Listing 5.1 contains the definitions for the auxiliary types and type constraints
(such as type and basicType) that are used to construct mTask expressions.
class type t | iTask, · · · , fromByteCode, toByteCode t
class basicType t | type t where · · ·

Listing (Clean) 5.1: Classes and class collections for the mTask language.

The mTask language interface consists of a core collection of type classes bundled
in the type class class mtask (see listing 5.2). Every interpretation of mTask terms
implements the type classes in the mtask class collection.

1In Arduino C/C++ this usually equals a long.



74 5.3. Expressions

class mtask v | expr, · · · , int, real, long v

Listing (Clean) 5.2: Class collection for the mTask language.

Peripheral, SDS, and function definitions are always defined at the top level
of mTask programs. This is enforced by the Main type. Most top level definitions
are defined using HOAS. To make their syntax friendlier, the In type—an infix
tuple—is used to combine these top level definitions. To illustrate the structure of
a mTask programs, listing 5.3 shows a skeleton of a program.
// From the mTask library
:: Main a = { main :: a }
:: In a b = (In) infix 0 a b

someTask :: MTask v Int | mtask v & lowerSds v & sensor1 v & · · ·
someTask =

sensor1 config1 \sns1�
sensor2 config2 \sns2�

sds \s1 = initialValue
In lowerSds \s2 = someiTaskSDS
In fun \fun1 = ( \(a0, a1)� · · · )
In fun \fun2 = ( \a� · · · )
In { main = mainexpr }

Listing (Clean) 5.3: Auxiliary types and example task in the mTask language.

Expressions in the mTask language are usually overloaded in their interpretation
(v). In Clean, all free variables in a type are implicitly universally quantified. In
order to use the mTask expressions with multiple interpretations, rank-2 polymor-
phism is required (Odersky and Läufer, 1996). Listing 5.4 shows an example of
a function that simulates an mTask expression while showing the pretty printed
representation in parallel. Providing a type for the simulateAndPrint function is
mandatory as the compiler cannot infer the type of rank-2 polymorphic functions
(Plasmeijer et al., 2021, section 3.7.4).
simulateAndPrint :: (A.v: Main (MTask v a) | mtask v) � Task a | type a
simulateAndPrint mt =

simulate mt
-|| Hint "Current task: " @>> viewInformation [] (showMain mt)

Listing (Clean) 5.4: Rank-2 polymorphism to allow multiple interpretations.

5.3 Expressions
This section shows all mTask language constructs for expressions. Listing 5.5
shows the expr class containing the functionality to: lift values from the host
language to the mTask language (lit); perform numeric and boolean arithmetics;
do comparisons; and perform conditional execution. For every common boolean
and arithmetic operator in the host language, an mTask variant is present. The
operators are suffixed by a period to not clash with the built-in operators in Clean.



Chapter 5. The mTask language 75

class expr v where
lit :: t � v t | type t
(+.) infixl 6 :: (v t) (v t) � v t | basicType, +, zero t
· · ·
(&.) infixr 3 :: (v Bool) (v Bool) � v Bool
(|.) infixr 2 :: (v Bool) (v Bool) � v Bool
Not :: (v Bool) � v Bool
(==.) infix 4 :: (v a) (v a) � v Bool | Eq, basicType a
· · ·
If :: (v Bool) (v t) (v t) � v t | type t

Listing (Clean) 5.5: The mTask class for expressions.

Conversion to and fro data types is available through the overloaded functions
int, long and real. These functions convert the argument to the respective type
similar to casting in C. For most interpretations, there are instances of these classes
for all numeric types.

class int v a :: (v a) � v Int
class real v a :: (v a) � v Real
class long v a :: (v a) � v Long

Listing (Clean) 5.6: Type conversion functions in mTask.

Values from the host language must be explicitly lifted to the mTask language us-
ing the lit function. For convenience, there are many lower-cased macro definitions
for often-used constants such as true :== lit True, false :== lit False.

Listing 5.7 shows some examples of expressions in the mTask language. Since
they are only expressions, there is no need for a Main. e0 defines the literal 42 ,
e1 calculates the literal 42 .0 using real numbers and uses a type conversion. e2
compares e0 and e1 as integers and if they are equal it returns e2/2 and e0 otherwise.

e0 :: v Int | expr v
e0 = lit 42

e1 :: v Real | expr v
e1 = lit 38.0 +. real (lit 4)

e2 :: v Int | expr v
e2 = If (e0 ==. int e1)

(int e1 /. lit 2) e0

Listing (Clean) 5.7: Example mTask expressions.

The mTask language is shallowly embedded in Clean and the terms are con-
structed and hence compiled at run time. This means that mTask programs can
also be tailor-made at run time using Clean functions, maximising the linguistic
reuse (Krishnamurthi, 2001). The approxEqual function in listing 5.8 is an example
of this. It performs a simple approximate equality—admittedly not taking into
account all floating point peculiarities. When calling approxEqual in an mTask
expression, the resulting code is inlined.



76 5.3. Expressions

approxEqual :: (v Real) (v Real) (v Real) � v Bool | expr v
approxEqual x y eps = x ==. y

|. If (x >. y)
(x -. y <. eps)
(y -. x <. eps)

Listing (Clean) 5.8: Approximate equality in mTask.

5.3.1 Data types
Most of the fixed-size basic types from Clean are mapped on mTask types (see
table 5.1). However, it is useful to have access to compound types as well. All
types in mTask have a fixed-size representation on the stack, so sum types are not
(yet) supported. It is possible to lift any types, e.g. tuples, using the lit function as
long as they have instances for the required type classes. However, you cannot do
anything with values of the types besides passing them around. To be able to use
types as first-class citizens, constructors, and field selectors or deconstructors are
required (see chapter 3). Listing 5.9 shows the scaffolding required for supporting
tuples in mTask. Besides the constructors and field selectors, there is also a helper
function available that transforms a function from a tuple of mTask expressions to
an mTask expression of a tuple, a deconstructor. Examples of mTask programs
using tuples are seen later in section 5.3.2.
class tupl v where

tupl :: (v a) (v b) � v (a, b) | type a & type b
first :: (v (a, b)) � v a | type a & type b
second :: (v (a, b)) � v b | type a & type b

tupopen :: ((v a, v b) � v c) � ((v (a, b)) � v c)
tupopen f :== \v�f (first v, second v)

Listing (Clean) 5.9: Tuple constructor and field selectors in mTask.

5.3.2 Functions
Adding functions to the language is achieved by one type class in the mTask
DSL. By using HOAS, both the function definitions and the calls to the functions
are controlled by the DSL (Chlipala, 2008; Pfenning and Elliott, 1988). The
mTask language enforces all functions to be first-order and forbids partial function
application in order to reduce memory use and code size. These restrictions are
enforced by using a multi-parameter type class with two parameters instead of
a type class with one type variable. The first parameter represents the shape of
the arguments, the second parameter the interpretation. An instance is provided
for each function arity instead of providing an instance for all possible arities to
enforce that all functions are first order. By using argument tuples to represent the
arity of the function, it is not possible to create partial function applications. The
definition of the type class and some instances for the pretty printer are shown in
listing 5.10.



Chapter 5. The mTask language 77

class fun a v :: ((a � v s) � In (a � v s) (Main (MTask v u)))
� Main (MTask v u)

instance fun () Show where · · ·
instance fun (Show a) Show | type a where · · ·
instance fun (Show a, Show b) Show | type a, type b where · · ·
instance fun (Show a, Show b, Show c) Show | type a, · · · where · · ·
· · ·

Listing (Clean) 5.10: Functions in mTask.

Deriving how to define and use functions from the type is quite a challenge even
though the resulting syntax is made easier using the infix type In. Splitting out
the function definition for each single arity means that for every function arity and
combination of arguments, a separate class constraint is required. Many of the often
used functions signatures are in the mtask class constraint collection. Listing 5.11
show some examples of functions to illustrate the syntax. The factorial functions
shows a recursive version of the factorial function. The factorialtail function
is a tail-call optimised version of the above. It also illustrates a manually added
class constraint, as they are required when functions are used that have signatures
not present in the mtask class collection. Zero-arity functions are always called
with unit as an argument, which is shown in the zeroarity function. Finally, the
swapTuple function shows an example of a tuple being swapped using the tupopen
macro (see listing 5.9).

factorial :: Main (v Int) | mtask v
factorial =

fun \fac = (\i�If (i <. lit 1)
(lit 1)
(i *. fac (i -. lit 1)))

In {main = fac (lit 5) }

factorialtail :: Main (v Int) | mtask v & fun (v Int, v Int) v
factorialtail =

fun \facacc = (\(acc, i)�If (i <. lit 1)
acc
(fac (acc *. i, i -. lit 1)))

In fun \fac = (\i�facacc (lit 1, i))
In {main = fac (lit 5) }

zeroarity :: Main (v Int) | mtask v
zeroarity =

fun \fourtytwo = (\()�lit 42)
In fun \add = (\(x, y)�x +. y)
In {main = add (fourtytwo (), lit 9)}



78 5.4. Tasks and task combinators

swapTuple :: Main (v (Int, Bool)) | mtask v
swapTuple =

fun \swap = (tupopen \(x, y)�tupl y x)
In {main = swap (tupl true (lit 42)) }

Listing (Clean) 5.11: Examples of various functions in mTask.

5.4 Tasks and task combinators

This section describes the task language of mTask. TOP languages are programming
languages enriched with tasks. Tasks represent abstract pieces of work and can be
combined using combinators. Creating tasks is done by evaluating expressions. The
result of an evaluated task expression is called a task tree, a run time representation
of a task. In order to evaluate a task, the resulting task tree is rewritten using
small-step reduction, i.e. similar to rewrite systems, they perform a bit of work,
step by step. With each step, a task value is yielded that is observable by other
tasks and can be acted upon.

The implementation in the mTask RTS for task execution is shown in chapter 7.
The following sections show the definitions of the functions for creating tasks. They
also show the semantics of tasks: their observable value in relation to the work that
the task represents. The task language of mTask is divided into three categories:

Basic tasks are the leaves in the task trees. In most TOP systems, the basic
tasks are called editors, modelling the interactivity with the user. In mTask,
there are no editors in that sense. Editors in mTask model the interaction with
the outside world through peripherals such as sensors and actuators.

Task combinators provide a way of describing the workflow or collaboration.
They combine one or more tasks into a compound task.

SDSs are typed references to shared memory in mTask. The data is available
for tasks using many-to-many communication but only from within the task
language to ensure atomicity.

As mTask is integrated with iTask, a stability distinction is made for task values
just as in iTask. A task in mTask is denoted by the DSL type synonym shown in
listing 5.12. A task is an expression of the type TaskValue a in interpretation v.

:: MTask v a :== v (TaskValue a)

// From the iTask library
:: TaskValue a

= NoValue
| Value a Bool

Listing (Clean) 5.12: Task type in mTask.



Chapter 5. The mTask language 79

5.4.1 Basic tasks
The mTask language contains interactive and non-interactive basic tasks. As mTask
is integrated in iTask, the same notion of stability is applied to the task values.
Task values have either no value, or are unstable or stable (see figure 1.4). Once
a task yields a stable value, it does not change anymore. The most rudimentary
non-interactive basic tasks in the task language of mTask are rtrn and unstable.
They lift the value from the mTask expression language to the task domain either
as a stable or unstable value. There is also a special type of basic task for delaying
execution. The delay task—parametrised by a number of milliseconds—yields
an unstable value while the time has not passed. Once the specified time has
passed, the time it overshot the planned time is yielded as a stable task value. See
section 5.4.2.3 for an example task using delay.

class rtrn v :: (v t) � MTask v t
class unstable v :: (v t) � MTask v t
class delay v :: (v n) � MTask v n | long v n

Listing (Clean) 5.13: Non-interactive basic tasks in mTask.

5.4.1.1 Peripherals

In order for the edge device to interact with the environment, peripherals such
as sensors and actuators are employed. Some peripherals are available on the
microcontroller package, others are connected with wires using protocols such
as I2C. For every supported sensor or actuator, basic tasks are available that
allow interaction with the specific peripheral. The type classes for these tasks
are not included in the mtask class collection as not all devices nor all language
interpretations support every peripheral connected.

An example of a built-in peripheral is the GPIO system. This array of digital
and analogue pins is controlled through software. GPIO access is divided into three
classes: analogue I/O, digital I/O and pin mode configuration (see listing 5.14).
For all pins and pin modes, an ADT is available that enumerates the pins. The
analogue GPIO pins of a microcontroller are connected to an analog-to-digital
converter (ADC) that translates the measured voltage to an integer. Digital GPIO
pins of a microcontroller report either a high or a low value. Both analogue and
digital GPIO pins can be read or written to, but it is advised to set the pin mode
accordingly. The pin type class allows functions to be overloaded in either the
analogue or digital pins, e.g. analogue pins can be considered digital pins as well.

For digital GPIO interaction, the dio type class is used. The first argument
of the functions in this class is overloaded, i.e. it accepts either an APin or a DPin.
Analogue GPIO tasks are bundled in the aio type class. GPIO pins usually operate
according to a certain pin mode that states whether the pin acts as an input
pin, an input with an internal pull-up resistor or an output pin. This setting
can be set using the pinMode class by hand or by using the declarePin GPIO pin
constructor to declare it at the top level. Setting the pin mode is a task that
immediately finishes and yields a stable unit value. Writing to a pin is also a task



80 5.4. Tasks and task combinators

that immediately finishes, but yields the written value. Reading a pin is a task
that yields an unstable value—i.e. the value read from the actual pin.

:: APin = A0 | A1 | A2 | A3 | A4 | A5
:: DPin = D0 | D1 | D2 | D3 | D4 | D5 | D6 | D7 | D8 | D9 | D10 | · · ·
:: PinMode = PMInput | PMOutput | PMInputPullup
:: Pin = AnalogPin APin | DigitalPin DPin

class pin p :: p � Pin
instance pin APin, DPin

class aio v where
writeA :: (v APin) (v Int) � MTask v Int
readA :: (v APin) � MTask v Int

class dio p v | pin p where
writeD :: (v p) (v Bool) � MTask v Bool
readD :: (v p) � MTask v Bool | pin p

class pinMode v where
pinMode :: (v PinMode) (v p) � MTask v () | pin p
declarePin :: p PinMode ((v p) � Main (v a)) � Main (v a) | pin p

Listing (Clean) 5.14: The mTask interface for GPIO access.

Listing 5.15 shows two examples of mTask tasks using GPIO pins. task1 reads
analogue GPIO pin 3. This is a task that never terminates. task2 writes the true
(Arduino HIGH) value to digital GPIO pin 3. This task finishes immediately after
writing to the pin.

task1 :: MTask v Int | mtask v
task1 = declarePin A3 PMInput \a3�{main=readA a3}

task2 :: MTask v Int | mtask v
task2 = declarePin D3 PMOutput \d3�{main=writeD d3 true}

Listing (Clean) 5.15: GPIO example in mTask.

Peripherals are bundled by their functionality in mTask. For example, list-
ing 5.16 shows the type classes for all supported digital humidity and temperature
(DHT) sensors. Currently, two different types of DHT sensors are supported, the
DHT family of sensors connect through the 1-wire protocol and the SHT family
of sensors connected using the I2C protocol. Creating such a DHT object is very
similar to creating functions in mTask and uses HOAS to make it type safe. When
provided a configuration and a configuration function, the DHT object can be
brought into scope. For the DHT sensor there are two basic tasks, temperature and
humidity, that produce a task that yields the observed temperature in ◦C or the
relative humidity as an unstable value. Other peripherals have similar interfaces,
they are available in appendix B.1.



Chapter 5. The mTask language 81

:: DHT //abstract
:: DHTInfo

= DHT_DHT Pin DHTtype
| DHT_SHT I2CAddr

:: DHTtype = DHT11 | DHT21 | DHT22
class dht v where

DHT :: DHTInfo ((v DHT) � Main (v b)) � Main (v b) | type b
temperature :: (v DHT) � MTask v Real
humidity :: (v DHT) � MTask v Real

measureTemp :: Main (MTask v Real) | mtask, dht v
measureTemp = DHT (DHT_SHT (i2c 0x36)) \dht�{main=temperature dht}

Listing (Clean) 5.16: The mTask interface for DHTs sensors.

5.4.2 Task combinators
Task combinators are used to combine multiple tasks to describe workflows. The
mTask language has a set of simpler combinators from which more complicated
workflow can be derived. There are three main types of task combinators, namely:

• sequential combinators that execute tasks one after the other, possibly using
the result of the left-hand side;

• parallel combinators that execute tasks at the same time, combining the
result;

• and miscellaneous combinators that change the semantics of a task—for
example a combinator that repeats the child task.

5.4.2.1 Sequential

Sequential task combination allows the right-hand side expression to observe the
left-hand side task value. All sequential task combinators are defined in the step
class and are by default defined in terms of the Swiss Army knife step combinator
(>>*., listing 5.17). This combinator has a single task on the left-hand side and a
list of task continuations on the right-hand side. Every rewrite step, the list of task
continuations are tested on the task value. If one of the predicates matches, the task
continues with the result of these continuations. Several shorthand combinators
are derived from the step combinator. The >>=. combinator is a shorthand for
the bind operation, if the left-hand side is stable, the right-hand side function is
called to produce a new task. The >>|. combinator is a shorthand for the sequence
operation, if the left-hand side is stable, it continues with the right-hand side task.
The >>~. and >>.. combinators are variants of the ones above that ignore the
stability and continue on an unstable value as well.
class step v | expr v where

(>>*.) infixl 1 :: (MTask v t) [Step v t u] � MTask v u
(>>=.) infixl 0 :: (MTask v t) ((v t) � MTask v u) � MTask v u
(>>|.) infixl 0 :: (MTask v t) (MTask v u) � MTask v u



82 5.4. Tasks and task combinators

(>>~.) infixl 0 :: (MTask v t) ((v t) � MTask v u) � MTask v u
(>>..) infixl 0 :: (MTask v t) (MTask v u) � MTask v u

:: Step v t u
= IfValue ((v t) � v Bool) ((v t) � MTask v u)
| IfStable ((v t) � v Bool) ((v t) � MTask v u)
| IfUnstable ((v t) � v Bool) ((v t) � MTask v u)
| Always (MTask v u)

Listing (Clean) 5.17: Sequential task combinators in mTask.

Listing 5.18 shows an example task containing a step. The readPinBin function
produces an mTask task that classifies the value of an analogue pin into four bins.
It also shows that the nature of embedding allows the host language to be used as
a macro language.
readPinBin :: Int � Main (MTask v Int) | mtask v
readPinBin lim = declarePin PMInput A2 \a2�

{ main = readA a2 >>*.
[ IfValue (\x�x <. lim) (\_�rtrn (lit bin))
\\ lim <- [64,128,192,256]
& bin <- [0..]]}

Listing (Clean) 5.18: Read an analogue pin and bin the value in mTask.

5.4.2.2 Parallel

The result of a parallel task combination is a compound task that executes both
tasks at the same time. There are two types of parallel task combinators in the
mTask language (see listing 5.19).
class (.&&.) infixr 4 v :: (MTask v a) (MTask v b) � MTask v (a, b)
class (.||.) infixr 3 v :: (MTask v a) (MTask v a) � MTask v a

Listing (Clean) 5.19: Parallel task combinators in mTask.

The conjunction combinator (.&&.) combines the result by putting the values
from both sides in a tuple. The stability of the task depends on the stability of
both children. If both children are stable, the result is stable, otherwise the result
is unstable. The disjunction combinator (.||.) combines the results by picking the
leftmost, most stable task. The semantics of both parallel combinators are most
easily described using the Clean functions shown in listings 5.20 and 5.21.

Listing 5.22 gives an example program that uses the parallel task combinator.
This task read two pins at the same time, returning when one of the pins becomes
high. If the combinator was the .&&., the type would be MTask v (Bool, Bool)
and the task would only return when both pins are high but not necessarily at the
same time.

5.4.2.3 Repeat

In many workflows, tasks are to be executed repeatedly. The rpeat combinator
does this by executing the child task until it becomes stable. Once a stable value is



Chapter 5. The mTask language 83

con :: (TaskValue a) (TaskValue b)
� TaskValue (a, b)

con NoValue r = NoValue
con l NoValue = NoValue
con (Value l ls) (Value r rs)

= Value (l, r) (ls && rs)

Listing (Clean) (5.20) Semantics of the
conjunction combinator.

dis :: (TaskValue a) (TaskValue a)
� TaskValue a

dis NoValue r = r
dis l NoValue = l
dis (Value l ls) (Value r rs)

| rs && not ls = Value r rs
| otherwise = Value l ls

Listing (Clean) (5.21) Semantics of the
disjunction combinator.

task :: MTask v Bool
task =

declarePin D0 PMInput \d0�
declarePin D1 PMInput \d1�
fun \monitor = (\pin�readD pin >>*. [IfValue id rtrn])
In {main = monitor d0 .||. monitor d1}

Listing (Clean) 5.22: Parallel task combinator example in mTask.

observed, the task is reinstated. The functionality of rpeat can also be simulated
by using functions and sequential task combinators and even made to be stateful
as can be seen from the blink example from chapter 4.

class rpeat v where
rpeat :: (MTask v a) � MTask v a

Listing (Clean) 5.23: Repeat task combinators in mTask.

Listing 5.24 shows an example of a task that uses the rpeat combinator. This
resulting task mirrors the value read from analogue GPIO pin A1 to pin A2 by
constantly reading the pin and writing the result.

task :: MTask v Int | mtask v
task = declarePin A1 PMInput \a1�

declarePin A2 PMOutput \a2�
{main = rpeat (readA a1 >>~. writeA a2 >>|. delay (lit 1000))}

Listing (Clean) 5.24: Repeat task combinator example in mTask.

5.4.3 Shared data sources
For some collaborations it is cumbersome to only communicate data using task
values. SDSs are a safe abstraction over any data that fill this gap. It allows tasks
to safely and atomically read, write and update data stores in order to share data
with other tasks. SDSs in mTask are by default references to shared memory but
can also be references to SDSs in iTask (see section 6.3). There are no combinators



84 5.5. Interpretations

or user-defined SDS types in mTask as there are in iTask. Similar to peripherals
and functions, SDSs are defined at the top level with the sds function. They are
accessed through interaction tasks. The getSds task yields the current value of the
SDS as an unstable value. This behaviour is similar to the watch task in iTask.
Writing a new value to an SDS is done using setSds. This task yields the written
value as a stable result after it is done writing. Getting and immediately setting
an SDS is not necessarily an atomic operation in mTask because it is possible
that another task accesses the SDS in between. To circumvent this issue, updSds
is available by which an SDS can be atomically updated. The updSds task only
guarantees atomicity within mTask.
:: Sds a // abstract
class sds v where

sds :: ((v (Sds t)) � In t (Main (MTask v u))) � Main (MTask v u)
getSds :: (v (Sds t)) � MTask v t
setSds :: (v (Sds t)) (v t) � MTask v t
updSds :: (v (Sds t)) ((v t) � v t) � MTask v t

Listing (Clean) 5.25: SDSs in mTask.

Listing 5.26 shows an example task that uses SDSs. The count function takes a
pin and returns a task that counts the number of times the pin is observed as high
by incrementing the share SDS. In the main expression, this function is called twice
with a different argument. The results are combined using the parallel disjunction
combinator (.||.). Using a sequence of getSds and setSds would be unsafe here
because the other branch might write their old increment value immediately after
writing, effectively missing a count.
task :: MTask v Int | mtask v
task =

declarePin D3 PMInput \d3�
declarePin D5 PMInput \d5�

sds \share=0
In fun \count=(\pin�

readD pin
>>* [IfValue id (\_�updSds (\x�x +. lit 1) share)]
>>| delay (lit 100) // debounce
>>| count pin)

In {main=count d3 .||. count d5}
Listing (Clean) 5.26: Examples with SDSs in mTask.

5.5 Interpretations
The nature of the mTask DSL embedding allows for multiple interpretations of
the terms in the language. The mTask language has interpretations to pretty
print, simulate, and generate byte code for terms in the language. There are many
other interpretations possible such as static analyses or optimisation. Not all these
interpretations are necessarily TOP engines, i.e. not all the interpretations execute
the resulting tasks.



Chapter 5. The mTask language 85

5.5.1 Pretty printer
The pretty printer interpretation converts an mTask term to a string representation.
As the host language Clean constructs the mTask expressions at run time, it can
be useful to show the constructed expression at run time as well. The only function
exposed for this interpretation is the showMain function (listing 5.27). It runs the
pretty printer and returns a list of strings containing the pretty printed result. The
pretty printing function does the best it can but obviously cannot reproduce layout,
curried functions, and variable names. This shortcoming is illustrated by printing
a blink task that contains a function and currying in listing 5.28. The output of
this action would be fun f0 a1 = writeD(D13, a1) >>= \a2.(delay 1000) >>| (f0
(Not a1)) in (f0 True)

:: Show a // from the mTask pretty printing library
showMain :: (Main (Show a)) � [String]

Listing (Clean) 5.27: The entry point for the pretty printing interpretation.

blinkTask :: Main (MTask v Bool) | mtask v
blinkTask =

fun \blink=(\state�
writeD d13 state >>|. delay (lit 500) >>=. blink o Not

) In {main = blink true}

Listing (Clean) 5.28: Pretty printing interpretation example.

5.5.2 Simulator
In a real microprocessor, it is hard to observe the state and to control the sensors in
such a way that the behaviour of interest can be observed. The simulator converts
the expression to a ready-for-work iTask simulation to bridge this gap. There is
one entry point for this interpretation (see listing 5.29). The task resulting from
the simulate function presents the user with an interactive simulation environment
(see figure 5.2). The simulation allows the user to (partially) execute tasks, control
the simulated peripherals, inspect the internal state of the tasks, and interact with
SDSs.
:: TraceTask a // from the mTask simulator library
simulate :: (Main (TraceTask a)) � [String]

Listing (Clean) 5.29: The entry point for the simulation interpretation.

5.5.3 Byte code compiler
The main interpretation of the mTask system is the byte code compiler (::
BCInterpret a). This interpretation compiles the mTask term at run time to byte
code. With it, and a handful of integration functions, mTask tasks can be executed
on microcontrollers and integrated in iTask as if they were regular iTask tasks.
Furthermore, with a special language construct, SDSs can be shared between mTask



86 5.6. Conclusion

Figure 5.2: Simulator interface for a blink program written in mTask.

and iTask programs as well. The integration with iTask is explained thoroughly
later in chapter 6.

The mTask language together with iTask is a heterogeneous DSL. I.e. some
components—for example the RTS on the microcontroller that executes the tasks—
is largely unaware of the other components in the system, and it is executed on a
completely different architecture. The mTask language is a TOP language with
basic tasks tailored for IoT edge devices (see section 5.4). It uses expressions based
a simply-typed λ-calculus with support for some basic types, arithmetic operations,
and function definitions.

5.6 Conclusion
This chapter gave an overview of the complete mTask DSL. The mTask language
is a rich TOP language tailored for IoT edge devices. The language is imple-
mented as a class-based shallowly eDSL in the pure functional host language Clean.
The language is an enriched lambda calculus as a host language. It provides
language constructs for arithmetic expressions, conditionals, functions, but also
non-interactive basic tasks, task combinators, peripheral support, and integration
with iTask. Terms in the language are just interfaces and can be interpreted by one
or more interpretations. When using the byte code compiler, terms in the mTask
language are type checked at compile time but are constructed and compiled at
run time. This facilitates tailor-making tasks for the current work requirements.



87

Chapter 6

The integration of mTask
and iTask

This chapter shows the integration of mTask and iTask by showing:
• an architectural overview of mTask applications;
• the interface for connecting devices;
• the interface for lifting mTask tasks to iTask tasks;
• the interface for lowering iTask SDSs to mTask SDSs;
• and a non-trivial home automation example application using all

integration mechanisms;

The mTask system is a TOP DSL for edge devices. It is a multi-view DSL, there are
multiple interpretations possible for a single mTask term. The main interpretation
of mTask terms is the byte code compiler, :: BCInterpret a. When using this
interpretation and a few integration functions, mTask tasks are fully integrated in
iTask. They execute as regular iTask tasks and they can access SDSs from iTask.
Devices in the mTask system are set up with a domain-specific OS and become
little TOP engines in their own respect, being able to execute tasks.

Figure 6.1 shows the architectural layout of a typical IoT system created with
iTask and mTask. The entire system is written as a single Clean specification
where multiple tasks are executed at the same time. Tasks can access SDSs
according to many-to-many communication and multiple clients can work on the
same task. The diagram contains three labelled arrows that denote the integration
functions between iTask and mTask. Devices are connected to the system using
the withDevice function (see section 6.1). There can be multiple devices connected
to a single iTask host at the same time. Using liftmTask, mTask tasks are lifted to
a device (see section 6.2). It is possible to execute multiple tasks on a single device.
SDSs from iTask are lowered to the mTask device using lowerSds (see section 6.3).



88 6.1. Connecting edge devices

Client1 Client2 . . . Clientn
presentation
application

Taskn

. . .
Task2

Task1

SDSn

. . .
SDS2

SDS1

application
perception

mTask device1 mTask device2

. . .

mTask devicen

IoT application

liftmTask lowerSds

withDevice

Figure 6.1: An architectural overview of an iTask/mTask application.

6.1 Connecting edge devices
Edge devices in an mTask application are always coordinated by a server. This
means that they wait for a server to take initiative, set up a connection, and send
the work. The heavy lifting of connecting an mTask device to an iTask server is
done with the withDevice iTask function. This function has two parameters, a
communication specification, and a function using a device handle. The device
handle is required to interact with mTask devices, e.g. lift tasks. By using HOAS
like this, setting up and tearing down the connection to the device is fully controlled.

All communication with a device happens through a so-called channels SDS.
The channels contain three fields, a queue of messages that are received, a queue of
messages to send, and a stop flag. Every communication method that implements
the channelSync class can provide the communication with an mTask device. At
the time of writing, serial port, direct TCP, and MQTT over TCP are supported
communication methods (see appendix B.1.8). Internally, the withDevice task sets
up the communication, exchanges specifications with the device, executes the inner
task while handling errors, and finally cleans up after closing. Listing 6.1 shows
the types and interface for connecting devices.
:: MTDevice //abstract
:: Channels :== ([MTMessageFro], [MTMessageTo], Bool)
class channelSync a :: a (Shared sds Channels) � Task () | RWShared sds
withDevice :: a (MTDevice � Task b)

� Task b | iTask b & channelSync, iTask a
Listing (Clean) 6.1: Device communication interface in mTask.



Chapter 6. The integration of mTask and iTask 89

6.1.1 Implementation
Listing 6.2 shows a pseudocode implementation of the withDevice function. The
MTDevice abstract type is internally represented as three iTask SDS that contain
all the current information about the tasks. The first SDS is the information about
the RTS of the device, i.e. metadata on the tasks that are executing, the hardware
specification and capabilities, and a list of fresh task identifiers. The second SDS
is a map storing downstream SDS updates. When a lowered SDS is updated on
the device, a message is sent to the server. This message is initially queued in the
map in order to properly handle multiple updates asynchronously. Finally, the
MTDevices type contains the communication channels.

The withDevice task itself first constructs the SDSs using the iTask function
withShared. Then, it performs the following four tasks in parallel to monitor the
edge device.

1. The channels are synchronised using the overloaded channelSync function.
Errors that occur here are converted to the proper mTask or iTask exception.

2. The shutdown flag of the channels is watched. If the connection is lost with
the device unexpectedly, an mTask exception is thrown.

3. The received messages in the channels are watched and processed. Depending
on the type of message, either the device information SDS is updated, or the
SDS update is added to the lowered SDS updates SDS.

4. A request for a specification is sent. Once the specification is received, the
device task is run. The task value of this device task is then used as the task
value of the withDevice task.

withDevice :: a (MTDevice � Task b) � Task b | · · ·
withDevice spec deviceTask =

withShared default \dev�
withShared newMap \sdsupdates�
withShared ([], [MTTSpecRequest], False) \channels�

parallel
[ channelSync spec channels
, watchForShutdown channels
, watchChannelMessages dev channels
, waitForSpecification

>>| deviceTask (MTDevice dev sdsupdates channels)
>>* [OnValue $ ifStable $ \_�issueShutdown]

]

Listing (Clean) 6.2: Pseudocode for the withDevice function in mTask.

If at any stage an unrecoverable device error occurs, an iTask exception is
thrown in the withDevice task. This exception can be caught in order to devise
fail-safe mechanisms. For example, if a device fails, the task can be sent to another
device as can be seen in listing 6.3. This function executes an mTask task on a
pool of devices connected through TCP. If a device error occurs during execution,
the next device in the pool is tried until the pool is exhausted. If another type of
error occurs, it is re-thrown for a parent task to catch.



90 6.2. Lifting mTask tasks

failover :: [TCPSettings] (Main (MTask BCInterpret a)) � Task a
failover [] _ = throw "Exhausted device pool"
failover [d:ds] mtask = try (withDevice d (liftmTask mtask)) except
where except MTEUnexpectedDisconnect = failover ds mtask

except e = throw e

Listing (Clean) 6.3: An mTask failover combinator.

6.2 Lifting mTask tasks
Once the connection with the device is established, mTask tasks are lifted to
iTask tasks using the liftmTask function (see listing 6.4). Given an mTask task
in the BCInterpret view and a device handle obtained from withDevice, an iTask
task is returned. This iTask task proxies the mTask task that is executed on the
microcontroller. So, when another task observes the task value, the actual task
value from the microcontroller is observed.

liftmTask :: (Main (MTask BCInterpret a)) MTDevice � Task a | iTask a

Listing (Clean) 6.4: The interface for lifting mTask tasks to iTask tasks.

6.2.1 Implementation
Listing 6.5 shows the pseudocode for the liftmTask implementation The first
argument is the task and the second argument is the device which is an ADT
containing the SDSs referring to the device information, the SDS update queue,
and the channels. First a fresh identifier for the task is generated using the device
state. With this identifier, the cleanup hook can be installed. This is done to
assure the task is removed from the edge device if the iTask task coordinating it is
destroyed. Tasks in iTask are destroyed when for example it is executed in parallel
with another task and the parallel combinator terminates, or when the condition to
step holds in a sequential task combination. Then the mTask compiler is invoked,
its only argument besides the task is a function doing something with the results
of the compilation, i.e. the lowered SDSs and the messages containing the compiled
and serialised task. With the result of the compilation, the task can be executed.
First the messages are put in the channels, sending them to the device. Then, in
parallel:

1. the value is watched by looking in the device state SDS, this task also
determines the task value of the whole task;

2. the downstream SDSs are monitored, i.e. the sdsupdates SDS is monitored
and updates from the device are applied to the associated iTask SDS;

3. the upstream SDSs are monitored by spawning tasks that watch these SDSs,
if one is updated, the novel value is sent to the edge device.

Sending the complete byte code to the device is not always a suitable option.
For example, when the device is connected through an unstable or slow connection,



Chapter 6. The integration of mTask and iTask 91

liftmTask :: (Main (MTask BCInterpret a)) MTDevice � Task a | iTask a
liftmTask task (MTDevice dev sdsupdates channels)

= freshTaskId dev
>>= \tid�withCleanupHook (sendmessage [MTTTaskDel tid] channels) (

compile task \mrefs msgs�
sendMessage msgs channels

>>| waitForReturnAndValue tid dev
-|| watchSharesDownstream mrefs tid sdsupdates
-|| watchSharesUpstream mrefs channels tid)

Listing (Clean) 6.5: Pseudocode implementation for liftmTask.

sending the entire byte code induces a lot of delay. To mitigate this problem, mTask
tasks can be preloaded on a device. Preloading means that the task is compiled and
integrated into the device firmware. On receiving a TaskPrep, a hashed value of the
task to be sent is included. The device then checks the preloaded task registry and
uses the local preloaded version if the hash matches. Of course this only works for
tasks that are not tailor-made for the current work specification and not depend on
run time information. The interface for task preloading can be found in listing 6.6.
Given an mTask task, a header file is created that should be placed in the source
code directory of the RTS before building to include it in the firmware.
preloadTask :: (Main (MTask BCInterpret a)) � Task String

Listing (Clean) 6.6: Preloading tasks in mTask.

6.3 Lowering iTask shared data sources
Lowering iTask SDSs to mTask SDSs is something that mostly happens at the
DSL level using the lowerSds function (see listing 6.7). Lowering an SDS proxies
the iTask SDS for use in mTask. SDSs in mTask always have an initial value. For
regular SDS this value is given in the source code, for lowered iTask SDSs this
value is obtained by reading the values once just before sending the task to the
edge device. On the device, there is just one difference between lowered SDSs
and regular SDSs: after changing a lowered SDS, a message is sent to the server
containing this new value. The withDevice task (see section 6.1) receives and
processes this message by writing to the iTask SDS. Tasks watching this SDS get
notified then through the normal notification mechanism of iTask. Section 7.2.5
shows the implementation of this type class for the byte code compiler.
class lowerSds v where

lowerSds :: ((v (Sds t)) � In (Shared sds t) (Main (MTask v u)))
� Main (MTask v u) | RWShared sds

Listing (Clean) 6.7: Lowered iTask SDSs in mTask.

As an example, listing 6.8 shows a light switch function producing an iTask/
mTask task when given a device handle. First an iTask SDS of the type boolean



92 6.4. Conclusion

is created. This boolean represents the state of the light. The mTask task uses
this SDS to turn on or off the light. The iTask task that runs in parallel allows
interactive updating of this state.
lightswitch :: MTDevice � Task Bool
lightswitch dev = withShared False \sh�

liftmTask (mtask sh) dev
-|| updateSharedInformation [] sh
<<@ Hint "Light switch"

where
mtask :: (Shared sds Bool) � Main (MTask v Bool)

| mtask, lowerSds v & RWShared sds
mtask sh =

declarePin D13 PMOutput \ledPin�
lowerSds \ls=sh
In fun \f=(\st�

getSds ls
>>*. [IfValue (\v�v !=. st) (writeD ledPin)]
>>=. f)

In {main=getSds ls >>~. f}
Listing (Clean) 6.8: Interactive light switch program in mTask.

6.4 Conclusion
This chapter explained the integration of mTask programs with iTask. Using just
three iTask functions, mTask devices are integrated in iTask seamlessly. Devices,
using any supported type of connection, are integrated in iTask using the withDevice
function. Once connected, mTask tasks are sent to the device for execution using
liftmTask, lifting them to full-fledged iTask tasks. To lower the bandwidth, tasks
can also be preloaded. Furthermore, the mTask tasks interact with iTask SDSs
using the lowerSds construct. All of this together allows programming all layers of
an IoT system from a single source and in a single paradigm. All details regarding
interoperation are automatically taken care of. The following section contains an
elaborate example using all integration functions that has deliberately been placed
after the conclusion for formatting reasons.



Chapter 6. The integration of mTask and iTask 93

let p = [['This page would be intentionally blank if I were not telling you that ']:p] in p



94 6.5. Home automation

6.5 Home automation
This section presents an interactive home automation program (listing 6.9) to
illustrate the dynamic integration of the mTask language and the iTask system. All
layers of IoT systems are used in this application. The presentation layer consists of
an automatically generated web interface for the user to control which tasks sent to
a device for execution. The application layer is the iTask server, the coordinator of
the tasks in the system that also stores the data. The perception layer is populated
by two devices: an Arduino UNO, and an ESP8266 based prototyping board
called NodeMCU. Lines 1 to 2 show the specification for the devices. The UNO is
connected via serial using the UNIX filepath /dev/ttyACM0 and the default serial
port settings. The NodeMCU is connected via TCP over Wi-Fi and hence the
TCPSettings record is used.

The code is split up into an iTask part and several mTask parts. Lines 4 to 8
contains the iTask task that coordinates the IoT application. First the devices
are connected (lines 5 to 6) followed by launching a parallel task, visualised as a
tabbed window, and a shutdown button to terminate the program (lines 7 to 8).
This parallel task is the controller of the tasks that run on the edge devices. It
contains one task that allows adding new tasks (using appendTask) and all other
tasks in the process list will be mTask tasks once they are added by the user. The
controller task, chooseTask as shown in lines 10 to 19, allows the user to pick a task,
and sending it to the specified device. Tasks are picked by index from the tasks
list (lines 22 to 39) using enterChoice. The interface that is generated for this is
seen in figure 6.2a. After selecting the task, a device is selected (see figure 6.2b
and line 13). When both a task and a device are selected, an iTask task is added to
the process list using appendTask. Using the helper function mkTask, the actual task
is selected from the tasks list and executed by providing it the device argument.

The tasks list contains named mTask tasks that can be sent to the device.
When selecting the temperature task, the current temperature is shown to the user
(figure 6.2c). This task just sends a simple temperature monitoring task to the
device using liftmTask and provides a view on its task value using the >&> iTask
combinator. This combinator allows the observation of the left-hand side task’s
value through an SDS. The light switch task at lines 31 to 34 is a task that has
bidirectional interaction using the definition of lightswitch shown in listing 6.8.
Using lowerSds, the server-side status of the light switch is synchronised with the
actual light attached to the GPIO pin. Finally, some tasks contain significant
iTask portions as well. The remote computation task first queries the user for a
number and then constructs a tailor-made task to send to the device to perform a
computation, i.e. it calculates the factorial for the given number.



Chapter 6. The integration of mTask and iTask 95

(a) Select task. (b) Select device. (c) View result.

Figure 6.2: Screenshots of the home automation example program in action.

1 arduino = {TTYSettings | zero & devicePath="/dev/ttyACM0"}
2 nodeMCU = {TCPSettings | host="192.168.0.1", port=8123, pingTimeout= ?None}
3

4 autoHome :: Task ()
5 autoHome = withDevice arduino \dev1�
6 withDevice nodeMCU \dev2�
7 parallel [(Embedded, chooseTask dev1 dev2)] [] <<@ ArrangeWithTabs True
8 >>* [OnAction (Action "Shutdown") (always (shutDown 0))]
9

10 chooseTask :: MTDevice MTDevice (SharedTaskList ()) � Task ()
11 chooseTask dev1 dev2 stl = tune (Title "Run a task") $
12 enterChoice [] (zip2 [0..] (map fst tasks)) <<@ Hint "Choose a task"
13 >>? \(i, n)�enterChoice [] ["arduino", "node"]
14 <<@ Hint "Which device?"
15 >>? \device�appendTask Embedded (mkTask n i device) stl
16 >-| chooseTask dev1 dev2 stl
17 where
18 mkTask n i device stl = ((snd (tasks !! i) $ dev)
19 >>* [OnAction ActionClose $ always $ return ()]) <<@ Title n
20 where dev = i f (device == "node") dev2 dev1
21

22 tasks :: [(String, MTDevice � Task ())]
23 tasks =
24 [ ("temp", \dev�
25 liftmTask (DHT (DHT_DHT (DigitalPin D6) DHT22) \dht�
26 {main=temperature dht}
27 ) dev
28 >&> \t�viewSharedInformation
29 [ViewAs \i�toString (fromMaybe 0.0 i) +++ "C"] t
30 <<@ Hint "Current Temperature" @! ())
31 , (" lightswitch", \dev�
32 withShared False \sh�
33 liftmTask (lightswitch sh) dev
34 -|| updateSharedInformation [] sh <<@ Hint "Switch")
35 , ("remote computation", \dev�
36 updateInformation [] 5 <<@ Hint "Factorial of what?"
37 >>? \i�liftmTask (factorial i) dev
38 >>- \r�viewInformation [] r <<@ Hint "Result" @! ())
39 , · · · ]

Listing (Clean) 6.9: An example of a home automation program.



96 6.5. Home automation



97

Chapter 7

The implementation of
mTask

This chapter shows the implementation of the mTask system by:
• showing the compilation and execution toolchain;
• showing the implementation of the byte code compiler for the

mTask language;
• elaborating on the implementation and architecture of the RTS of

mTask;
• and explaining the machinery used to automatically serialise and

deserialise data to and fro the device.

The mTask system targets resource-constrained edge devices that have little memory,
processor speed, and communication. Such edge devices are often powered by
microcontrollers, tiny computers specifically designed for embedded applications.
The microcontrollers usually have flash-based program memory which wears out
fairly quickly. For example, the flash memory of the popular atmega328p powering
the Arduino UNO is rated for 10 000 write cycles. While this sounds like a lot, if
new tasks are sent to the device every minute or so, a lifetime of only seven days is
guaranteed. Hence, for dynamic applications, storing the program in the RAM of
the device and thus interpreting this code is necessary in order to save precious
write cycles of the program memory. In the mTask system, the mTask RTS, a
domain-specific OS, is responsible for interpreting the programs.

Programs in mTask are DSL terms constructed at run time in an iTask system.
Figure 7.1 shows the compilation and execution toolchain of such programs. First,
the source code is compiled to a byte code specification, this specification contains
the compiled main expression, the functions, and the SDS and peripheral configu-
ration. How an mTask task is compiled to this specification is shown in section 7.1.



98 7.1. Compiler

someTask :: MTask v Int | · · ·
someTask =

sensor1 config1 \sns1�
sensor2 config2 \sns2�

sds \s1 = initialValue
In lowerSds \s2 = someiTaskSDS
In fun \fun1= ( \(a0, a1)�· · · )
In fun \fun2= ( \a�· · · )
In { main = mainexpr }

Clean source code
main: . . .

. . .
fun0: . . .

. . .
fun1: . . .

. . .
sds0: . . .
sds1: . . .
periph0: . . .
periph1: . . .

byte code

compile

interpreter rewriter

main

tree tree

tree

device

send

Figure 7.1: Compilation and execution toolchain of mTask programs.

This package is then sent to the RTS of the device for execution. In order to
execute a task, first the main expression is evaluated in the interpreter, resulting
in a task tree. Then, using small-step reduction, the task tree is continuously
rewritten by the rewrite engine of the RTS. At times, the reduction requires the
evaluation of expressions, using the interpreter. During every rewrite step, a task
value is produced. On the device, the RTS may have multiple tasks at the same
time active. By interleaving the rewrite steps, parallel operation is achieved. The
design, architecture and implementation of the RTS is shown in section 7.3.

7.1 Compiler
The byte code compiler for mTask is an interpretation of the mTask language.
In order to compile terms, instances for all mTask type classes are required for
the :: BCInterpret a type. Terms in mTask are constructed and compiled at run
time, but type checked at compile time in the host language Clean. The compiled
tasks are sent to the device for interpretation. The result of the compilation is
the byte code and some metadata regarding the used peripherals and SDSs. The
compilation target is the interpreter of the mTask RTS. In order to keep the
hardware requirements down, all expressions are evaluated on a stack. Rewriting of
tasks uses the same stack and also a heap. The heap usage is minimised by applying
aggressive memory management. A detailed overview of the RTS including the
interpreter and rewriter is found in section 7.3.

7.1.1 Compiler infrastructure
The byte code compiler interpretation for the mTask language is implemented as a
monad stack containing a writer monad and a state monad. The writer monad
is used to generate code snippets locally without having to store them in the
monadic values. The state monad accumulates the code, and stores the state the
compiler requires. Listing 7.1 shows the data type for the state, storing: function
the compiler currently is in; code of the main expression; context (see section 7.2.4);



Chapter 7. The implementation of mTask 99

code for the functions; next fresh label; a list of all the used SDSs, either local SDSs
containing the initial value (Left) or lowered SDSs (see section 6.3) containing a
reference to the associated iTask SDS; and finally there is a list of peripherals used.
:: BCInterpret a :== StateT BCState (WriterT [BCInstr] Identity) a
:: BCState =

{ bcs_infun :: JumpLabel
, bcs_mainexpr :: [BCInstr]
, bcs_context :: [BCInstr]
, bcs_functions :: Map JumpLabel BCFunction
, bcs_freshlabel :: JumpLabel
, bcs_sdses :: [Either String255 MTLens]
, bcs_hardware :: [BCPeripheral]
}

:: BCFunction =
{ bcf_instructions :: [BCInstr]
, bcf_argwidth :: UInt8
, bcf_returnwidth :: UInt8
}

Listing (Clean) 7.1: The type for the mTask byte code compiler.

Executing the compiler is done by providing an initial state and running the
monad. After compilation, several post-processing steps are applied to make the
code suitable for the microprocessor. First, in all tail call BCReturn instructions
are replaced by BCTailCall instructions to optimise the tail calls. Furthermore, all
byte code is concatenated, resulting in one big program. Many instructions have
commonly used arguments, so shorthands are introduced to reduce the program
size. For example, the BCArg instruction is often called with argument 0 to 2
and can be replaced by the BCArg0 to BCArg2 shorthands. Furthermore, redundant
instructions such as pop directly after push are removed as well in order not to
burden the code generation with these intricacies. Finally, the labels are resolved
to represent actual program addresses instead of the freshly generated identifiers.
After the byte code is ready, the lowered SDSs are resolved to provide an initial
value for them. The byte code, SDS specification and peripheral specifications are
the result of the process, ready to be sent to the device.

7.1.2 Instruction set
The instruction set is a fairly standard stack machine instruction set extended with
special TOP instructions for creating task tree nodes. All instructions are housed
in a Clean ADT and serialised to the byte representation using generic functions
(see section 7.4). Type synonyms and newtypes are used to provide insight on the
arguments of the instructions (listing 7.2). Labels are always two bytes long, all
other arguments are one byte long.
:: ArgWidth :== UInt8 :: ReturnWidth :== UInt8
:: Depth :== UInt8 :: Num :== UInt8
:: SdsId :== UInt8 :: JumpLabel =: JL UInt16

Listing (Clean) 7.2: Type synonyms for instructions arguments.



100 7.1. Compiler

Listing 7.3 shows an excerpt of the Clean type that represents the instruction
set. Shorthand instructions such as instructions with inlined arguments are omitted
for brevity. Detailed semantics for the instructions are given in appendix C. One
notable instruction is the MkTask instruction, it allocates and initialises a task tree
node and pushes a pointer to it on the stack.

:: BCInstr
//Jumps
= BCJumpF JumpLabel | BCLabel JumpLabel | BCJumpSR ArgWidth JumpLabel
| BCReturn ReturnWidth ArgWidth
| BCTailcall ArgWidth ArgWidth JumpLabel
//Arguments
| BCArgs ArgWidth ArgWidth
//Task node creation and refinement
| BCMkTask BCTaskType | BCTuneRateMs | BCTuneRateSec
//Stack ops
| BCPush String255 | BCPop Num | BCRot Depth Num | BCDup | BCPushPtrs
//Casting
| BCItoR | BCItoL | BCRtoI | · · ·
// arith
| BCAddI | BCSubI | · · ·
· · ·

:: BCTaskType
= BCStableNode ArgWidth | BCUnstableNode ArgWidth
// Pin io
| BCReadD | BCWriteD | BCReadA | BCWriteA | BCPinMode
// Interrupts
| BCInterrupt
// Repeat
| BCRepeat
// Delay
| BCDelay | BCDelayUntil
// Parallel
| BCTAnd | BCTOr
//Step
| BCStep ArgWidth JumpLabel
//Sds ops
| BCSdsGet SdsId | BCSdsSet SdsId | BCSdsUpd SdsId JumpLabel
// Rate limiter
| BCRateLimit
////Peripherals
//DHT
| BCDHTTemp UInt8 | BCDHTHumid UInt8
· · ·

Listing (Clean) 7.3: The type housing the instruction set in mTask.



Chapter 7. The implementation of mTask 101

Table 7.1: An overview of the compilation rules.

Scheme Description
EJeK r Generates code for expressions given the context r
FJeK Generates the code for functions.
SJeK r w Generates the code for the step continuations given the context r

and the width w of the left-hand side task value.

7.2 Compilation rules
This section describes the compilation rules, the translation from AST to byte
code. The compilation scheme consists of three schemes/functions. Double vertical
bars, e.g. ∥ ai ∥, denote the number of stack cells required to store the argument.

Some schemes have a context r as an argument which contains information
about the location of the arguments in scope. More information is given in the
schemes requiring such arguments.

7.2.1 Expressions
Almost all expression constructions are compiled using E . The argument of E is
the context (see section 7.2.2). Values are always placed on the stack; tuples and
other compound data types are unpacked. Function calls, function arguments and
tasks are also compiled using E but their compilations is explained later.

EJlit eK r = BCPush (bytecode e);
EJe1 +. e2 K r = EJe1 K r ; EJe2 K r ; BCAdd;

Similar for other binary operators
EJNot eK r = EJeK r ; BCNot;

Similar for other unary operators
EJIf e1 e2 e3 K r = EJe1 K r ; BCJmpF lelse; EJe2 K r ; BCJmp lendif ;

BCLabel lelse; EJe3 K r ; BCLabel lendif ;
Where lelse and lendif are fresh labels

EJtupl e1 e2 K r = EJe1 K r ; EJe2 K r ;
Similar for other unboxed compound data types

EJfirst eK r = EJeK r ; BCPop w;
Where w is the width of the right value and
similar for other unboxed compound data types

EJsecond eK r = EJeK r ; BCRot (wl + wr) wr ; BCPop wl ;
Where wl is the width of the left and, wr of the right value
similar for other unboxed compound data types



102 7.2. Compilation rules

Translating E to Clean code is very straightforward, it basically means writing
the instructions to the writer monad. Almost always, the type of the interpretation
is not used, i.e. it is a phantom type. To still have the functions return the correct
type, the tell`1 helper is used. This function is similar to the writer monad’s tell
function but is cast to the correct type. Listing 7.4 shows the implementation for
the arithmetic and conditional expressions. Note that r , the context, is not an
explicit argument here but stored in the state.
instance expr BCInterpret where

lit t = tell` [BCPush (toByteCode{|*|} t)]
(+.) a b = a >>| b >>| tell` [BCAdd]
· · ·
If c t e = freshlabel >>= \elselabel�freshlabel >>= \endiflabel�

c >>| tell` [BCJumpF elselabel] >>|
t >>| tell` [BCJump endiflabel,BCLabel elselabel] >>|
e >>| tell` [BCLabel endiflabel]

Listing (Clean) 7.4: Interpretation implementation for the arithmetic and
conditional functions.

7.2.2 Functions
Compiling functions and other top-level definitions is done using in F , which
generates bytecode for the complete program by iterating over the functions and
ending with the main expression. When compiling the body of the function, the
arguments of the function are added to the context so that the addresses can be
determined when referencing arguments. The main expression is a special case of
F since it neither has arguments nor something to continue. Therefore, it is just
compiled using E with an empty context.

FJmain = mK = EJmK [];
FJf a0 . . . an = b In mK = BCLabel f ; EJbK [⟨f , i⟩, i ∈ {(Σn

i=0 ∥ ai ∥)..0}];
BCReturn ∥ b ∥ n; FJmK;

A function call starts by pushing the stack and frame pointer, and making
space for the program counter (figure 7.2a) followed by evaluating the arguments
in reverse order (figure 7.2b). On executing BCJumpSR, the program counter is set,
and the interpreter jumps to the function (figure 7.2c). When the function returns,
the return value overwrites the old pointers and the arguments. This occurs right
after a BCReturn (figure 7.2d). Putting the arguments on top of pointers and
not reserving space for the return value uses little space and facilitates tail call
optimisation.

1tell` :: [BCInstr] � BCInterpret a



Chapter 7. The implementation of mTask 103

...

fpold

spold

0

...

(a) BCPushPtrs.

...

fpold

spold

0
argn

arg...

arg0
...

(b) Arguments.

...

fpold

spold

pcold

argn

arg...

arg0
...

(c) BCJumpSR.

...

ret0

ret...

retn

...

(d) BCReturn.

Figure 7.2: The stack layout during function calls.

Calling a function and referencing function arguments are an extension to E as
shown below. Arguments may be at different places on the stack at different times
(see section 7.2.4) and therefore the exact location is always is determined from
the context using findarg.2 Compiling argument af i , the ith argument in function
f , consists of traversing all positions in the current context. Arguments wider than
one stack cell are fetched in reverse to reconstruct the original order.

EJf (a0 , . . . , an)K r = BCPushPtrs; EJaiK r for all i ∈ {n . . . 0}; BCJumpSR n f ;
EJaf i K r = BCArg findarg(r , f , i) for all i ∈ {w . . . v};

v = Σ i−1
j=0 ∥ af j ∥ and w = v+ ∥ af i ∥

Translating the compilation schemes for functions to Clean is not as straight-
forward as other schemes due to the nature of shallow embedding in combination
with the use of state. The fun class has a single function with a single argument.
This argument is a Clean function that—when given a callable Clean function
representing the mTask function—produces the main expression and a callable func-
tion. To compile this, the argument must be called with a function representing
a function call in mTask. Listing 7.5 shows the implementation for this as Clean
code. To uniquely identify the function, a fresh label is generated. The function is
then called with the callFunction helper function that generates the instructions
that correspond to calling the function. That is, it pushes the pointers, compiles
the arguments, and writes the JumpSR instruction. The resulting structure (g In m)
contains a function representing the mTask function (g) and the main structure to
continue with. To get the actual function, g must be called with representations for
the argument, i.e. using findarg for all arguments. The arguments are added to the
context using infun and liftFunction is called with the label, the argument width
and the compiler. This function executes the compiler, decorates the instructions
with a label and places them in the function dictionary together with the metadata

2findarg [l`:r] l = if (l == l`) 0 (1 + findarg r l)



104 7.2. Compilation rules

such as the argument width. After lifting the function, the context is cleared again
and compilation continues with the rest of the program.

instance fun (BCInterpret a) BCInterpret | type a where
fun def = {main=freshlabel >>= \funlabel�

let (g In m) = def \a�callFunction funlabel (toByteWidth a) [a]
argwidth = toByteWidth (argOf g)

in addToCtx funlabel zero argwidth
>>| infun funlabel

(liftFunction funlabel argwidth
(g (retrieveArgs funlabel zero argwidth)
) ?None)

>>| clearCtx >>| m.main
}

argOf :: ((m a) � b) a � UInt8 | toByteWidth a
callFunction :: JumpLabel UInt8 [BCInterpret b] � BCInterpret c | · · ·
liftFunction :: JumpLabel UInt8 (BCInterpret a) (?UInt8) � BCInterpret ()
infun :: JumpLabel (BCInterpret a) � BCInterpret a

Listing (Clean) 7.5: The interpretation implementation for functions.

7.2.3 Tasks
Task trees are created with the BCMkTask instruction that allocates a node and
pushes a pointer to it on the stack. It pops arguments from the stack according to
the given task type. The following extension of E shows this compilation scheme
(except for the step combinator, explained in section 7.2.4).

EJrtrn eK r = EJeK r ; BCMkTask BCStable∥e∥;
EJunstable eK r = EJeK r ; BCMkTask BCUnstable∥e∥;

EJreadA eK r = EJeK r ; BCMkTask BCReadA;
EJwriteA e1 e2 K r = EJe1 K r ; EJe2 K r ; BCMkTask BCWriteA;

EJreadD eK r = EJeK r ; BCMkTask BCReadD;
EJwriteD e1 e2 K r = EJe1 K r ; EJe2 K r ; BCMkTask BCWriteD;

EJdelay eK r = EJeK r ; BCMkTask BCDelay;
EJrpeat eK r = EJeK r ; BCMkTask BCRepeat;

EJe1 .||.e2 K r = EJe1 K r ; EJe2 K r ; BCMkTask BCOr;
EJe1 .&&.e2 K r = EJe1 K r ; EJe2 K r ; BCMkTask BCAnd;

This compilation scheme translates to Clean code by first writing the arguments
and then the correct BCMkTask instruction. This is shown for the .&&. task in
listing 7.6.



Chapter 7. The implementation of mTask 105

instance .&&. BCInterpret where
(.&&.) l r = l >>| r >>| tell` [BCMkTask BCTAnd]

Listing (Clean) 7.6: The byte code interpretation implementation for rtrn.

7.2.4 Sequential combinator
The step construct is a special type of task because the task value of the left-hand
side changes over time. Therefore, the task continuations on the right-hand side
are observing this task value and acting upon it. In the compilation scheme, all
continuations are first converted to a single function that has two arguments: the
stability of the task and its value. This function either returns a pointer to a task
tree or fails (denoted by ⊥). It is special because in the generated function, the
task value of a task is inspected. Furthermore, it is a lazy node in the task tree: the
right-hand side may yield a new task tree after several rewrite steps, i.e. it is allowed
to create infinite task trees using step combinators. The function is generated
using the S scheme that requires two arguments: the context r and the width of
the left-hand side so that it can determine the position of the stability which is
added as an argument to the function. The resulting function is basically a list of
if-then-else constructions to check all predicates one by one. Some optimisation is
possible here but has currently not been implemented.

EJt1>>*.e2 K r = EJaf i K r , ⟨f , i⟩ ∈ r ; BCMkTask BCStable∥r∥; EJt1 K r ;
BCMkTask BCAnd; BCMkTask (BCStep (SJe2 K (r + [⟨ls, i⟩]) ∥ t1 ∥));

SJ[]K r w = BCPush ⊥;
SJIfValue f t : csK r w = BCArg(∥ r ∥ +w); BCIsNoValue;

EJf K r ; BCAnd;
BCJmpF l1 ;
EJtK r ; BCJmp l2 ;
BCLabel l1 ; SJcsK r w;
BCLabel l2 ;

Where l1 and l2 are fresh labels
Similar for IfStable and IfUnstable

The step combinator has a task as the left-hand side and a list of continuations at
the right-hand side. First the context is evaluated (EJaf i K r). The context contains
arguments from functions and steps that need to be preserved after rewriting. The
evaluated context is combined with the left-hand side task value by means of a .&&.
combinator to store it in the task tree so that it is available after a rewrite step.



106 7.2. Compilation rules

>>=.

t1 >>=. λv1 �

t2 >>=. λv2 �

t3 . . .

(a) Without the embedded context.

>>=.

t1 >>=. λv1 �

.&&.

rtrn v1 t1

>>=. λv2 �

.&&.

rtrn (v1 , v2 ) t2

. . .

(b) With the embedded context.

Figure 7.3: Context embedded in a virtual task tree.

This means that the task tree is transformed as seen in figure 7.3. In this figure,
the expression t1 >>=. \v1�t2 >>=. \v2� · · · is shown.3 Then, the right-hand
side list of continuations is converted to an expression using S.

The translation to Clean is given in listing 7.7.

instance step BCInterpret where
(>>*.) lhs cont

//Fetch a fresh label and fetch the context
= freshlabel >>= \funlab�gets (\s�s.bcs_context)
//Generate code for lhs
>>= \ctx�lhs
//Possibly add the context
>>| tell` ( i f (ctx =: []) []

//The context i s just the arguments up t i l l now in reverse
( [BCArg (UInt8 i)\\i<-reverse (indexList ctx)]
++ map BCMkTask (bcstable (UInt8 (length ctx)))
++ [BCMkTask BCTAnd]
))

//Increase the context
>>| addToCtx funlab zero lhswidth
//Lift the step function
>>| liftFunction funlab

//Width of the arguments i s the width of the lhs plus the
//stabi l ity plus the context
(one + lhswidth + (UInt8 (length ctx)))
//Body label ctx width continuations
(contfun funlab (UInt8 (length ctx)))
//Return width (always 1 , a task pointer)
(Just one)

>>| modify (\s�{s & bcs_context=ctx})
>>| tell` [BCMkTask (instr rhswidth funlab)]

3t >>=. e is a shorthand combinator for t >>* [OnStable (\_�true) e].



Chapter 7. The implementation of mTask 107

toContFun :: JumpLabel UInt8 � BCInterpret a
toContFun steplabel contextwidth

= foldr tcf (tell` [BCPush fail]) cont
where

tcf (IfStable f t)
= If ((stability >>| tell` [BCIsStable]) &. f val)

(t val >>| tell` [])
· · ·
stability = tell` [BCArg (lhswidth + contextwidth)]
val = retrieveArgs steplabel zero lhswidth

Listing (Clean) 7.7: Byte code compilation interpretation implementation for the
step class.

7.2.5 Shared data sources
The compilation scheme for SDS definitions is a trivial extension to F . While
there is no code generated in the definition, the byte code compiler is storing
all SDS data in the bcs_sdses field in the compilation state. Regular SDSs are
stored as Right String255 values. The SDSs are typed as functions in the host
language, so an argument for this function must be created that represents the
SDS on evaluation. For this, an BCInterpret is created that emits this identifier.
When passing it to the function, the initial value of the SDS is returned. In the
case of a local SDS, this initial value is stored as a byte code encoded value in the
state and the compiler continues with the rest of the program. The SDS access
tasks have a compilation scheme similar to other tasks (see section 7.2.3). The
getSds task just pushes a task tree node with the SDS identifier embedded. The
setSds task evaluates the value, lifts that value to a task tree node and creates an
SDS set node.

FJsds x = i In mK = FJmK;

EJgetSds sK r = BCMkTask (BCSdsGet s);
EJsetSds s eK r = EJeK r ; BCMkTask BCStable∥e∥;

BCMkTask (BCSdsSet s);

Listing 7.8 shows the implementation of the sds type class. First, the initial
SDS value is extracted from the expression by bootstrapping the fixed point with
a dummy value. This is safe because the expression on the right-hand side of
the In is never evaluated. Then, using addSdsIfNotExist, the identifier for this
particular SDS is either retrieved from the compiler state or generated freshly.
This identifier is then used to provide a reference to the def definition to evaluate
the main expression. Compiling getSds is a matter of executing the BCInterpret
representing the SDS, which yields the identifier that can be embedded in the



108 7.2. Compilation rules

instruction. Setting the SDS is similar: the identifier is retrieved, and the value is
written to put in a task tree so that the resulting task can remember the value it
has written.
:: Sds a = Sds Int
instance sds BCInterpret where

sds def = {main =
let (t In e) = def (abort " sds: expression too str ic t ")
in addSdsIfNotExist (Left $ String255 (toByteCode{|*|} t))

>>= \sdsi� let (t In e) = def (pure (Sds sdsi))
in e.main

}
getSds f = f >>= \(Sds i)� tell` [BCMkTask (BCSdsGet (fromInt i))]
setSds f v = f >>= \(Sds i)�v >>| tell`

( map BCMkTask (bcstable (byteWidth v))
++ [BCMkTask (BCSdsSet (fromInt i))])

Listing (Clean) 7.8: Backend implementation for the SDS classes.

Lowered SDSs are stored in the compiler state as Right MTLens values. The
compilation of the code and the serialisation of the data throws away all typing
information. The MTLens is a type synonym for an SDS that represents the typeless
serialised value of the underlying SDS. This is done so that the withDevice task
can write the received SDS updates to the according SDS while the SDS is not in
scope. The iTask notification mechanism then takes care of the rest. Such an SDS
is created by using the mapReadWriteError which, given a pair of read and write
functions with error handling, produces an SDS with the lens embedded. The read
function transforms converts the typed value to a typeless serialised value. The
write function will, given a new serialised value and the old typed value, produce
a new typed value. It tries to decode the serialised value, if that succeeds, it is
written to the underlying SDS, an error is thrown otherwise. Listing 7.9 shows the
implementation for this.
lens :: (Shared sds a) � MTLens | type a & RWShared sds
lens sds = mapReadWriteError

( \r� Ok (fromString (toByteCode{|*|} r)
, \w r� ?Just <$> iTasksDecode (toString w)
) ?None sds

Listing (Clean) 7.9: Lens applied to lowered iTask SDSs in mTask.

Listing 7.10 shows the code for the implementation of lowerSds that uses the
lens function shown earlier. It is very similar to the sds constructor in listing 7.8,
only now a Right value is inserted in the SDS administration.
instance lowerSds BCInterpret where

lowerSds def = {main =
let (t In _) = def (abort " lowerSds: expression too str ic t ")
in addSdsIfNotExist (Right $ lens t)

>>= \sdsi� let (_ In e) = def (pure (Sds sdsi)) in e.main
}

Listing (Clean) 7.10: The implementation for lowering SDSs in mTask.



Chapter 7. The implementation of mTask 109

7.3 Run-time system
The RTS is a customisable domain-specific OS that takes care of the execution of
tasks. Furthermore, it also takes care of low-level mechanisms such as the commu-
nication, multitasking, and memory management. Once a device is programmed
with the mTask RTS, it can continuously receive new tasks without the need for
reprogramming. The OS is written in portable C/C++ and only contains a small
device-specific portion. In order to keep the abstraction level high and the hardware
requirements low, much of the high-level functionality of the mTask language is
implemented not in terms of lower-level constructs from mTask language but in
terms of C/C++ code.

Most microcontrollers software consists of a cyclic executive instead of an OS,
this one loop function is continuously executed and all work is performed there.
In the RTS of the mTask system, there is also such an event loop function. It
is a function with a relatively short execution time that gets called repeatedly.
The event loop consists of three distinct phases. After doing the three phases, the
devices goes to sleep for as long as possible (see chapter 8 for more details on task
scheduling).

7.3.1 Communication phase
In the first phase, the communication channels are processed. The exact communi-
cation method is a customisable device-specific option baked into the RTS. The
interface is kept deliberately simple and consists of two layers: a link interface
and a communication interface. Besides opening, closing and cleaning up, the
link interface has three functions that are shown in listing 7.11. Consequently,
implementing this link interface is very simple, but it is still possible to implement
more advanced link features such as buffering. There are implementations for this
interface for serial or Wi-Fi connections using Arduino, and TCP connections for
Linux.

bool link_input_available(void);
uint8_t link_read_byte(void);
void link_write_byte(uint8_t b);

Listing (C++) 7.11: Link interface of the mTask RTS.

The communication interface abstracts away from this link interface and is
typed instead. It contains only two functions as seen in listing 7.12. There are
implementations for direct communication, or communication using an MQTT
broker. Both use the automatic serialisation and deserialisation shown in section 7.4.

struct MTMessageTo receive_message(void);
void send_message(struct MTMessageFro msg);

Listing (C++) 7.12: Communication interface of the mTask RTS.

Processing the received messages from the communication channels happens
synchronously and the channels are exhausted completely before moving on to the



110 7.3. Run-time system

next phase. There are several possible messages that can be received from the
server:

SpecRequest is a message instructing the device to send its specification. It is
received immediately after connecting. The RTS responds with a Spec answer
containing the specification.

TaskPrep tells the device a task is on its way. Especially on faster connections, it
may be the case that the communication buffers overflow because a big message
is sent while the RTS is busy executing tasks. This message allows the RTS to
postpone execution for a while, until the larger task has been received. The
server sends the task only after the device acknowledged the preparation by
sending a TaskPrepAck message.

Task contains a new task, its peripheral configuration, the SDSs, and the byte
code. The new task is immediately copied to the task storage but is only
initialised during the next phase. The device acknowledges the task by sending
a TaskAck message.

SdsUpdate notifies the device of the new value for a lowered SDS. The old value
of the lowered SDS is immediately replaced with the new one. There is no
acknowledgement required.

TaskDel instructs the device to delete a running task. Tasks are automatically
deleted when they become stable. However, a task may also be deleted when
the surrounding task on the server is deleted, for example when the task is on
the left-hand side of a step combinator and the condition to step holds. The
device acknowledges the deletion by sending a TaskDelAck.

Shutdown tells the device to reset.

7.3.2 Execution phase
The second phase performs one execution step for all tasks that wish for it. Tasks
are ordered in a priority queue ordered by the time a task needs to execute, the RTS
selects all tasks that can be scheduled, see section 8.3 for more details. Execution
of a task is always an interplay between the interpreter and the rewriter. The
rewriter scans the current task tree and tries to rewrite it using small-step reduction.
Expressions in the tree are always strictly evaluated by the interpreter.

When a new task is received, the main expression is evaluated to produce a
task tree. A task tree is a tree structure in which each node represents a task
combinator and the leaves are basic tasks. If a task is not initialised yet, i.e. the
pointer to the current task tree is still null, the byte code of the main function
is interpreted. The main expression of mTask programs sent to the device fore
execution always produces a task tree. Execution of a task consists of continuously
rewriting the task until its value is stable.

Rewriting is a destructive process, i.e. the rewriting is done in place. The
rewriting engine uses the interpreter when needed, e.g. to calculate the step contin-
uations. The rewriter and the interpreter use the same stack to store intermediate
values. Rewriting steps are small so that interleaving results in seemingly parallel
execution. In this phase new task tree nodes may be allocated. Both rewriting and
initialization are atomic operations in the sense that no processing on SDSs is done



Chapter 7. The implementation of mTask 111

>>|.

delay 500

writeD D3 st >>=. \x->
interpreter

blink (Not x)

(a) Initial task tree

>>=. \x->

writeD D3 st blink (Not x)
interpreter

(b) Task tree after the delay passed

Figure 7.4: The task trees during reduction for a blink task in mTask.

other than SDS operations from the task itself. The host is notified if a task value
is changed after a rewrite step by sending a TaskReturn message.

Take for example a blink task for which the code is shown in listing 7.13.
declarePin D13 PMOutput \ledPin�
fun \blink=(\st�delay (lit 500) >>|. writeD ledPin st >>=. blink o Not)
In {main = blink true}

Listing (Clean) 7.13: Code for a blink program.

On receiving this task, the task tree is still null and the initial expression
blink true is evaluated by the interpreter. This results in the task tree shown in
figure 7.4a. Rewriting always starts at the top of the tree and traverses to the
leaves, the basic tasks that do the actual work. The first basic task encountered
is the delay task, that yields no value until the time, 500 ms in this case, has
passed. When the delay task yielded a stable value after a number of rewrites, the
task continues with the right-hand side of the >>|. combinator by evaluating the
expression (see figure 7.4b).4 This combinator has a writeD task at the left-hand
side that becomes stable after one rewrite step in which it writes the value to the
given pin. When writeD becomes stable, the written value is the task value that is
observed by the right-hand side of the >>=. combinator. Then the interpreter is
used again to evaluate the expression, now that the argument of the function is
known. The result of the call to the function is again a task tree, but now with
different arguments to the tasks, e.g. the state in writeD is inversed.

7.3.3 Memory management
The third and final phase is memory management. The mTask RTS is designed to
run on systems with as little as 2 KiB of RAM. Aggressive memory management
is therefore vital. Not all firmwares for microprocessors support heaps and—when
they do—allocation often leaves holes when not used in a last in first out strategy.
The RTS uses a chunk of memory in the global data segment with its own memory
manager tailored to the needs of mTask. The size of this block can be changed
in the configuration of the RTS if necessary. On an Arduino UNO—equipped
with 2 KiB of RAM—the maximum viable size is about 1500 B. The self-managed
memory uses a similar layout as the memory layout for C programs only the heap
and the stack are switched (see figure 7.5).

4t1 >>|. t2 is a shorthand for t1 >>*. [IfStable id \_�t2].



112 7.4. C code generation for communication

high addresses
heap

↓
...

↑
stack

↑
tasks

low addresses

tree0

tree1

tree...

treen

taskn

task...

task1

task0

Figure 7.5: Memory layout in the mTask RTS.

A task is stored below the stack and it consists of the task id, a pointer to
the task tree in the heap (null if not initialised yet), the current task value, the
configuration of SDSs, the configuration of peripherals, the byte code and some
scheduling information.

In memory, task data grows from the bottom up and the interpreter stack is
located directly on top of it growing in the same direction. As a consequence, the
stack moves when a new task is received. This never happens within execution
because communication is always processed before execution. Values in the inter-
preter are always stored on the stack. Compound data types are stored unboxed
and flattened. Task trees grow from the top down as in a heap. This approach
allows for flexible ratios, i.e. many tasks and small trees or few tasks and big trees.

Stable tasks, and unreachable task tree nodes are removed. If a task is to be
removed, tasks with higher memory addresses are moved down. For task trees—
stored in the heap—the RTS already marks tasks and task trees as trash during
rewriting, so the heap can be compacted in a single pass. This is possible because
there is no sharing or cycles in task trees and nodes contain pointers to their parent.

7.4 C code generation for communication

All communication between the iTask server and the mTask server is type para-
metrised and automated. From the structural representation of the type, a Clean
parser and printer is constructed using generic programming. Furthermore, a
C/C++ parser and printer is generated for use on the mTask device. The technique
for generating the C/C++ parser and printer is very similar to template metapro-
gramming and requires a rich generic programming library or compiler support
that includes a lot of metadata in the record and constructor nodes. Using generic
programming in the mTask system, both serialisation and deserialisation on the
microcontroller and the server is automatically generated.



Chapter 7. The implementation of mTask 113

7.4.1 Server
On the server, off-the-shelve generic programming techniques are used to make the
serialisation and deserialisation functions (see listing 7.14). Serialisation is a simple
conversion from a value of the type to a string. Deserialisation is a bit different in
order to support streaming.5 Given a list of available characters, a tuple is always
returned. The right-hand side of the tuple contains the remaining characters, the
unparsed input. The left-hand side contains either an error or a maybe value. If
the value is a ?None, there was no full value to parse. If the value is a ?Just, the
data field contains a value of the requested type.
generic toByteCode a :: a � String
generic fromByteCode a *! :: [Char] � (Either String (? a), [Char])

Listing (Clean) 7.14: Serialisation and deserialisation functions in Clean.

7.4.2 Client
The RTS of the mTask system runs on resource-constrained microcontrollers and is
implemented in portable C/C++. In order to achieve more interoperation safety, the
communication between the server and the client is automated, i.e. the serialisation
and deserialisation code in the RTS is generated. The technique used for this is very
similar to the technique shown in chapter 3. However, instead of using template
metaprogramming, a feature Clean lacks, generic programming is used also as a
two-stage rocket. In contrast to many other generic programming systems, Clean
allows for access to much of the metadata of the compiler. For example, Cons,
Object, Field, and Record generic constructors are enriched with their arity, names,
types, &c. Furthermore, constructors can access the metadata of the objects and
fields of their parent records. Using this metadata, generic functions are created
that generate C/C++ type definitions, parsers and printers for any first-order Clean
type. The exact details of this technique can be found in the future in a paper that
is in preparation.

ADTs are converted to tagged unions, newtypes to typedefs, records to structs,
and arrays to dynamic size-parametrised allocated arrays. For example, the Clean
types in listing 7.15 are translated to the C/C++ types seen in listing 7.16
:: T a = A a | B NT {#Char}
:: NT =: NT Real

Listing (Clean) 7.15: Simple ADTs in Clean.

typedef double Real;
typedef char Char;

typedef Real NT;
enum T_c {A_c, B_c};

5Here the *! variant of the generic interface is chosen that has less uniqueness constraints for
the compiler-generated adaptors (Alimarine, 2005; Hinze and Peyton Jones, 2001).



114 7.5. Conclusion

struct Char_HshArray { uint32_t size; Char *elements; };
struct T {

enum T_c cons;
struct { void *A;

struct { NT f0; struct Char_HshArray f1; } B;
} data;

};
Listing (C++) 7.16: Generated C/C++ type definitions for the simple ADTs.

For each of these generated types, two functions are created, a typed printer,
and a typed parser (see listing 7.17). The parser functions are parametrised by
a read function, an allocation function and parse functions for all type variables.
This allows for the use of these functions in environments where the communication
is parametrised and the memory management is self-managed such as in the mTask
RTS.
struct T parse_T(uint8_t (*get)(), void *(*alloc)(size_t),

void *(*parse_0)(uint8_t (*)(), void *(*)(size_t)));

void print_T(void (*put)(uint8_t), struct T r,
void (*print_0)(void (*)(uint8_t), void *));

Listing (C++) 7.17: Printer and parser for the ADTs in C/C++.

7.5 Conclusion
This chapter showed the implementation of the mTask byte code compiler, the
RTS, and the internals of their communication. It is not straightforward to execute
mTask tasks on resources-constrained IoT edge devices. To achieve this, the terms
in the DSL are compiled to compact domain-specific byte code. This byte code is
sent for interpretation to the light-weight RTS of the edge device. The RTS first
evaluates the main expression in the interpreter. The result of this evaluation, a run
time representation of the task, is a task tree. This task tree is rewritten according
to small-step reduction rules until a stable value is observed. Rewriting multiple
tasks at the same time is achieved by interleaving the rewrite steps, resulting
in seemingly parallel execution of the tasks. All communication, including the
serialisation and deserialisation, between the server and the RTS is automated.
From the structural representation of the types, printers and parsers are generated
for the server and the client.



115

Chapter 8

Green computing with
mTask

This chapter demonstrates the energy-saving features of mTask by:
• giving an overview of general green computing measures for edge

devices;
• explaining task scheduling in mTask, and how to tweak it so suit

the applications and energy needs;
• showing how to use interrupts in mTask to reduce the need for

polling.

The edge layer of the IoT is built from energy-efficient devices that sense and
interact with the world. While individual devices consume little energy, the sheer
number of devices in total amounts to a lot. Furthermore, many of these devices
operate on batteries and higher energy consumption increases the amount of e-
waste as IoT edge devices are often hard to reach and consequently hard to replace
(Nižetić et al., 2020). It is therefore crucial to lower their energy consumption.

To reduce the power consumption of an IoT edge device, the specialised low-
power sleep modes of the microprocessors can be leveraged. Different sleep mode
achieve different power reductions because of their run time characteristics. These
specifics range from disabling or suspending the Wi-Fi radio; stop powering (parts)
of the RAM; disabling peripherals; or even turning off the processor completely,
requiring an external signal to wake up again. Determining exactly when, and for
how long it is safe to sleep is expensive in the general case. In practise, it means
that either annotations in the source code, a RTOS, or a scheduler is required.

Table 8.1 shows the properties and current consumption of two commonly used
microcontrollers in their various sleep modes. It uncovers that switching the Wi-Fi
radio off yields the biggest energy saving. In most IoT applications, we need Wi-Fi



116 8.1. Green IoT computing

Table 8.1: Current use (mA) of two microprocessor boards in various sleep modes.

WEMOS D1 mini Adafruit Feather M0 Wi-Fi

active modem light deep active modem light deep
sleep sleep sleep sleep sleep sleep

Wi-Fi on off off off on off off off
CPU on on pend. off on on idle idle
RAM on on on off on on on on

current 100 to 240 15 0.5 0.002 90 to 300 5 2 0.005

for communications. It is fine to switch it off when not communicating, but after
switching it on, the Wi-Fi protocol needs to transmit a number of messages to
re-establish the connection. This implies that it is only worthwhile to switch the
radio off when this can be done for some time. The details vary per system and
situation. As a rule of thumb, derived from experimentation, it is only worthwhile
to switch the Wi-Fi off when it is not needed for at least some tens of seconds.

8.1 Green IoT computing
The data in table 8.1 shows that it is worthwhile to put the system in some sleep
mode when there is temporarily no work to be done. A deeper sleep mode saves
more energy, but also requires more work to restore the software to its working
state. A processor like the ESP8266 driving the WEMOS D1 mini loses the content
of its RAM in deep sleep mode. As a result, after waking up, the program itself is
preserved, since it is stored in flash memory, but the program state is lost. When
there is a program state to be preserved, we must either store it elsewhere, limit
us to light sleep, or use a microcontroller that keeps the RAM intact during deep
sleep. For mTasks this implies that the mTask RTS is preserved during deep sleep,
but all shipped tasks and their states are lost.

For edge devices executing a single task, explicit sleeping to save energy can be
achieved without too much hassle. This becomes much more challenging as soon as
multiple independent tasks run on the same device. Sleeping of the device induced
by one task prevents progress of all tasks. This is especially annoying when the
other tasks are executing time critical parts, like communication protocols. Such
protocols control the communication with sensors and actuators. Without the help
of an OS, the programmer is forced to combine all subtasks into one big system
that decides if it is safe to sleep for all subtasks.

The mTask language offers abstractions for edge layer-specific details such as
the heterogeneity of architectures, platforms and frameworks; peripheral access;
and multitasking but also for energy consumption and scheduling. In the mTask
system, tasks are implemented as a rewrite system, where the work is automatically
segmented in small atomic bits and stored as a task tree. Each cycle, a single
rewrite step is performed on all task trees. During rewriting, each step, tasks do a
bit of their work and progress steadily, allowing interleaved and seemingly parallel



Chapter 8. Green computing with mTask 117

operation. Atomic blocks, such as I/O, are always contained within a rewrite step.
This is very convenient, since the system can inspect the current state of all mTask
expressions after a rewrite and decide if sleeping and how long is possible. After
each loop, the RTS knows which task is waiting on which triggers and is thus
determines when it is possible and safe to sleep and choose the optimal sleep mode
according to the sleeping time.

8.2 Rewrite interval

Some mTask programs contain one or more explicit delay primitives, offering a
natural place a pause. However, there are many mTask programs that just specify
a repeated set of primitives. A typical example is the program that reads the
temperature for a sensor and sets the system LED if the reading is below some
given goal.

thermostat :: Main (MTask v Bool) | mtask, dht v
thermostat = declarePin D8 PMOutput \ledPin�

DHT (DHT_DHT (i2c 0x36)) \dht�
{main = rpeat (temperature dht >>~. \temp�

writeD ledPin (goal <. temp))}

Listing (Clean) 8.1: A basic thermostat task.

This program repeatedly reads the DHT sensor and sets the on-board LED
based on the comparison with the goal as fast as possible. The mTask machinery
ensures that if there are other tasks running on the device, they make progress.
However, this solution is far from perfect when we take power consumption into
account. In most applications, it is very unlikely that the temperature changes
significantly within one minute, let alone within some milliseconds. Hence, it is
sufficient to repeat the measurement with an appropriate interval.

There are various ways to improve this program. The simplest solution is to
add an explicit delay to the body of the repeat loop. A slightly more sophisticated
option is to add a repetition period to the rpeat combinator. The combinator
implementing this is called rpeatEvery. Both solutions rely on an explicit action of
the programmer.

Fortunately, mTask also contains machinery to do this automatically. The key
of this solution is to associate an evaluation interval with each task dynamically.
The interval ⟨low, high⟩ indicates that the evaluation can be safely delayed by any
number of milliseconds within that range. Such an interval is just a hint for the
RTS. It is not a guarantee that the evaluation takes place in the given interval.
For example, other parts of the task expression can force an earlier evaluation of
this part of the task. On the other hand, when the system is very busy with other
work, the task might even be executed after the upper bound of the interval. The
system calculates the rewrite rates from the current state of the task, i.e. the task
tree. This has the advantage that the programmer does not have to deal with them
explicitly and that they are available in each and every mTask program.



118 8.2. Rewrite interval

Table 8.2: Default rewrite rates of basic tasks.

task default interval
reading an SDS ⟨0 , 2000 ⟩
slow sensor ⟨0 , 2000 ⟩
medium sensor ⟨0 , 1000 ⟩
fast sensor ⟨0 , 100 ⟩

R :: (MTask v a) � ⟨Int, Int⟩
R(t1 .||. t2 ) = R(t1 ) ∩safe R(t2 ) (8.1)

R(t1 .&&. t2 ) = R(t1 ) ∩safe R(t2 ) (8.2)
R(t >>∗. [a1 . . . an]) = R(t) (8.3)

R(rpeat t start) =
{

R(t) if t is unstable
⟨r1 − start, r2 − start⟩ otherwise (8.4)

R(waitUntil d) = ⟨e − time, e − time⟩ (8.5)

R(t) =
{

⟨∞, ∞⟩ if t is Stable
⟨rl , ru⟩ otherwise (8.6)

Definition 8.1: Function R for deriving refresh rates.

8.2.1 Basic tasks

We start by assigning default rewrite rates to basic tasks. These rewrite rates
reflect the expected change rates of sensors and other inputs. Basic tasks to set
a value of a sensor or actuator have a rate of ⟨0 , 0 ⟩, this is never delayed. An
example of such a one-shot task in the task that writes to a GPIO pin. Basic
tasks that continuously read a sensor or otherwise interact with a peripheral have
default rewrite rates that fit standard usage of the sensor. Table 8.2 shows the
default values for the basic tasks. Reading SDSs and measuring fast sensors such as
sound or light aim for a rewrite every 100 ms. Medium slow sensors such as gesture
sensors are expected to rewrite every 1000 ms. Slow sensors such as temperature
or air quality have an upper bound of 2000 ms. In section 8.2.4 we show how the
programmer can tweak these rewrite rates to match specific needs.

8.2.2 Deriving rewrite rates

Based on these default rewrite rates, the system automatically derives rewrite rates
for composed mTask expressions using the function R as shown in definition 8.1.



Chapter 8. Green computing with mTask 119

X ∩safe Y =

 X ∩ Y X ∩ Y ̸= ∅
Y Y2 < X1
X otherwise

Definition 8.2: Safe intersection operator

8.2.2.1 Parallel combinators

For parallel combinators, the disjunction combinator (.||.) in equation 8.1 and
the conjunction combinator (.&&.) in equation 8.2, the safe intersection (see defini-
tion 8.2) of the rewrite rates is taken to determine the rewrite rate of the complete
task. The conventional intersection does not suffice here because it yields an empty
intersection when the intervals do not overlap. In that case, the safe intersection
returns the range with the lowest numbers. The rationale is that subtasks should
preferably not be delayed longer than their rewrite range. Evaluating a task earlier
should not change its result but just consumes more energy.

8.2.2.2 Sequential combinators

For the step combinator (equation 8.3)—and all other derived sequential combina-
tors—the refresh rate of the left-hand side task is taken since that is the only task
that is rewritten during evaluation. Only after stepping, the combinator rewrites
to the result of evaluating the right-hand side expression.

8.2.2.3 Repeating combinators

The repeat combinator repeats its argument indefinitely. There are two repeating
combinators, rpeat and rpeatEvery that both use the same task tree node. The
rpeat task combinator is a special type of rpeatEvery, i.e. the rewrite rate is fixed
to ⟨0 , 0 ⟩. The derived refresh rate of the repeat combinator is the refresh rate of
the child if it is unstable. Otherwise, the refresh rate is the embedded rate time
minus the start time. In case of the rpeat task, the default refresh rate is ⟨0 , 0 ⟩ so
the task immediately refreshes and starts the task again.

8.2.2.4 Delay combinators

Upon installation, a delay task is stored as a waitUntil task, containing the time
of installation added to the specified time to wait. Execution wise, it waits until
the current time exceeds the time is greater than the argument time.

8.2.2.5 Other tasks

All other tasks are captured by equation 8.6. If the task is stable, rewriting can be
delayed indefinitely since the value will not change anyway. In all other cases, the
values from table 8.2 apply where rl and ru represent the lower and upper bound
of this rate.



120 8.2. Rewrite interval

Table 8.3: Rewrite steps of the thermostat from listing 8.1 and associated intervals.

Step Expression Interval
0 rpeat ( temperature dht >>~. \temp.

writeD builtInLED (goal <. temp)
)

⟨0 , 0 ⟩

1 temperature dht >>~. \temp.
writeD builtInLED (goal <. temp) >>|.
rpeat ( temperature dht >>~. \temp.

writeD builtInLED (goal <. temp)
)

⟨0 , 2000 ⟩

2 writeD builtInLED false >>|.
rpeat ( temperature dht >>~. \temp.

writeD builtInLED (goal <. temp)
)

⟨0 , 0 ⟩

8.2.3 Example

The rewrite intervals associated with various steps of the thermostat program from
listing 8.1 are given in table 8.3. The rewrite steps and intervals are circular, after
step 2 we continue with step 0 again. Only the actual reading of the sensor with
temperature dht offers the possibility for a non-zero delay.

8.2.4 Tweaking rewrite rates

A tailor-made ADT (see listing 8.2) is used to tweak the timing intervals. The
value is determined at runtime, but the constructor is known at compile time.
During compilation, the constructor of the ADT is checked and code is generated
accordingly. If it is Default, no extra code is generated. In the other cases, code is
generated to wrap the task tree node in a tune rate node. In the case that there
is a lower bound, i.e. the task must not be executed before this lower bound, an
extra rate limit task tree node is generated that performs a no-op rewrite if the
lower bound has not passed but caches the task value.

:: TimingInterval v = Default
| BeforeMs (v Int) // yields ⟨0 , x⟩
| BeforeS (v Int) // yields ⟨0 , x × 1000 ⟩
| ExactMs (v Int) // yields ⟨x, x⟩
| ExactS (v Int) // yields ⟨0 , x × 1000 ⟩
| RangeMs (v Int) (v Int) // yields ⟨x, y⟩
| RangeS (v Int) (v Int) // yields ⟨x × 1000 , y × 1000 ⟩

Listing (Clean) 8.2: The ADT for timing intervals in mTask.



Chapter 8. Green computing with mTask 121

8.2.4.1 Sensors and shared data sources

In some applications, it is necessary to read sensors or SDSs at a different rate
than the default rate given in table 8.2, i.e. to customise the rewrite rate. This is
achieved by calling the access functions with a custom rewrite rate as an additional
argument (suffixed with the backtick (`)) The adaptions to other classes are similar
and omitted for brevity. Listing 8.3 shows the extended dht and dio class definition
with functions for custom rewrite rates.
class dht v where

· · ·
temperature` :: (TimingInterval v) (v DHT) � MTask v Real
temperature :: (v DHT) � MTask v Real
humidity` :: (TimingInterval v) (v DHT) � MTask v Real
humidity :: (v DHT) � MTask v Real

class dio p v | pin p where
· · ·
readD` :: (TimingInterval v) (v p) � MTask v Bool | pin p
readD :: (v p) � MTask v Bool | pin p

Listing (Clean) 8.3: Auxiliary definitions to listings 5.14 and 5.16 for DHT sensors
and digital GPIO with custom timing intervals.

As an example, we define an mTask that updates the SDS tempSds in iTask in
a tight loop. The temperature` reading dictates that this happens at least once
per minute. Without other tasks on the device, the temperature SDS is updated
once per minute. Other tasks can cause a slightly more frequent update.
delayTime :: TimingInterval v | mtask v
delayTime = BeforeS (lit 60) // 1 minute in seconds

devTask :: Main (MTask v Real) | mtask, dht, lowerSds v
devTask =

DHT (DHT_DHT pin DHT11) \dht =
lowerSds \localSds = tempSds
In {main = rpeat (temperature` delayTime dht >>~. setSds localSds)}
Listing (Clean) 8.4: Updating an SDS in iTask at least once per minute.

8.2.4.2 Repeating tasks

The task combinator rpeat restarts the child task in the evaluation if the previous
produced a stable result. However, in some cases it is desirable to postpone the
restart of the child. For this, the rpeatEvery task is introduced which receives an
extra argument, the rewrite rate, as shown in listing 8.5. Instead of immediately
restarting the child once it yields a stable value, it checks whether the lower bound
of the provided timing interval has passed since the start of the task.1

1In reality, it also compensates for time drift by taking into account the upper bound of the
timing interval. If the task takes longer to stabilise than the upper bound of the timing interval,
this upper bound is taken as the start of the task instead of the actual start.



122 8.3. Task scheduling in the mTask engine

class rpeat v where
rpeat :: (MTask v t) � MTask v t
rpeatEvery v :: (TimingInterval v) (MTask v t) � MTask v t

Listing (Clean) 8.5: Repeat task combinator with a timing interval.

Listing 8.6 shows an example of an mTask task utilising the rpeatEvery combi-
nator that would be impossible to create with the regular rpeat. The timedPulse
function creates a task that sends a 50 ms pulse to the GPIO pin 0 every second.
The task created by the timedPulseNaive functions emulates the behaviour by using
rpeat and delay. However, this results in a time drift because rewriting tasks trees
takes some time and the time it takes can not always be reliably predicted due to
external factors. E.g. writing to GPIO pins takes some time, interrupts may slow
down the program (see section 8.4), or communication may occur in between task
evaluations.
timedPulse :: Main (MTask v Bool) | mtask v
timedPulse = declarePin D0 PMOutput \d0�

in {main = rpeatEvery (ExactSec (lit 1)) (
writeD d0 true

>>|. delay (lit 50)
>>|. writeD d0 false
)

}

timedPulseNaive :: Main (MTask v Bool) | mtask v
timedPulseNaive = declarePin D0 PMOutput \d0�

{main = rpeat (
writeD d0 true

>>|. delay (lit 50)
>>|. writeD d0 false
>>|. delay (lit 950))

}

Listing (Clean) 8.6: Example program for the repeat task combinator with a timing
interval.

8.3 Task scheduling in the mTask engine
The rewrite rates from the previous section only tell us how much the next evaluation
of the task can be delayed. In the mTask system, an IoT edge devices can run
multiple tasks. In addition, it has to communicate with a server to collect new
tasks and updates of SDSs. Hence, the rewrite intervals cannot be used directly
to let the microcontroller sleep, so a scheduler is involved. Our scheduler has the
following objectives.

• Meet the deadline whenever possible, i.e. the system tries to execute every
task before the end of its rewrite interval. Only too much work on the device
might cause an overflow of the deadline.



Chapter 8. Green computing with mTask 123

• Achieve long sleep times. Waking up from sleep consumes some energy and
takes some time. Hence, we prefer a single long sleep over splitting the sleep
interval into several smaller pieces.

• The scheduler tries to avoid unnecessary evaluations of tasks as much as
possible. A task should not be evaluated now when its execution can also be
delayed until the next time that the device is active. That is, a task should
preferably not be executed before the start of its rewrite interval. Whenever
possible, task execution should even be delayed when we are inside the rewrite
interval as long as we can execute the task before the end of the interval.

• The optimal power state should be selected. Although a system uses less
power in a deep sleep mode, it also takes more time and energy to wake up
from deep sleep. When the system knows that it can sleep only for a short
time it is better to go to light sleep mode since waking up from light sleep is
faster and consumes less energy.

The algorithm R from section 8.2.2 computes the evaluation rate of the current
tasks. For the scheduler, we transform this interval to an absolute evaluation
interval; the lower and upper bound of the start time of that task measured in the
time of the IoT edge device. We obtain those bounds by adding the current system
time to the bounds of the computed rewrite interval by algorithm R.

For the implementation, it is important to note that the evaluation of a task takes
time. Some tasks are extremely fast, but other tasks require longer computations
and time-consuming communication with peripherals as well as with the server.
These execution times can yield a considerable and noticeable time drift in mTask
programs. For instance, a task like rpeatEvery (ExactMs 1) t should repeat t
every millisecond. The programmer might expect that t will be executed for
the (N + 1 )th time after N milliseconds. Uncompensated time drift makes this
considerably later. The mTask RTS does not pretend to be a hard RTOS, and
gives no firm guarantees with respect to evaluation time. Nevertheless, we try to
make time handling as reliable as possible. This is achieved by adding the start
time of this round of task evaluations rather than the current time to compute
absolute execution intervals.

8.3.1 Scheduling Tasks
Apart from the task to execute, the device maintains the connection with the server
and check there for new tasks and updates of SDS. When the microcontroller is
active, the connection is checked and updates from the server are processed. After
that, the tasks that are within the execution window are executed. Next, the
microcontroller goes to light sleep for the minimum of a predefined interval and
the task delay.

In general, the microcontroller executes multiple mTask tasks at the same time.
The mTask device repeatedly check for inputs from the server and executes all tasks
that cannot be delayed to the next evaluation round one step. The tasks are stored
in a priority queue to check efficiently which of them need to be stepped. The
mTask tasks are ordered at their latest start time in this queue; earliest deadline
first. We use the earliest deadline to order tasks with equal latest deadline.



124 8.3. Task scheduling in the mTask engine

It is very complicated to make an optimal scheduling algorithm for tasks to
minimise the energy consumption. We use a simple heuristic to evaluate tasks and
determine sleep time rather than wasting energy on a fancy evaluation algorithm.
Algorithm 8.1 gives this algorithm in pseudo code. First the edge device checks
for new tasks and updates of SDSs. This communication adds the new task to
the queue, if there where any. The stepped set contains all tasks evaluated in this
evaluation round. Next, we evaluate tasks from the queue until we encounter a task
that has an evaluation interval that has not started. This may result in evaluating
tasks earlier than required, but maximises the opportunities to sleep after this
evaluation round. Executed tasks are temporarily stored in the stepped set instead
of inserted directly into the queue to ensure that they are evaluated at most once
in a evaluation round to ensure that there is frequent communication with the
server. A task that produces a stable value is completed and is not queued again.

Data: queue = [];
1 begin
2 repeat
3 time = currentTime();
4 queue += communicateWithServer();
5 stepped = []; // tasks stepped in this round
6 while ¬empty(queue) ∧ earliestDeadline(top(queue)) ≤ time do
7 (task, queue) = pop(queue);
8 task2 = step(task); // computes new execution interval
9 if ¬ isStable(task2) then // not finished after step

10 stepped += task2;
11 end
12 end
13 queue = merge(queue, stepped);
14 sleep(queue);
15 end
16 end

Algorithm 8.1: Pseudo code for the evaluation round of tasks in the queue.

The sleep function determines the maximum sleep time based on the top of
the queue. The computed sleep time and the characteristics of the microprocessor
determine the length and depth of the sleep. For very short sleep times it is not be
worthwhile to put the processor in sleep mode. In the current mTask RTS, the
thresholds are determined by experimentation but can be tuned by the programmer.
On systems that lose the content of their RAM it is not possible to go to deep
sleep mode.



Chapter 8. Green computing with mTask 125

Table 8.4: Overview of GPIO interrupt types.

type triggers
change input changes
falling input becomes low
rising input becomes high
low input is low
high input is high

8.4 Interrupts

Most microcontrollers have built-in support for processor interrupts. These inter-
rupts are hard-wired signals that interrupts the normal flow of the program or sleep
state in order to execute a small piece of code, the interrupt service routine (ISR).
While the ISRs look like regular functions, they do come with some limitations.
For example, they must be very short, in order not to miss future interrupts; can
only do very limited I/O; cannot reliably check the clock; and they operate in
their own stack, and thus communication must happen via global variables. After
the execution of the ISR, the normal program flow is resumed. Interrupts are
heavily used internally in the firmware of microcontrollers to perform timing critical
operations such as Wi-Fi, I2C, or Serial Peripheral Interface (SPI) communication;
completed ADC conversions; software timers; exception handling; &c.

Using interrupts in mTask task offer two substantial benefits: fewer missed
events and better energy usage. Sometimes an external event such as a button press
only occurs for a small duration, making it possible to miss it due to it happening
right between two polls. Using interrupts is not a fool-proof way of never missing
an event. Events could still be missed if they occur during the execution of an
ISR or while the microcontroller was in the process of waking up from a triggered
interrupt. There are also some sensors, such as the CCS811 air quality sensor, with
support for triggering interrupts when a measurement exceeds a critical limit.

There are several different types of interrupts possible that each fire in slightly
different circumstances (see table 8.4).

8.4.1 Arduino platform
Listing 8.7 shows an exemplatory program utilising interrupts written using the
C/C++ dialect of Arduino. The example shows a debounced light switch for
the built-in LED connected to GPIO pin 13. When the user presses the button
connected to GPIO pin 11, the state of the LED changes. As buttons sometimes
induce noise shortly after pressing, events within 30 ms after pressing are ignored.
In between the button presses, the device goes into deep sleep using the LowPower
library to handle the processor specific sleep interface.

Lines 1 to 3 defines the pin and debounce constants. Line 5 defines the current
state of the LED, it is declared volatile to exempt it from compiler optimisations



126 8.4. Interrupts

because it is accessed in the interrupt handler. Line 6 flags whether the program is
in debounce state, i.e. events should be ignored for a short period of time.

In the setup function (lines 8 to 12), the pinmode of the LED and interrupt
pins are set. Furthermore, the microcontroller is instructed to wake up from sleep
mode when a rising interrupt occurs on the interrupt pin and to call the ISR at
lines 21 to 25. This ISR checks if the program is in cooldown state. If this is
not the case, the state of the LED is toggled. In any case, the program goes into
cooldown state afterwards.

In the loop function, the microcontroller goes to low-power sleep immediately
and indefinitely. Only when an interrupt triggers, the program continues, writes
the state to the LED, waits for the debounce time, and finally disables the cooldown
state.

1 #define LEDPIN 13
2 #define INTERRUPTPIN 11
3 #define DEBOUNCE 30
4

5 volatile int state = LOW;
6 volatile bool cooldown = true;
7

8 void setup() {
9 pinMode(LEDPIN, OUTPUT);

10 pinMode(INTERRUPTPIN, INPUT);
11 LowPower.attachInterruptWakeup(INTERRUPTPIN, buttonPressed, RISING);
12 }
13

14 void loop() {
15 LowPower.sleep();
16 digitalWrite(LEDPIN, state);
17 delay(DEBOUNCE);
18 cooldown = false;
19 }
20

21 void buttonPressed() { /∗ ISR ∗/
22 if (!cooldown)
23 state = !state;
24 cooldown = true;
25 }

Listing (C++) 8.7: Light switch using interrupts.

8.4.2 The mTask language
Listing 8.8 shows the interrupt interface in mTask. The interrupt class contains a
single function that, given an interrupt mode and a GPIO pin, produces a task that
represents this interrupt. Lowercase variants of the various interrupt modes such as
change :== lit Change are available as convenience macros (see section 5.3). When
the mTask device executes this task, it installs an ISR and sets the rewrite rate of
the task to infinity, ⟨∞, ∞⟩. The interrupt handler is set up in such a way that



Chapter 8. Green computing with mTask 127

the rewrite rate is changed to ⟨0 , 0 ⟩ once the interrupt triggers. As a consequence,
the task is executed on the next execution cycle.
class interrupt v where

interrupt :: (v InterruptMode) (v p) � MTask v Bool | pin p

:: InterruptMode = Change | Rising | Falling | Low | High
Listing (Clean) 8.8: The interrupt interface in mTask.

The pirSwitch function in listing 8.9 creates, given an interval in milliseconds, a
task that reacts to motion detection by a passive infrared (PIR) sensor (connected
to GPIO pin 0) by lighting the LED connected to GPIO pin 13 for the given
interval. The system turns on the LED again when there is still motion detected
after this interval. By changing the interrupt mode in this program text from high
to rising the system lights the LED only one interval when it detects motion, no
matter how long this signal is present at the PIR pin.
pirSwitch :: Int � Main (MTask v Bool) | mtask v
pirSwitch =

declarePin D13 PMOutput \ledpin�
declarePin D0 PMInput \pirpin�
{main = rpeat ( interrupt high pirpin

>>|. writeD ledpin false
>>|. delay (lit interval)
>>|. writeD ledpin true) }

Listing (Clean) 8.9: Example of a toggle light switch using interrupts.

8.4.3 The mTask engine
While interrupt tasks have their own node type in the task tree, they differ slightly
from other node types because they require a more elaborate setup and teardown.
Enabling and disabling interrupts is done in a general way in which tasks register
themselves after creation and deregister after deletion. Interrupts should be disabled
when there are no tasks waiting for that kind of interrupt because unused interrupts
can lead to unwanted wake-ups, and only one kind of interrupt can be attached to
a pin at the time.

8.4.3.1 Event registration

The mTask RTS contains an event administration to register which task is waiting
on which event. During the setup of an interrupt task, the event administration in
the mTask RTS is checked to determine whether a new ISR for the particular pin
needs to be registered. Furthermore, this registration allows for a quick lookup in
the ISR to find the tasks listening to the events. Conversely, during the teardown,
the ISR is disabled again when the last interrupt task of that kind is deleted.
The registration is light-weight and consists only of an event identifier and task
identifier. This event registration is stored as a linked list of task tree nodes so
that the garbage collector cleans them up when they become unused.



128 8.5. Conclusion

Registering and deregistering interrupts is a device-specific procedure, although
most supported devices use the Arduino API for this. Which pins support which
interrupt differs greatly from device to device, but this information is known at
compile time. At the time of registration, the RTS checks whether the interrupt is
valid and throws an mTask exception if it is not. Moreover, an exception is thrown
if multiple types of interrupts are registered on the same pin.

8.4.3.2 Triggering interrupts

Once an interrupt fires, tasks registered to that interrupt are not immediately
evaluated because it is usually not safe to do. For example, the interrupt could fire
in the middle of a garbage collection process, resulting in corrupt memory. Further-
more, to insure the ISR to be very short, just a flag in the event administration
is set to be processed later. Interrupt event flags are processed at the beginning
of the event loop, before tasks are executed. For each subscribed task, the task
tree is searched for nodes listening for the particular interrupt. When found, the
node is flagged and the pin status is written. Afterwards, the evaluation interval of
the task is set to ⟨0 , 0 ⟩ and the task is reinserted at the front of the scheduling
queue to ensure rapid evaluation of the task. Finally, the event is removed from
the registration and the interrupt is disabled. The interrupt can be disabled as all
tasks waiting for the interrupt become stable after firing. More occurrences of the
interrupts do not change the value of the task as stable tasks keep the same value
forever. Therefore, it is no longer necessary to keep the interrupt enabled, and it is
relatively cheap to enable it again if needed in the future. Evaluating interrupt
task node in the task tree is trivial because all the work was already done when
the interrupt was triggered. The task emits the status of the pin as a stable value
if the information in the task shows that it was triggered. Otherwise, no value is
emitted.

8.5 Conclusion
This chapter show how we can automatically associate execution intervals to tasks.
Based on these intervals, we can delay the executions of those tasks. When all task
executions can be delayed, the microprocessor executing those tasks can go to sleep
mode to reduce its energy consumption. This is a rather difficult problem that must
be solved dynamically, since we make no assumptions on the number and nature
of the tasks that will be allocated to an IoT device. Furthermore, the execution
intervals offer an elegant and efficient way to add interrupts to the language. Those
interrupts offer a more elegant and energy efficient implementation of watching an
input than polling this input.

The actual reduction of the energy is of course highly dependent on the number
and nature of the task shipped to the edge device. Our examples show a reduction
in energy consumption of two orders of magnitude (see (Crooijmans et al., 2022)).
Those reductions are a necessity for edge devices running of battery power. Given
the exploding number of IoT edge devices, such savings are also mandatory for
other devices to limit the total power consumption of the IoT.



129

Chapter 9

Finale

This chapter wraps up the monograph by means of:
• a conclusion;
• an outlook on future work;
• an overview of the related work;
• and a history of the mTask system.

9.1 Finale
Traditionally, the IoT has been programmed using layered, or tiered, architectures.
Every layer has its own software and hardware characteristics, resulting in seman-
tic friction. It is hard to orchestrate the smooth cooperation of the individual
components, especially during maintenance of the entire IoT application. TOP is a
declarative programming paradigm designed to describe multi-tiered interactive
systems from a single source. Such a tierless system prevents the orchestration prob-
lems of the tiered approach. The type system of the host language checks the iTask
and mTask components and their interaction. However, it is not straightforward
to run TOP systems on resource-constrained devices such as edge devices.

The mTask system bridges this gap by providing a TOP programming language
for edge devices. It is a full-fledged TOP language hosted in a tiny FP language.
Besides the usual FP constructs, it contains basic tasks, task combinators, support
for sensors and actuators, and interrupts. It integrates seamlessly in iTask, a TOP
system for interactive web applications. In iTask, abstractions are available for
the gritty details of interactive web applications such as program distribution, web
applications, data storage, and user management. The mTask system abstracts away
of all technicalities specific to edge devices such as communication, abstractions
for sensors and actuators, interrupts and (multi) task scheduling. When mTask is
used together with mTask, all layers of the IoT application are programmed from a



130 9.2. Related work

single declarative specification.
Any device equipped with the mTask RTS can be used in the system and

dynamically receive tasks for execution. This domain-specific OS only is uploaded
once, hence saving precious write cycles on the program memory. The mTask
devices are connected to the iTask system at run time using a single function
that takes care of all the communication and error handling. Once connected to a
device, tasks written in the mTask DSL can be lifted to iTask tasks. The tasks are
specified and compiled at run time, i.e. Clean can be used as a macro language for
constructing mTask tasks, tailor making them for the current work requirements.
When lifted, other tasks in the system can interact with the task through the usual
means. Furthermore, iTask SDSs can be lowered to mTask tasks as well, allowing
for automatic bidirectional data sharing between mTask tasks and the iTask system
irrespective of task relations.

9.2 Related work
The novelties of the mTask system can be compared to existing systems in several
categories. It is an interpreted (section 9.2.1) TOP (section 9.2.6) DSL (section 9.2.2)
that may seem similar at first glance to functional reactive programming (FRP)
(section 9.2.5), it is implemented in a functional language (section 9.2.3) and due
to the execution semantics, multitasking is automatically supported (section 9.2.4).
Section 10.3 contains an elaborate related work section regarding tierless systems.

9.2.1 Interpretation
There are a myriad of interpreted programming languages available for more
powerful edge devices. For example, for the popular ESP8266 chip there are
ports of MicroPython, Lua, BASIC, JavaScript and Lisp. All of these languages,
except the Lisp dialect uLisp (see section 9.2.3), are imperative and do not support
multitasking out of the box. They lay pretty hefty constraints on the memory
and as a result do not work on smaller microcontrollers. Another interpretation
solution for the tiniest devices is Firmata, a protocol for remotely controlling
the microcontroller using a server as the interpreter host (Steiner, 2009). Grebe
and Gill (2016) wrapped this in a remote monad for integration with Haskell that
allowed imperative code to be interpreted on the microprocessors. Later this system
was extended to support multithreading as well, stepping away from Firmata as
the basis and using their own RTS (Grebe and Gill, 2019). It differs from our
approach because it is required to mark continuation points by hand and there is
no automatic safe data communication.

Baccelli et al. (2018) provide a single language IoT system based on the RIOT
OS that allows runtime deployment of code snippets called containers. Both client
and server are written in JavaScript. However, there is no integration between the
client and the server other than that they are programmed from a single source.
Matè is an example of a tierless framework for sensor networks where devices run
a virtual machine using TinyOS for dynamic provisioning (Levis and Culler, 2002).



Chapter 9. Finale 131

9.2.2 DSLs
Many DSLs provide higher-level programming abstractions for microcontrollers, for
example providing strong typing or memory safety. Examples of this are Copilot
(Hess, 2020) and Ivory (Elliott et al., 2015). Both imperative DSLs embedded in a
functional language that compile to C/C++.

9.2.3 Functional programming
Haenisch (2016) showed that there are major benefits to using functional languages
on edge devices. They show that using function languages increased the security and
maintainability of the applications. Traditional implementations of general purpose
functional languages have high memory requirements rendering them unuseable for
resource-constrained computers. There have been many efforts to create a general
purpose functional language that does fit in small memory environments, albeit
with some concessions. For example, there has been a history of creating tiny
Scheme implementations for specific microcontrollers. It started with BIT (Dubé,
2000) that only required 64 KiB of memory, followed by PICBIT (Feeley and
Dubé, 2003) and PICOBIT (St-Amour and Feeley, 2009) that lowered the memory
requirements even more. Suchocki and Kalvala (2015) created Microscheme, a
functional language targeting Arduino compatible microcontrollers. The *BIT
languages all compile to assembly while Microscheme compiles to C++. Their
implementation leans heavily on C++ lambdas, that are available even on Arduino
AVR targets. An interpreted Lisp implementation called uLisp also exists that
runs on microcontrollers as small as the Arduino UNO (Johnson-Davies, 2020).

9.2.4 Multitasking
Applications for tiny computers are often parallel in nature. Tasks like reading sen-
sors, watching input devices, operating actuators and maintaining communication
are often loosely dependent on each other and are preferably executed in parallel.
Microcontrollers often do not benefit from an OS due to memory and processing
constraints. Therefore, writing multitasking applications in an imperative language
is possible, but the tasks have to be interleaved by hand (Feijs, 2013). This results
in hard to maintain, error-prone and unscalable spaghetti code.

There are many solutions to overcome this problem in imperative languages. If
the host language is a functional language (e.g. the aforementioned scheme variants)
multitasking can be achieved without this burden relatively easy using continuation
style multiprocessing (Wand, 1980). Writing in this style is complicated and
converting an existing program in this continuation passing style results in relatively
large programs. Moreover, there is no built-in thread-safe communication possible
between the tasks. A TOP or FRP language is superior to manual threading
because the programmer is not required to explicitly define continuation points.

Regular preemptive multithreading is too memory intensive for smaller micro-
controllers and therefore not suitable. Manual interleaving of imperative code can
be automated to certain extents. Solutions often require an RTOS, have a high
memory requirement, do not support local variables, no thread-safe shared memory,



132 9.2. Related work

Table 9.1: An overview of imperative multithreading solutions for tiny computers
with their relevant characteristics. The characteristics are: sequential computing,
local variable support, parallel composition, deterministic execution, bounded
execution and safe shared memory (adapted from Sant’Anna et al. (2013, p. 12)).

Language Complexity Safety
Name Year SeqCmp LocVar ParCmp DetEx BndEx SafeMem
Preemptive many   # # rt #

nesC 2003 # # #  async #

OSM 2005 #   # # #

Protothreads 2006  # #  # #

TinyThreads 2006   #  # #

Sol 2007     # #

FlowTask 2011   # # # #

Ocram 2013   #  # #

Céu 2013       

mTask 2022      1  2

1 Only for tasks, not for expressions.
2 Using SDSs.

no composition, or no events as described in table 9.1. This table extends the
comparison table with mTask in the relevant categories.

9.2.5 Functional reactive programming
The TOP paradigm is often compared to FRP because they appear similar. FRP
was introduced by Elliott and Hudak (1997). The paradigm strives to make
modelling systems safer, more efficient, and composable. The core concepts are
behaviours and events. A behaviour is a value that varies over time. Events are
happenings in the real world and can trigger behaviours. Events and behaviours
may be combined using combinators. Tasks in TOP are also event driven and
can be combined with combinators. TOP allows for more complex collaboration
patterns than FRP (Stutterheim et al., 2018). Consequently, TOP is unable to
provide strong guarantees on memory usage, something FRP is capable of. For
example, arrowised FRP can give guarantees on upper memory bounds (Nilsson
et al., 2002). The way FRP, and for that matter TOP, systems are programmed
stays close to the design when the domain matches suits the paradigm. The IoT
domain seems to suit this style of programming very well in just the device layer
but also for entire IoT systems.

For example, Potato is an FRP language for building entire IoT systems using
powerful devices such as the Raspberry Pi leveraging the Erlang virtual machine
(VM) (Troyer et al., 2018). It requires client devices to be able to run the Erlang
VM which makes it unsuitable for low memory environments. The emfrp language
compiles a FRP specification for a microcontroller to C code (Sawada and Watanabe,



Chapter 9. Finale 133

2016). The I/O part, the bodies of some functions, still need to be implemented.
These I/O functions can then be used as signals and combined as in any FRP
language. Due to the compilation to C it is possible to run emfrp programs on tiny
computers. However, in contrast to in mTask, the tasks are not interpreted and
there is no automated communication with a server. Other examples are CFRP
(Suzuki et al., 2017), XFRP (Shibanai and Watanabe, 2018), Juniper (Helbling
and Guyer, 2016), Hailstorm (Sarkar and Sheeran, 2020), Haski (Valliappan et al.,
2020), arduino-copilot (Hess, 2020).

9.2.6 Task-oriented programming
TOP as a paradigm has proven to be effective for implementing distributed,
multi-user applications in many domains. Examples are conference management
(Plasmeijer and Achten, 2006), coastal protection (Lijnse et al., 2011), incident
coordination (Lijnse et al., 2012), crisis management (Jansen et al., 2010) and
telemedicine (van der Heijden et al., 2011). In general, TOP results in a higher
maintainability, a high separation of concerns, and more effective handling of
interruptions of workflow. IoT applications contain a distributed and multi-user
component, but the software on the device mostly follows multiple loosely dependent
workflows. The only other TOP language for embedded systems is µTasks (Piers,
2016). It is a non-distributed TOP eDSL hosted in Haskell designed for embedded
systems such as payment terminals. They show that applications tend to be able
to cope well with interruptions and are more maintainable. However, the hardware
requirements for running the standard Haskell system are high.

9.3 Future work
There are many ways of extending the research on the mTask system that also
concerns TOP for resource-constrained devices in general.

9.3.1 Security
The IoT has reached the news concerningly many times regarding the lack of
security (Alhirabi et al., 2021). The fact that the devices are embedded in the
fabric, are hard to reach and thus to update, and can only run limited cryptographic
algorithms due to their constrained resources makes security difficult. The security
of mTask and the used protocols are deliberately overlooked at the moment.
The mTask language and RTS are modular. For example, the communication
channels are communication method agnostic and operate through a simple duplex
channel interface. It should therefore be fairly easy to apply standard security
measures to them by replacing communication methods and applying off-the-shelve
authentication and encryption to the protocol. De Boer (2020) did preliminary
research on securing the communication channels, which proved to be possible
without many changes in the protocol. Nonetheless, this deserves much more
attention. The future and related work for the security of mTask and tierless
systems is more thoroughly presented in section 10.3.3.3.



134 9.3. Future work

9.3.2 Advanced edge devices techniques
Edge devices produce a lot of data. It is not always effective to send this data to
the server for processing. Leaving the produced data and computations on the
edge device is called edge computing (Shi et al., 2016). The mTask system exhibits
many properties of edge computing because it is possible to run entire workflows
on the device. However, it is interesting to see how far this can be extended. The
mTask language is a high-level DSL, so it is obvious to introduce abstractions for
edge computations. For example, add TOP support for machine learning on the
edge device using TinyML (Sanchez-Iborra and Skarmeta, 2020). Van der Veen
(2020) did preliminary work for embedding bounded datastructures such as arrays
to the language. This could be continued and extended with support for sum types.

Another recent advance in IoT edge device programming is battery-less or even
battery-free computing. Instead of equipping the edge device with a battery, a
capacitor is used in conjunction with energy harvesting systems such as a solar panel.
After a reset, the program state is resumed from a checkpoint that was stored in
some non-volatile memory. This technique is called intermittent computing (Hester
and Sorber, 2019). Many intermittent computing solutions rely on annotations
from the programmer to divide the program into atomic blocks, sometimes called
tasks as well. These blocks are marked as such, because in the case of a reset
of the system, the work must be done again. Examples of such blocks are I2C
transmissions or calculations that rely on recent sensor data. In mTask, all work
expressed by tasks is already split up in atomic pieces of work, i.e. the work is a
side effect of rewriting. Furthermore, creating checkpoints is fairly straightforward
as mTask tasks do not rely on any global state—all information required to execute
a task is stored in the task tree. It is interesting to see what TOP abstractions are
useful to support intermittent computing properly and what solutions are required
to make it work.

Mesh networks allow for communication not only to and fro the device and
server but also between devices. The iTask system already contains primitives for
distributed operation. For example, it is possible to run tasks or share data with
SDSs on different machines. It is interesting to investigate how this networking
technique can be utilised in mTask.

Field-programmable gate arrays (FPGAs) are highly customisable integrated
chips consisting of programmable gates. Promising research has gone into trans-
lating purely functional code to FPGA configurations (Baaij, 2015). It would be
interesting to see how and whether (parts of) TOP programs or the functionality
of the mTask OS could be translated to FPGA specifications.

9.3.3 Formal semantics
Semantics allow reasoning about the language and programs in order do (symbolic)
simulation, termination checking, task equivalence, or otherwise. For iTask there
have been two attempts to formally specify the language. First Koopman et al.
(2011) defined a semantics used for property based testing based on a minimal
version of iTask. Then Plasmeijer et al. (2012) formalised iTask by providing an
executable semantics for the language. Both semantics are not suitable for formal



Chapter 9. Finale 135

reasoning due to the complexity. Later, Steenvoorden et al. (2019) created TopHat,
a TOP language with a complete formal specification with similar features to
mTask (Steenvoorden et al., 2019). Antonova (2022) compared parts of mTask
to the semantics of TopHat semantics and created a preliminary semantics for a
subset of mTask. Future research into extending the formal semantics of mTask is
useful to give more guarantees on mTask programs.

9.3.4 Task-oriented programming
In order to keep the resource constraints low, the mTask language contains only a
minimal set of simple task combinators. From these simple combinators, complex
collaboration patterns can be expressed. The iTask language is designed exactly
the opposite. From just a few super combinators, all other combinators are derived.
However, this approach requires a very powerful host language in which task
combinators can be defined in terms of the host language. It could be fruitful to
investigate which workflows cannot be specified with the limited set of combinators
available in mTask. Furthermore, it is unclear whether all derived combinators
from iTask can be expressed in terms of mTask combinators. Van der Aalst et al.
(2003) defines a benchmark set of workflow patterns. It is interesting to see which
patterns can already be implemented with just mTask, which require a round-trip
with the server, and what additional combinators would be needed.

Editors are a crucial part of TOP. In mTask, sensors can be seen as read-only
shared editors that are updated by the system. It is interesting to investigate how
actual interactive editors would fit in mTask. For example, many smartwatches
contain touch sensitive screens that could be used to interact with the user in this
way. Alternatively, sufficiently powerful edge devices can probably run simple web
interfaces as well.

SDSs in iTask have a rich set of combinators to transform and combine the
SDSs into new SDS. In mTask, SDSs are typed global variables that may or may
not proxy an iTask SDS. It could be interesting to port the SDS combinators to
mTask as well, allowing them to be transformed and combined also.

9.3.5 Usability
The promise of DSLs has often been that a domain expert could program with little
technical knowledge of the host programming language. Some even propose that a
DSL is a UI for domain experts to computation platforms (Barišic et al., 2014). In
practise this is not always the case due to crippling syntax and convoluted error
messages. Recent approaches in interactive editors for programming language source
code such as dynamic editors (Koopman et al., 2021) or typed tree editors such as
Hazelnut (Omar et al., 2017) could prove useful for supporting the DSL programmer
in using mTask. If the editor produces correct mTask code by construction, much
of the problems could be avoided. In the same respect, as mTask is a tagless-
final eDSL and uses HOAS, the error messages are complex and larded with host
language features. Much research has gone into simplifying these error messages by
translating them to the DSL domain, see for example the work by (Serrano, 2018).



136 9.4. History of mTask

De Roos briefly investigated these methods in their research internship. A future
directions could be to extend these findings and apply more eDSL error message
techniques on mTask as well.

9.3.6 Language features

The serialisation and deserialisation of data types is automated both on the server
and the mTask device using generic programming. Using the structural information
of the data type, the code responsible for the functionality is automatically gener-
ated. Peripherals are not yet fully integrated in such a way. When a peripheral is
added, the programmer has to define the correct byte code, implement the instruc-
tions in the interpreter, add task tree nodes, and implement them in the rewrite
system. It would be interesting to investigate whether this can be automated or
centralised in a way.

More elaborate features in the type systems of modern functional programming
languages allow for more type safety. The mTask language relies a lot on these
features such as (multi-parameter) type classes and existential data types with
class constraints. However, it should be possible to make abstractions over an
increasing number of features to make it safer still. For example, the pin mode
could be made a type parameter of the GPIO pins, or interrupt handling could
be made safer by incorporating the capabilities of the devices in order to reduce
run-time errors.

9.3.7 Scheduling

The scheduling in mTask works quite well, but it is not real time. There is
a variant of FRP called priority-based FRP (P-FRP) that allows for real-time
operation (Belwal et al., 2013). Furthermore, an alternative to reducing the energy
consumption by going to sleep is stepping down the processor frequency. So called
dynamic voltage and frequency scaling (DVFS) is a scheduling technique that slows
down the processor in order to reach the goals as late as possible, reducing the
power consumption. Belwal et al. (2013) use P-FRP with DVFS to reduce the
energy consumption. It is interesting to investigate the possibilities for DVFS in
mTask and TOP in general.

9.4 History of mTask

The development of mTask or its predecessors has been going on for almost seven
years now though it really set off during my master’s thesis. Many colleagues and
students have worked on aspects of the mTask system in collaborations, internships
and Bachelor and Master’s theses. This section provides an exhaustive overview of
the work on mTask and its predecessors.



Chapter 9. Finale 137

9.4.1 Generating C/C++ code
A first throw at a class-based shallowly eDSL for microcontrollers was made by
Plasmeijer and Koopman (2016). The language was called Arduino DSL (ARDSL)
and offered a type safe interface to Arduino C++ dialect. A C++ code generation
interpretation was available together with an iTask simulation interpretation. There
was no support for tasks nor functions. Some time later in the 2015 CEFP summer
school, an extended version was created that allowed the creation of imperative
tasks, local SDSs and the usage of functions (Koopman and Plasmeijer, 2019). The
name then changed from ARDSL to mTask.

9.4.2 Integration with iTask
Lubbers (2017) extended this in his Master’s Thesis by adding integration with
iTask and a bytecode compiler to the language. SDS in mTask could be accessed
on the iTask server. In this way, entire IoT systems could be programmed from a
single source. However, this version used a simplified version of mTask without
functions. This was later improved upon by creating a simplified interface where
SDSs from iTask could be used in mTask and the other way around (Lubbers
et al., 2018). It was shown by Amazonas Cabral de Andrade (2018) that it was
possible to build real-life IoT systems with this integration. Moreover, a course on
the mTask simulator was provided at the 2018 3COWS winter school in Košice,
Slovakia (Koopman et al., 2023).

9.4.3 Transition to Task-oriented programming
The mTask language as it is now was introduced in 2018 (Koopman et al., 2018).
This paper updated the language to support functions, simple tasks, and SDSs
but still compiled to Arduino C++ code. Later the byte code compiler and iTask
integration was added to the language (Lubbers et al., 2021). Moreover, it was
shown that it is very intuitive to write microcontroller applications in a TOP
language (Lubbers et al., 2019). One reason for this is that a lot of design patterns
that are difficult using standard means are for free in TOP (e.g. multithreading).
In 2019, the 3COWS summer school in Budapest, Hungary hosted a course on
developing IoT applications with mTask as well (Lubbers et al., 2023b).

9.4.4 Task-oriented programming
In 2022, the SusTrainable summer school in Rijeka, Croatia hosted a course on
developing greener IoT applications using mTask (Lubbers and Koopman, 2022).
Several students worked on extending mTask with many useful features: van der
Veen (2020) did preliminary work on a green computing analysis, built a simulator,
and explored the possibilities for adding bounded datatypes; de Roos explored
beautifying error messages; de Boer (2020) investigated the possibilities for secure
communication channels; Crooijmans (2021; 2022) added abstractions for low-power
operation to mTask such as hardware interrupts and power efficient scheduling;
and Antonova (2022) defined a preliminary formal semantics for a subset of mTask.



138 9.4. History of mTask

In 2023, the SusTrainable summer school in Coimbra, Portugal will host a course
on mTask.

9.4.5 Using mTask in practise
Funded by the Radboud-Glasgow Collaboration Fund, collaborative work was
executed with Phil Trinder, Jeremy Singer, and Adrian Ravi Kishore Ramsingh.
An existing smart campus application was developed using mTask and quantitatively
and qualitatively compared to the original application that was developed using a
traditional IoT stack (Lubbers et al., 2020). This research was later extended to
include a four-way comparison: Python, MicroPython, iTask, and mTask (Lubbers
et al., 2023c) (see chapter 10). Currently, power efficiency behaviour of traditional
versus TOP IoT stacks is being compared as well adding a FreeRTOS, and an Elixir
implementation to the mix as well.



Episode III:

Tiered versus Tierless Programming

139





141

Chapter 10

Could tierless languages
reduce IoT development
grief?

IoT software is notoriously complex, conventionally comprising multi-
ple tiers. Traditionally an IoT developer must use multiple programming
languages and ensure that the components interoperate correctly. A
novel alternative is to use a single tierless language with a compiler
that generates the code for each component and ensures their correct
interoperation.

We report a systematic comparative evaluation of two tierless lan-
guage technologies for IoT stacks: one for resource-rich sensor nodes
(Clean with iTask), and one for resource-constrained sensor nodes (Clean
with iTask and mTask). The evaluation is based on four implemen-
tations of a typical smart campus application: two tierless and two
Python-based tiered. 1. We show that tierless languages have the po-
tential to significantly reduce the development effort for IoT systems,
requiring 70% less code than the tiered implementations. Careful anal-
ysis attributes this code reduction to reduced interoperation (e.g. two
eDSLs and one paradigm versus seven languages and two paradigms),
automatically generated distributed communication, and powerful IoT
programming abstractions. 2. We show that tierless languages have
the potential to significantly improve the reliability of IoT systems,
describing how Clean/iTask/mTask maintains type safety, provides
higher order failure management, and simplifies maintainability. 3. We
report the first comparison of a tierless IoT codebase for resource-rich
sensor nodes with one for resource-constrained sensor nodes. The
comparison shows that they have similar code size (within 7%), and



142 10.1. Introduction

functional structure. 4. We present the first comparison of two tierless
IoT languages, one for resource-rich sensor nodes, and the other for
resource-constrained sensor nodes.

10.1 Introduction
Conventional IoT software stacks are notoriously complex and pose very signifi-
cant software development, reliability, and maintenance challenges. IoT software
architectures typically comprise multiple components organised in four or more
tiers or layers (Alphonsa, 2021; Ravulavaru, 2018; Sethi and Sarangi, 2017). This
is due to the highly distributed nature of typical IoT applications that must read
sensor data from end points (the perception layer), aggregate and select the data
and communicate over a network (the network layer), store the data in a database
and analyse it (the application layer) and display views of the data, commonly on
web pages (the presentation layer).

Conventional IoT software architectures require the development of separate
programs in various programming languages for each of the components/tiers in
the stack. This is modular, but a significant burden for developers, and some key
challenges are as follows. 1. Interoperating components in multiple languages and
paradigms increases the developer’s cognitive load who must simultaneously think
in multiple languages and paradigms, i.e. manage significant semantic friction.
2. The developer must correctly interoperate the components, e.g. adhere to the
API or communication protocols between components. 3. To ensure correctness
the developer must maintain type safety across a range of very different languages
and diverse type systems. 4. The developer must deal with the potentially diverse
failure modes of each component, and of component interoperation.

A radical alternative development paradigm uses a single tierless language
that synthesises all components/tiers in the software stack. There are established
tierless languages for web stacks, e.g. Links (Cooper et al., 2007) or Hop (Serrano
et al., 2006). In a tierless language the developer writes the application as a single
program. The code for different tiers is simultaneously checked by the compiler,
and compiled to the required component languages. For example, Links compiles
to HTML and JavaScript for the web client and to SQL on the server to interact
with the database system. Tierless languages for IoT stacks are more recent and
less common, examples include Potato (Troyer et al., 2018) and Clean with iTask/
mTask (Lubbers et al., 2021).

IoT sensor nodes may be microcontrollers with very limited compute resources,
or supersensors: resource-rich single board computers like a Raspberry Pi. A tierless
language may target either class of sensor node, and microcontrollers are the more
demanding target due to the limited resources, e.g. small memory, executing on
bare metal, &c.

Potentially a tierless language both reduces the development effort and improves
correctness as correct interoperation and communication is automatically generated
by the compiler. A tierless language may, however, introduce other problems. How



Chapter 10. Could tierless languages reduce IoT development grief? 143

expressive is the language? That is, can it readily express the required functionality?
How maintainable is the software? Is the generated code efficient in terms of time,
space, and power?

This chapter reports a systematic comparative evaluation of two tierless language
technologies for IoT stacks: one targeting resource-constrained microcontrollers,
and the other resource-rich supersensors. The basis of the comparison is four
implementations of a typical smart campus IoT stack (Hentschel et al., 2016). Two
implementations are conventional tiered Python-based stacks: Python Raspberry
Pi system (PRS) and MicroPython WEMOS system (PWS). The other two imple-
mentations are tierless: Clean Raspberry Pi system (CRS) and Clean WEMOS
system (CWS). Our work makes the following research contributions, and the key
results are summarised, discussed, and quantified in section 10.9.

C1 We show that tierless languages have the potential to significantly reduce the
development effort for IoT systems. We systematically compare code size (source
lines of code (SLOC)) of the four smart campus implementations as a measure
of development effort and maintainability (Alpernas et al., 2020; Rosenberg,
1997). The tierless implementations require 70% less code than the tiered
implementations. We analyse the codebases to attribute the code reduction
to three factors. 1. Tierless languages benefit from reduced interoperation,
requiring far fewer languages, paradigms and source code files e.g. CWS uses
two languages, one paradigm and three source code files where PWS uses
seven languages, two paradigms and 35 source code files (tables 10.2 to 10.4).
2. Tierless languages benefit from automatically synthesised, and hence correct,
communication between components that may be distributed. 3. Tierless
languages benefit from high-level programming abstractions like compositional
and higher-order task combinators (section 10.6).

C2 We show that tierless languages have the potential to significantly improve the
reliability of IoT systems. We demonstrate how tierless languages preserve type
safety, improve maintainability and provide high-level failure management. For
example, we illustrate a loss of type safety in PRS. We also critique current
tool and community support (section 10.7).

C3 We report the first comparison of a tierless IoT codebase for resource-rich sensor
nodes with one for resource-constrained sensor nodes. The tierless smart campus
implementations have a very similar code size (within 7%), as do the tiered
implementations. This suggests that the development and maintenance effort of
simple tierless IoT systems for resource-constrained and for resource-rich sensor
nodes is similar, as it is for tiered technologies. The percentages of code required
to implement each IoT functionality in the tierless Clean implementations is
very similar, as it is in the tiered Python implementations. This suggests that
the code for resource-constrained and resource-rich sensor nodes is broadly
similar in tierless technologies, as in tiered technologies (section 10.6.2)

C4 We present the first comparison of two tierless IoT languages, one designed
for resource-constrained sensor nodes (Clean with iTask and mTask), and the
other for resource-rich sensor nodes (Clean with iTask). We show that the bare
metal execution environment enforces some restrictions on mTask although



144 10.2. Background and related work

they remain high level. Moreover, the environment conveys some advantages,
e.g. better control over timing (section 10.8).

The current work extends (Lubbers et al., 2020) as follows. Contributions C3
and C4 are entirely new, and C1 is enhanced by being based on the analysis of
four rather than two languages and implementations.

10.2 Background and related work

10.2.1 University of Glasgow smart campus
The University of Glasgow (UoG) is partway through a ten-year campus upgrade
programme, and a key goal is to embed pervasive sensing infrastructure into the new
physical fabric to form a smart campus environment. As a prototyping exercise, we
use modest commodity sensor nodes (i.e. Raspberry Pis) and low-cost, low-precision
sensors for indoor environmental monitoring.

We have deployed sensor nodes into 12 rooms in two buildings. The IoT system
has an online data store, providing live access to sensor data through a RESTful
API. This allows campus stakeholders to add functionality at a business layer
above the layers that we consider here. To date, simple apps have been developed
including room temperature monitors and campus utilisation maps (Hentschel
et al., 2016). A longitudinal study of sensor accuracy has also been conducted
(Harth et al., 2018).

10.2.2 IoT applications
Web applications are necessarily complex distributed systems, with client browsers
interacting with a remote web server and data store. Typical IoT applications are
even more complex as they combine a web application with a second distributed
system of sensor and actuator nodes that collect and aggregate data, operate on it,
and communicate with the server.

Both web and IoT applications are commonly structured into tiers, e.g. the
classical four-tier Linux, Apache, MySQL and PHP (LAMP) stack. IoT stacks
typically have more tiers than web applications, with the number depending on
the complexity of the application (Sethi and Sarangi, 2017). While other tiers, like
the business layer (Muccini and Moghaddam, 2018) may be added above them, the
focus of our study is on programming the lower four tiers of the PRS, CRS, PWS
and CWS stacks, as illustrated in figure 10.1.

Perception layer collects the data, interacts with the environment, and consists
of devices using light, sound, motion, air quality and temperature sensors.

Network layer replays the communication messages between the sensor nodes
and the server through protocols such as MQTT.

Application layer acts as the interface between the presentation layer and the
perception layer, storing and processing the data.

Presentation layer utilises web components as the interface between the human
and devices where application services are provided.



C
hapter

10.C
ould

tierless
languages

reduce
IoT

developm
ent

grief?
145

Application Layer

Presentation Layer

Network Layer

Perception Layer

TCP/MQTT/Protobuf CRS: TCP/Graph serialisation
CWS: TCP/mTask

WebpagesHTML Webpages

PHP   Webserver
Redis MongoDB

Python Collector

μPython  Collector

Sensor1 S... Sn

Python   Collector

Sensor1 S... Sn

PRS PWS
mTaskiTask

CRS CWS

Task
SDSs

iTask

PRS & PWS CRS & CWS

Tasks

SDSs

Task
SDSs

Sensor1 S... Sn Sensor1 S... Sn

Figure 10.1: PRS and PWS (left) together with CRS and PRS (right) mapped to the four-tier IoT architecture. Every box is the
diagram denotes a source file or base. Bold blue text describes the language or technology used in that source. The network and
perception layer are unique to the specific implementation, where the application and presentation layers are shared between
implementations.



146 10.2. Background and related work

10.2.3 The benefits and challenges of developing tiered IoT
stacks

Using multiple tiers to structure complex software is a common software engineering
practice that provides significant architectural benefits for IoT and other software.
The tiered Python PRS and PWS stacks exhibit these benefits.

Modularity tiers allow a system to be structured as a set of components with
clearly defined functionality. They can be implemented independently, and
may be interchanged with other components that have similar functionality
(MacCormack et al., 2007). In PRS and PWS, for example, a different NoSQL
DBMS could relatively easily be substituted for MongoDB.

Abstraction the hierarchical composition of components in the stack abstracts
the view of the system as a whole. Enough detail is provided to understand the
roles of each layer and how the components relate to one another (Belle et al.,
2013). Figure 10.1 illustrates the abstraction of PRS and PWS into four tiers.

Cohesion well-defined boundaries ensure each tier contains functionality directly
related to the task of the component (Lee et al., 2001). The tiers in PRS
and PWS contain all the functionality associated with perception, networking,
application and presentation respectively.

However, a tiered architecture poses significant challenges for developers of
IoT and other software. The tiered Python PRS and PWS stacks exhibit these
challenges, and we analyse these in detail later in the chapter.

Polyglot development the developer must be fluent in all the languages and
components in the stack, known as being a full-stack developer for web applica-
tions (Mazzei et al., 2018). That is, the developer must correctly use multiple
languages that have different paradigms, i.e. manage significant semantic fric-
tion (Ireland et al., 2009). For example the PWS developer must integrate
components written in seven languages with two paradigms (section 10.6.3).

Correct interoperation the developer must adhere to the API or communi-
cation protocols between components. Sections 10.6.1 and 10.6.2 show that
communication requires some 17% of PRS and PWS code, so around 100 SLOC.
Section 10.6.4 discusses the complexity of writing this distributed communica-
tion code.

Maintaining type safety is a key element of the semantic friction encountered in
multi-language stacks, and crucial for correctness. The developer must maintain
type safety across a range of very different languages and diverse type systems,
with minimal tool support. We show an example where PRS loses type safety
over the network layer (Section 10.7.1).

Managing multiple failure modes different components may have different
failure modes, and these must be coordinated. Section 10.7.2 outlines how PRS
and PWS use heartbeats to manage failures.

Beyond PRS and PWS the challenges of tiered polyglot software development
are evidenced in real world studies. As recent examples, a study of GitHub open
source projects found an average of five different languages in each project, with



Chapter 10. Could tierless languages reduce IoT development grief? 147

many using tiered architectures (Mayer et al., 2017). An earlier empirical study of
GitHub shows that using more languages to implement a project has a significant
effect on project quality, since it increases defects (Kochhar et al., 2016). A study
of IoT stack developers found that interoperation poses a real challenge, that
microservices blur the abstraction between tiers, and that both testing and scaling
IoT applications to more devices are hard (Motta et al., 2018).

One way of minimising the challenges of developing tiered polyglot IoT software
is to standardise and reuse components. This approach has been hugely successful
for web stacks, e.g. browser standards. The W3C Web of Things aims to facilitate
re-use by providing standardised metadata and other re-useable technological IoT
building blocks (Guinard and Trifa, 2016). However, the Web of Things has yet to
gain widespread adoption. Moreover, as it is based on web technology, it requires
the thing to run a web server, significantly increasing the hardware requirements.

10.3 Tierless languages
A radical approach to overcoming the challenges raised by tiered distributed software
is to use a tierless programming language that eliminates the semantic friction
between tiers by generating code for all tiers, and all communication between
tiers, from a single program. Typically a tierless program uses a single language,
paradigm and type system, and the entire distributed system is simultaneously
checked by the compiler.

There is intense interest in developing tierless, or multi-tiered, language tech-
nologies with a number of research languages developed over the last fifteen years,
e.g. (Cooper et al., 2007; Ekblad and Claessen, 2014; Serrano et al., 2006; Troyer et
al., 2018). These languages demonstrate the advantages of the paradigm, including
less development effort, better maintainability, and sound semantics of distributed
execution. At the same time a number of industrial technologies incorporate tierless
concepts, e.g. (Balat, 2006; Bjornson et al., 2010; Strack, 2015). These languages
demonstrate the benefits of the paradigm in practice. Some tierless languages use
(embedded) DSLs to specify parts of the multi-tier software.

Tierless languages have been developed for a range of distributed paradigms,
including web applications, client-server applications, mobile applications, and
generic distributed systems. A recent and substantial survey of these tierless
technologies is available (Weisenburger et al., 2020). Here we provide a brief
introduction to tierless languages with a focus on IoT software.

10.3.1 Tierless web languages
There are established tierless languages for web development, both standalone
languages and DSLs embedded in a host language. Example standalone tierless
web languages are Links (Cooper et al., 2007) and Hop (Serrano et al., 2006). From
a single declarative program the client, server and database code is simultaneously
checked by the compiler, and compiled to the required component languages. For
example, Links compiles to HTML and JavaScript for the client side and to SQL



148 10.3. Tierless languages

on the server-side to interact with the database system.
An example tierless web framework that uses a DSL is Haste (Ekblad and

Claessen, 2014), that embeds the DSL in Haskell. Haste programs are compiled
multiple times: the server code is generated by the standard GHC Haskell compiler
(Hall et al., 1993); JavaScript for the client is generated by a custom GHC compiler
backend. The design leverages Haskell’s high-level programming abstractions and
strong typing, and benefits from GHC: a mature and sophisticated compiler.

10.3.2 Tierless IoT languages

The use of tierless languages in IoT applications is both more recent and less
common than for web applications. Tierless IoT programming may extend tierless
web programming by adding network and perception layers. The presentation layer
of a tierless IoT language, like tierless web languages, benefits from almost invariably
executing in a standard browser. The perception layer faces greater challenges,
often executing on one of a set of slow and resource-constrained microcontrollers.
Hence, tierless IoT languages typically compile the perception layer to either C/C++
(the lingua franca of microcontrollers), or to some intermediate representation to
be interpreted.

10.3.2.1 DSLs for microcontrollers

Many DSLs provide high-level programming for microcontrollers, for example
providing strong typing and memory safety. For example Copilot (Hess, 2020) and
Ivory (Elliott et al., 2015) are imperative DSLs embedded in a functional language
that compile to C/C++. In contrast to Clean/iTask/mTask such DSLs are not
tierless IoT languages as they have no automatic integration with the server, i.e.
with the application and presentation layers.

10.3.2.2 Functional reactive programming

FRP is a declarative paradigm often used for implementing the perception layer
of an IoT stack. Examples include mfrp (Sawada and Watanabe, 2016), CFRP
(Suzuki et al., 2017), XFRP (Shibanai and Watanabe, 2018), Juniper (Helbling
and Guyer, 2016), Hailstorm (Sarkar and Sheeran, 2020), and Haski (Valliappan
et al., 2020). None of these languages are tierless IoT languages as they have no
automatic integration with the server.

Potato goes beyond other FRP languages to provide a tierless FRP IoT language
for resource rich sensor nodes (Troyer et al., 2018). It does so using the Erlang
programming language and sophisticated virtual machine.

TOP allows for more complex collaboration patterns than FRP (Stutterheim
et al., 2018), and in consequence is unable to provide the strong guarantees on
memory usage available in a restricted variant of FRP such as arrowised FRP
(Nilsson et al., 2002).



Chapter 10. Could tierless languages reduce IoT development grief? 149

10.3.2.3 Erlang/Elixir IoT systems

A number of production IoT systems are engineered in Erlang or Elixir, and many
are mostly tierless. That is the perception, network and application layers are
sets of distributed Erlang processes, although the presentation layer typically
uses some conventional web technology. A resource-rich sensor node may support
many Erlang processes on an Erlang VM, or low level code (typically C/C++) on
a resource-constrained microcontroller can emulate an Erlang process. Only a
small fraction of these systems are described in the academic literature, example
exceptions are (Shibanai and Watanabe, 2018; Sivieri et al., 2012), with many
described only in grey literature or not at all.

10.3.3 Characteristics of tierless IoT languages
This study compares a pair of tierless IoT languages with conventional tiered
Python IoT software. Clean/iTask and Clean/iTask/mTask represent a specific set
of tierless language design decisions, however many alternative designs are available.
Crucially the limitations of the tierless Clean languages, e.g. that they currently
provide limited security, should not be seen as limitations of tierless technologies in
general. This section briefly outlines key design decisions for tierless IoT languages,
discusses alternative designs, and describes the Clean designs. The Clean designs
are illustrated in the examples in the following section.

10.3.3.1 Tier splitting and placement

A key challenge for a tierless language is to determine which parts of the program
correspond to a particular tier and hence should be executed by a specific component
on a specific host.

For example a tierless web language must identify client code to ship to browsers,
database code to execute in the DBMS, and application code to run on the server.
Tierless web languages can make this determination statically, so-called tier splitting
using types or syntactic markers like server or client pragmas (Cooper et al.,
2007; Ekblad and Claessen, 2014). It is even possible to infer the splitting, relieving
the developers from the need to specify it, as illustrated for JavaScript as a tierless
web language (Philips et al., 2014).

In Clean/iTask/mTask and Clean/iTask tier splitting is specified by functions,
e.g. the Clean/iTask/mTask asyncTask function identifies a task for execution on
a remote device and liftmTask executes the given task on an IoT device. The
tier splitting functions are illustrated in examples in the next section, e.g. on
line 17 in listing 10.3 and line 29 in listing 10.4. Specifying splitting as functions
means that new splitting functions can be composed, and that splitting is under
program control, e.g. during execution a program can decide to run a task locally
or remotely.

As IoT stacks are more complex than web stacks, the placement of data and
computations onto the devices/hosts in the system is more challenging. In many
IoT systems placement is manual: the sensor nodes are microcontrollers that
are programmed by writing the program to flash memory. So physical access to



150 10.3. Tierless languages

the microcontroller is normally required to change the program, making updates
challenging.

Techniques like over-the-air programming and interpreters allow microcontrollers
to be dynamically provisioned, increasing their maintainability and resilience. For
example Baccelli et al. (2018) provide a single language IoT system based on the
RIOT OS that allows runtime deployment of code snippets called containers. Both
client and server are written in JavaScript. However, there is no integration between
the client and the server other than that they are programmed from a single source.
Matè is an example of an early tierless sensor network framework where devices
are provided with a virtual machine using TinyOS for dynamic provisioning (Levis
and Culler, 2002).

In general different tierless languages specify placement in different ways, e.g.
code annotations or configuration files, and at different granularities, e.g. per
function or per class (Weisenburger et al., 2020).

Clean/iTask/mTask and Clean/iTask both use dynamic task placement. In
Clean/iTask/mTask sensor nodes are programmed once with the mTask RTS, and
possibly some precompiled tasks. Thereafter, a sensor node can dynamically receive
mTask programs, compiled at runtime by the server. In Clean/iTask the sensor
node runs an iTask server that receives and executes code from the (IoT) server
(Oortgiese et al., 2017). Placement happens automatically as part of the first-class
splitting constructs, so line 29 in listing 10.4 places devTask onto the dev sensor
node.

10.3.3.2 Communication

Tierless languages may adopt a range of communication paradigms for communi-
cating between components. Different tierless languages specify communication
in different ways (Weisenburger et al., 2020). Remote procedures are the most
common communication mechanism: a procedure/function executing on a remote
host/machine is called as if it was local. The communication of the arguments
to, and the results from, the remote procedure is automatically provided by the
language implementation. Other mechanisms include explicit message passing
between components; publish/subscribe where components subscribe to topics
of interest from other components; reactive programming defines event streams
between remote components; finally shared state makes changes in a shared and
potentially remote data structure visible to components.

Clean/iTask/mTask and Clean/iTask communicate using a combination of
remote task invocation, similar to remote procedures, and shared state through
SDSs. Listing 10.3 illustrates: line 17 shows a server task launching a remote
task, devTask, on to a sensor node; and line 19 shows the sharing of the remote
latestTemp SDS.

10.3.3.3 Security

Security is a major issue and a considerable challenge for many IoT systems
(Alhirabi et al., 2021). There are potentially security issues at each layer in an
IoT application (figure 10.1). The security issues and defence mechanisms at the



Chapter 10. Could tierless languages reduce IoT development grief? 151

application and presentation layers are relatively standard, e.g. defending against
SQL injection attacks. The security issues at the network and perception layers are
more challenging. Resource-rich sensor nodes can adopt some standard security
measures like encrypting messages, and regularly applying software patches to
the operating system. However, microcontrollers often lack the computational
resources for encryption, and it is hard to patch their system software because
the program is often stored in flash memory. In consequence there are infamous
examples of IoT systems being hijacked to create botnets (Antonakakis et al., 2017;
Herwig et al., 2019).

Securing the entire stack in a conventional tiered IoT application is particularly
challenging as the stack is implemented in a collection of programming languages
with low level programming and communication abstractions. In such polyglot
distributed systems it is hard to determine, and hence secure, the flow of data
between components. In consequence a small mistake may have severe security
implications.

A number of characteristics of tierless languages help to improve security.
Communication and placement vulnerabilities are minimised as communication
and placement are automatically generated and checked by the compiler. So
injection attacks and the exploitation of communication/placement protocol bugs
are less likely. Vulnerabilities introduced by mismatched types are avoided as the
entire system is type checked. Moreover, tierless languages can exploit language
level security techniques. For example languages like Jif/split (Zdancewic et al.,
2002) and Swift (Chong et al., 2007) place components to protect the security of
data. Another example are programming language technologies for controlling
information flow, and these can be used to improve security. For example Haski
uses them to improve the security of IoT systems (Valliappan et al., 2020).

However, many tierless languages have yet to provide a comprehensive set
of security technologies, despite its importance in domains like web and IoT
applications. For example Erlang and many Erlang-based systems (Shibanai and
Watanabe, 2018; Sivieri et al., 2012), lack important security measures. Indeed,
security is not covered in a recent, otherwise comprehensive, survey of tierless
technologies (Weisenburger et al., 2020).

Clean/iTask and Clean/iTask/mTask are typical in this respect: little effort
has yet been expended on improving their security. Of course as tierless languages
they benefit from static type safety and automatically generated communication
and placement. Some preliminary work shows that, as the communication between
layers is protocol agnostic, more secure alternatives can be used. One example is
to run the iTask server behind a reverse proxy implementing TLS/SSL encryption
(Wijkhuizen, 2018). A second is to add integrity checks or even encryption to the
communication protocol for resource-rich sensor nodes (de Boer, 2020).

10.4 Task-oriented and IoT programming in Clean
To make this chapter self-contained we provide a concise overview of Clean, TOP,
and IoT programming in iTask and mTask. The minor innovations reported here



152 10.4. Task-oriented and IoT programming in Clean

are the interface to the IoT sensors, and the Clean port for the Raspberry Pi.
Clean is a statically typed FP language similar to Haskell: both languages

are pure and non-strict (Achten, 2007). A key difference is how state is handled:
Haskell typically embeds stateful actions in the IO Monad (HaskellWiki contributors,
2020; Peyton Jones and Wadler, 1993). In contrast, Clean has a uniqueness type
system to ensure the single-threaded use of stateful objects like files and windows
(Barendsen and Smetsers, 1996). Both Clean and Haskell support fairly similar
models of generic programming (Rodriguez et al., 2008), enabling functions to
work on many types. As we shall see generic programming is heavily used in
task-oriented programming (Alimarine and Plasmeijer, 2002; Hinze, 2000), for
example to construct web editors and communication protocols that work for any
user-defined datatype.

10.4.1 Task-oriented programming
TOP is a declarative programming paradigm for constructing interactive distributed
systems (Plasmeijer et al., 2012). Tasks are the basic blocks of TOP and represent
work that needs to be done in the broadest sense. Examples of typical tasks range
from allowing a user to complete a form, controlling peripherals, moderating other
tasks, or monitoring a database. From a single declarative description of tasks all
the required software components are generated. This may include web servers,
client code for browsers or IoT devices, and for their interoperation. That is, from
a single TOP program the language implementation automatically generates an
integrated distributed system. Application areas range from simple web forms or
blinking LEDs to multi-user distributed collaboration between people and machines
(Oortgiese et al., 2017).

TOP adds three concepts: tasks, task combinators, and SDSs. Example basic
tasks are web editors for user-defined datatypes, reading some IoT sensor, or
controlling peripherals like a servo motor. Task combinators compose tasks into
more advanced tasks, either in parallel or sequential and allow task values to be
observed by other tasks. As tasks can be returned as the result of a function,
recursion can be freely used, e.g. to express the repetition of tasks. There are
also standard combinators for common patterns. Tasks can exchange information
via SDSs (Domoszlai et al., 2014). All tasks involved can atomically observe and
change the value of a typed SDS, allowing more flexible communication than with
task combinators. SDSs offer a general abstraction of data shared by different
tasks, analogous to variables, persistent values, files, databases and peripherals
like sensors. Combinators compose SDSs into a larger SDS, and parametric lenses
define a specific view on an SDS.

10.4.2 The iTask eDSL
The iTask eDSL is designed for constructing multi-user distributed applications,
including web (Plasmeijer et al., 2007a) or IoT applications. Here we present iTask
by example, and the first is a complete program to repeatedly read the room
temperature from a DHT sensor attached to the machine and display it on a web



Chapter 10. Could tierless languages reduce IoT development grief? 153

page (listing 10.1). The first line is the module name, the third imports the iTask
module, and the main function (lines 5 and 6) launches readTempTask and the iTask
system to generate the web interface in figure 10.2.

Interaction with a device like the DHT sensor using a protocol like 1-Wire or
I2C is abstracted into a library. So the readTempTask task starts by creating a
dht sensor object (line 10) thereafter repeatEvery executes a task at the specified
interval. This task reads the temperature from the dht sensor, and with a
sequential composition combinator >>~ passes the temp value to viewInformation
that displays it on the web page (line 13). The tuning combinator <<@ adds a label
to the web editor displaying the temperature. Crucially, the iTask implementation
transparently ships parts of the code for the web-interface to be executed in the
browser, and figure 10.2 shows the UML deployment diagram.

1 module simpleTempSensor
2

3 import iTasks
4

5 Start :: *World � *World
6 Start world = doTasks readTempTask world
7

8 readTempTask :: Task Real
9 readTempTask =

10 withDHT IIO_TempID \dht �
11 repeatEvery interval (
12 temperature dht >>~ \temp �
13 viewInformation [] temp <<@
14 Label "Temperature"
15 )

Listing (Clean) 10.1: SimpleTempSensor: a Clean/iTask program to read a local
room temperature sensor and display it on a web page.

(a) Web page. (b) Deployment diagram.

Figure 10.2: SimpleTempSensor written in iTask.

SimpleTempSensor only reports instantaneous temperature measurements. Ex-
tending it to store and manipulate timed temperature records produces a tiny
tierless web application: TempHistory in listing 10.2. A tierless IoT system can be
controlled from a web interface in exactly the same way, e.g. to view and set the
measurement frequencies of each of the room sensors. Line 5 defines a record to
store time and temp measurements. Task manipulations are derived for Measurement
(line 6) and these include displaying measurements in a web-editor and storing



154 10.4. Task-oriented and IoT programming in Clean

them in a file. Line 8 defines a persistent SDS to store a list of measurements, and
for communication between tasks. The SDS is analogous to the SQL DBMS in
many tiered web applications.

TempHistory defines two tasks that interact with the measurementsSDS: mea-
sureTask adds measurements at each detected change in the temperature. It
starts by defining a dht object as before, and then defines a recursive task function
parameterised by the old temperature. This function reads the temperature from
the DHT sensor and uses the step combinator, >>*, to compose it with a list of
actions. The first of those actions that is applicable determines the continuation
of this task. If no action is applicable, the task on the left-hand side is evaluated
again. The first action checks whether the new temperature is different from
the old temperature (line 16). If so, it records the current time and adds the
new measurements to the measurementsSDS. The next action in line 20 is always
applicable and waits (sleeps) for an interval before returning the old temperature.
On line 22 task is launched with an initial temperature.

1 module TempHistory
2

3 import iTasks, iTasks.Extensions.DateTime
4

5 :: Measurement = {time :: Time, temp :: Real}
6 derive class iTask Measurement
7

8 measurementsSDS :: SimpleSDSLens [Measurement]
9 measurementsSDS = sharedStore "measurements" []

10

11 measureTask :: Task ()
12 measureTask =
13 withDHT IIO_TempID \dht �
14 let task old =
15 temperature dht >>*
16 [ OnValue (ifValue ((<>) old) \temp �
17 get currentTime >>~ \time �
18 upd (\list � [{time = time, temp = temp}:list])

measurementsSDS
19 @! temp)
20 , OnValue (always (waitForTimer False interval @! old))
21 ] >>~ task
22 in task initialTemp
23

24

25 controlSDS :: Bool � Task [Measurement]
26 controlSDS byTemp =
27 ((Label "# to take" @>> enterInformation []) -||
28 (Label "Measurements" @>>
29 viewSharedInformation
30 [ ViewAs ( i f byTemp (sortBy (\x y � x.temp < y.temp)) id)]
31 measurementsSDS)) >>*
32 [ OnAction (Action "Clear") (always



Chapter 10. Could tierless languages reduce IoT development grief? 155

33 (set [] measurementsSDS >-| controlSDS byTemp))
34 , OnAction (Action "Take") (ifValue ((<) 0)
35 (\n � upd (take n) measurementsSDS >-| controlSDS byTemp))
36 , OnAction (Action ( i f byTemp "Sort time" "Sort temp")) (always
37 (controlSDS (not byTemp)))
38 ]
39

40 mainTask :: Task [Measurement]
41 mainTask = controlSDS False -|| measureTask

Listing (Clean) 10.2: TempHistory: a tierless Clean/iTask web application that
records and manipulates timed temperatures.

The controlSDS task illustrates communication from the web page user and
persistent data manipulation. That is, it generates a web page that allows users to
control their view of the temperature measurements, as illustrated in figure 10.3.
The page contains 1. a web editor to enter the number n of elements to display,
generated on line 27. 2. A display of the n most recent temperature and time
measurements, lines 28 to 31. 3. Three buttons that are again combined with
the step combinator >>*, lines 31 to 38. The Clear button is always enabled and
sets the SDS to an empty list before calling controlSDS recursively. The Take
button is only enabled when the web editor produces a positive n and updates the
measurementsSDS with the n most recent measurements before calling controlSDS
recursively. The final action is always enabled and calls controlSDS recursively with
the negation of the byTemp argument to change the sorting criteria.

(a) Web page sorted by time. (b) Web page sorted by temperature.

Figure 10.3: Web pages generated by the TempHistory Clean/iTask tierless web
application. The Take button is only enabled when the topmost editor contains a
positive number.

Figure 10.3 shows two screenshots of web pages generated by the TempHistory
program. Figure 10.4 is the deployment diagram showing the addition of the
persistent measurementsSDS that stores the history of temperature measurements.



156 10.4. Task-oriented and IoT programming in Clean

Figure 10.4: Deployment diagram of the iTask TempHistory tierless web application
from listing 10.2.

10.4.3 Engineering tierless IoT systems with iTask
A typical IoT system goes beyond a web application by incorporating a distributed
set of sensor nodes each with a collection of sensors or actuators. That is, they
add the perception and network layers in figure 10.1. If the sensor nodes have the
computational resources to support an iTask server, as a Raspberry Pi does, then
iTask can also be used to implement these layers, and integrate them with the
application and presentation layers tierlessly.

As an example of tierless IoT programming in Clean/iTask listing 10.3 shows a
complete temperature sensing system with a server and a single sensor node (Clean
Raspberry Pi temperature sensor (CRTS)), omitting only the module name and
imports. It is similar to the SimpleTempSensor and TempHistory programs above,
for example devTask repeatedly sleeps and records temperatures and times, and
mainTask displays the temperatures on the web page in figure 10.5. There are some
important differences, however. The devTask (lines 8 to 13) executes on the sensor
node and records the temperatures in a standard timestamped (lens on) an SDS:
dateTimeStampedShare latestTemp. The mainTask (line 16) executes on the server:
it starts devTask as an asynchronous task on the specified sensor node (line 17)
and then generates a web page to display the latest temperature and time (lines 18
and 20).

The tempSDS is very similar to the measurementsSDS from the previous listings.
The only difference is that we store measurements as tuples instead of tailor-made
records. The latestTemp is a lens on the tempSDS. A lens is a new SDS that
is automatically mapped to another SDS. Updating one of the SDSs that are
coupled in this way automatically updates the other. The function mapReadWrite is
parameterised by the read and write functions, the option to handle asynchronous
update conflicts (here ?None) and the SDS to be transformed (here tempSDS). The
result of reading is the head of the list, if it exists. The type for writing latestTemp
is a tuple with a new DateTime and temperature as Real.

1 tempSDS :: SimpleSDSLens [(DateTime, Real)]
2 tempSDS = sharedStore "temperatures" []
3

4 latestTemp :: SDSLens () (? (DateTime, Real)) (DateTime, Real)
5 latestTemp = mapReadWrite (listToMaybe, \x xs � ?Just [x:xs]) ?None

tempSDS



Chapter 10. Could tierless languages reduce IoT development grief? 157

6

7 devTask :: Task DateTime
8 devTask =
9 withDHT IIO_TempID \dht �

10 forever (
11 temperature dht >>~ \temp �
12 set temp (dateTimeStampedShare latestTemp) >-|
13 waitForTimer False interval)
14

15 mainTask :: Task ()
16 mainTask
17 = asyncTask deviceInfo.domain deviceInfo.port devTask
18 -|| viewSharedInformation []
19 (remoteShare latestTemp deviceInfo)
20 <<@ Title "Latest temperature"

Listing (Clean) 10.3: CRTS: a tierless temperature sensing IoT system. Written in
Clean/iTask, it targets a resource-rich sensor node.

(a) Web page. (b) Deployment diagram.

Figure 10.5: Tierless iTask CRTS temperature sensing IoT system.

10.4.4 The mTask eDSL
In many IoT systems the sensor nodes are resource constrained, e.g. inexpensive
microcontrollers. These are far cheaper, and consume far less power, than a single-
board computer like a Raspberry Pi. Microcontrollers also allow the programmer
to easily control peripherals like sensors and actuators via the I/O pins of the
processor.

Microcontrollers have limited memory capacity, compute power and communi-
cation bandwidth, and hence typically no OS. These limitations make it impossible
to run an iTask server: there is no OS to start the remote task, the code of the
task is too big to fit in the available memory and the microcontroller processor is
too slow to run it. The mTask eDSL is designed to bridge this gap: mTask tasks
can be communicated from the server to the sensor node, to execute within the
limitations of a typical microcontroller, while providing programming abstractions
that are consistent with iTask.

Like iTask, mTask is task oriented, e.g. there are primitive tasks that produce
intermediate values, a restricted set of task combinators to compose the tasks, and



158 10.4. Task-oriented and IoT programming in Clean

(recursive) functions to construct tasks. Tasks in mTask communicate using task
values or SDSs that may be local or remote, and may be shared by some iTask
tasks.

Apart from the eDSL, the mTask system contains a feather-light domain-specific
operating system running on the microcontroller. This OS task scheduler receives
the byte code generated from one or more mTask programs and interleaves the
execution of those tasks. The OS also manages SDS updates and the passing of task
results. The mTask OS is stored in flash memory while the tasks are stored in RAM
to minimise wear on the flash memory. While sending byte code to a sensor node
at runtime greatly increases the amount of communication, this can be mitigated
as any tasks known at compile time can be preloaded on the microcontroller. In
contrast, compiled programs, like C/C++, are stored in flash memory and there
can only ever be a few thousand programs uploaded during the lifetime of the
microcontroller before exhausting the flash memory.

10.4.5 Engineering tierless IoT systems with mTask
A tierless Clean IoT system with microcontroller sensor nodes integrates a set
of iTask tasks that specify the application and presentation layers with a set of
mTasks that specify the perception and network layers. We illustrate with Clean
WEMOS temperature sensor (CWTS): a simple room temperature sensor with a
web display. CWTS is equivalent to the iTask CRTS (listing 10.3), except that the
sensor node is a WEMOS microcontroller.

Listing 10.4 shows the complete program, and the key function is devTask with
a top-level Main type (line 18). In mTask functions, shares, and devices can only be
defined at this top level. The program uses the same shares tempSDS and latestTemp
as CRTS, and for completeness we repeat those definitions. The body of devTask
is the mTask slice of the program (lines 20 to 25). With DHT we again create a
temperature sensor object dht. The iTask SDS latestTemp is first transformed to
an SDS that accepts only temperature values, the dateTimeStampedShare adds the
data via a lens. The mapRead adjusts the read type. This new SDS of type Real is
lifted to the mTask program with lowerSds.

The mainTask is a simple iTask task that starts the devTask mTask task on the
device identified by deviceInfo (line 29). At runtime the mTask slice is compiled
to byte code, shipped to the indicated device, and launched. Thereafter, mainTask
reads temperature values from the latestTemp SDS that is shared with the mTask
device, and displays them on a web page (figure 10.5). The SDS—shared with the
device using lowerSds—automatically communicates new temperature values from
the microcontroller to the server.

While this simple application makes limited use of the mTask eDSL, it illustrates
some powerful mTask program abstractions like basic tasks, task combinators,
named recursive and parameterised tasks, and SDSs. Function composition (line 22)
and currying (line 25) are inherited from the Clean host language. As mTask
tasks are dynamically compiled, it is also possible to select and customise tasks as
required at runtime. For example, the interval used in the rpeatevery task (line 23)
could be a parameter to the devTask function.



Chapter 10. Could tierless languages reduce IoT development grief? 159

1 module cwts
2

3 import mTask.Language, mTask.Interpret, mTask.Interpret.Device.TCP
4 import iTasks, iTasks.Extensions.DateTime
5

6 deviceInfo = {TCPSettings | host = " · · · ", port = 8123, pingTimeout = ?None} CO
7 interval = lit 10 SN
8 DHT_pin = DigitalPin D4 SI
9

10 Start world = doTasks mainTask world WI
11

12 tempSDS :: SimpleSDSLens [(DateTime, Real)]
13 tempSDS = sharedStore "temperatures" [] DI
14

15 latestTemp :: SDSLens () (? (DateTime, Real)) (DateTime, Real)
16 latestTemp = mapReadWrite (listToMaybe, \x xs � ?Just [x:xs]) ?None

tempSDS DI
17

18 devTask :: Main (MTask v Real) | mtask, dht, lowerSds v
19 devTask =
20 DHT (DHT_DHT DHT_pin DHT11) \dht � SI
21 lowerSds \localSds = CO
22 mapRead (snd o fromJust) (dateTimeStampedShare latestTemp) SN
23 In {main = rpeatEvery (ExactSec interval) SN
24 (temperature dht >>~. SI
25 setSds localSds)} SN
26

27 mainTask :: Task Real
28 mainTask
29 = withDevice deviceInfo \dev � liftmTask devTask dev CO
30 -|| viewSharedInformation [] latestTemp WI
31 <<@ Title "Latest temperature" WI

Listing (Clean) 10.4: CWTS: a tierless temperature sensing IoT system. Written
in Clean/iTask/mTask, it targets a resource-constrained sensor node. Each line is
annotated with the functionality as analysed in section 10.6.1.

(a) Web page. (b) Deployment diagram.

Figure 10.6: Tierless Clean/iTask/mTask CWTS temperature sensing IoT system.



160 10.5. UoG smart campus case study

10.5 UoG smart campus case study
The basis for our comparison between tiered and tierless technologies are four IoT
systems that all conform to the UoG smart campus specifications (section 10.5.3).
There is a small (12 room) deployment of the conventional Python-based PRS
stack that uses Raspberry Pi supersensors, and its direct comparator is the tierless
CRS implementation: also deployed on Raspberry Pis. To represent the more
common microcontroller sensor nodes we select ESP8266X powered WEMOS D1
Mini microcontrollers. To evaluate tierless technologies on microcontrollers we
compare the conventional Python/MicroPython PWS stack with the tierless CWS
implementation.

A similar range of commodity sensors is connected to both the Raspberry Pi
and WEMOS sensor nodes using various low-level communication protocols such as
GPIO, I2C, SPI and 1-wire. The sensors are as follows: Temperature & Humidity:
LOLIN SHT30; Light: LOLIN BH1750; Motion: LOLIN PIR; Sound: SparkFun
SEN-12642; eCO2: SparkFun CCS811.

Figure 10.7 shows both a prototype WEMOS-based sensor node and sensors
and a Raspberry Pi supersensor. Three different development teams developed the
four implementations: CWS and CRS were engineered by a single developer.

(a) A WEMOS used in PWS and CWS. (b) A Raspberry Pi used in PRS and CRS.

Figure 10.7: Exposed views of sensor nodes.

10.5.1 Tiered implementations
The tiered PRS and PWS share the same server code executing on a commodity
PC (figure 10.1). The Python server stores incoming sensor data in two database
systems, i.e. Redis (in-memory data) and MongoDB (persistent data). The real-time
sensor data is made available via a streaming websockets server, which connects
with Redis. There is also an HTTP REST API for polling current and historical
sensor data, which hooks into MongoDB. Communication between a sensor node
and the server is always initiated by the node.

PRS’s sensor nodes are relatively powerful Raspberry Pi 3 Model Bs. There is
a simple object-oriented Python collector for configuring the sensors and reading
their values. The collector daemon service marshals the sensor data and transmits



Chapter 10. Could tierless languages reduce IoT development grief? 161

using MQTT to the central monitoring server at a preset frequency. The collector
caches sensor data locally when the server is unreachable.

In contrast to PRS, PWS’s sensor nodes are microcontrollers running Mi-
croPython, a dialect of Python specifically designed to run on small, low powered
embedded devices (Kodali and Mahesh, 2016). To enable a fair comparison be-
tween the software stacks we are careful to use the same object-oriented software
architecture, e.g. using the same classes in PWS and PRS.

Python and MicroPython are appropriate tiered comparison languages. Tiered
IoT systems are implemented in a whole range of programming languages, with
Python, MicroPython, C and C++ being popular for some tiers in many implemen-
tations. C/C++ implementations would probably result in more verbose programs
and even less type safety. The other reasons for selecting Python and MicroPython
are pragmatic. PRS had been constructed in Python, deployed, and was being
used as an IoT experimental platform. Selecting MicroPython for the resource-
constrained PWS sensor nodes facilitates comparison by minimising changes to the
resource-rich and resource-constrained codebases. We anticipate that the codebase
for a tiered smart campus implementation in another imperative/object-oriented
language, like C++, would be broadly similar to the PRS and PWS codebases.

10.5.2 Tierless implementations
The tierless CRS and CWS servers share the same iTask server code (figure 10.1),
and can be compiled for many standard platforms. They use SQLite as a database
backend. Communication between a sensor node and the server is initiated by the
server.

CRS’s sensor nodes are Raspberry Pi 4s, and execute Clean/iTask programs.
Communication from the sensor node to the server is implicit and happens via SDSs
over TCP using platform independent execution graph serialisation (Oortgiese
et al., 2017).

CWS’s sensor nodes are WEMOS microcontrollers running mTask tasks. Com-
munication and serialisation is, by design, very similar to iTask, i.e. via SDSs over
either a serial port connection, raw TCP, or MQTT over TCP.

(a) CWS and CRS. (b) PWS and PRS.

Figure 10.8: Web interfaces for the smart campus application.



162 10.5. UoG smart campus case study

10.5.3 Operational equivalence
To ensure that the comparison reported in the following sections is based on IoT
stacks with equivalent functionality, we demonstrate that PWS, CWS and CRS, like
PRS, meet the functional requirements for the UoG smart campus sensor system.
We also compare the sensor node power consumption and memory footprint.

10.5.3.1 Functional requirements

The main goal of the UoG smart campus project is to provide a testbed for sensor
nodes and potentially other devices to act as a data collection and computation
platform for the UoG smart campus. The high-level functional requirements, as
specified by the UoG smart campus project board, are as follows. The system
should:

1. be able to measure temperature and humidity as well as light intensity,
2. scale to no more than 10 sensors per sensor node and investigate further

sensor options like measuring sound levels,
3. have access to communication channels like Wi-Fi, Bluetooth and even wired

networks.
4. have a centralised database server,
5. have a client interface to access information stored in the database,
6. provide some means of security and authentication,
7. have some means of managing and monitoring sensor nodes like updating

software or detecting new sensor nodes.

All four smart campus implementations meet these high-level requirements.

10.5.3.2 Functional equivalence

Observation of the four implementations shows that they operate as expected, e.g.
detecting light or motion. To illustrate figure 10.8 shows the web interface for the
implementations where CWS and CRS are deployed in a different room from PWS
and PRS.

All four implementations use an identical set of inexpensive sensors, so we expect
the accuracy of the data collected is within tolerance levels. This is validated by
comparing PRS and PWS sensor nodes deployed in the same room for some minutes.
The measurements show only small variances, e.g. temperatures recorded differ by
less than 0 .4 ◦C, and light by less than 1 lux. For this room monitoring application
precise timings are not critical, and we don’t compare the timing behaviours of the
implementations.

10.5.3.3 Memory and power consumption

Memory By design sensor nodes are devices with limited computational capacity,
and memory is a key restriction. Even supersensors often have less than a GiB of
memory, and microcontrollers often have just tens of KiB. As the tierless languages



Chapter 10. Could tierless languages reduce IoT development grief? 163

Table 10.1: UoG smart campus sensor nodes: maximum memory residency (in
bytes).

PWS PRS CWS CRS
20 270 3 557 806 880 2 726 680

synthesise the code to be executed on the sensor nodes, we need to confirm that
the generated code is sufficiently memory efficient.

Table 10.1 shows the maximum memory residency after garbage collection of the
sensor node for all four smart campus implementations. The smart campus sensor
node programs executing on the WEMOS microcontrollers have low maximum
residencies: 20 270 B for PWS and 880 B for CWS. In CWS the mTask system
generates very high level TOP byte code that is interpreted by the mTask virtual
machine and uses a small and predictable amount of heap memory. In PWS, the
hand-written MicroPython is compiled to byte code for execution on the virtual
machine. Low residency is achieved with a fixed size heap and efficient memory
management. For example both MicroPython and mTask use fixed size allocation
units and mark&sweep garbage collection to minimise memory usage at the cost of
some execution time (Plamauer and Langer, 2017).

The smart campus sensor node programs executing on the Raspberry Pis have
far higher maximum residencies than those executing on the microcontrollers:
3 .5 MiB for PRS and 2 .7 MiB for CRS. In CRS the sensor node code is a set of
iTask executing on a full-fledged iTask server running in distributed child mode
and this consumes far more memory. In PRS the sensor node program is written in
Python, a language far less focused on minimising memory usage than MicroPython.
For example an object like a string is larger in Python than in MicroPython and
consequently does not support all features such as f-strings. Furthermore, not all
advanced Python feature regarding classes are available in MicroPython, i.e. only
a subset of the Python specification is supported (MicropythonTeam, 2022).

In summary the sensor node code generated by both tierless languages, iTask
and mTask, is sufficiently memory efficient for the target sensor node hardware.
Indeed, the maximum residencies of the Clean sensor node code is less than the
corresponding hand-written (Micro)Python code. Of course in a tiered stack
the hand-written code can be more easily optimised to minimise residency, and
this could even entail using a memory efficient language like C/C++. However,
such optimisation requires additional developer effort, and a new language would
introduce additional semantic friction.

Power Sensor nodes and sensors are designed to have low power demands, and
this is particularly important if they are operating on batteries. The grey literature
consensus is that with all sensors enabled a sensor node should typically have
sub-1 W peak power draw. The WEMOS sensor nodes used in CWS and PWS
have the low power consumption of a typical embedded device: with all sensors
enabled, they consume around 0 .2 W. The Raspberry Pi supersensor node used



164 10.6. Is tierless IoT programming easier than tiered?

in CRS and PRS use more power as they have a general purpose ARM processor
and run mainstream Linux. With all sensors enabled, they consume 1 W to 2 W,
depending on ambient load. So a microcontroller sensor node consumes an order
of magnitude less power than a supersensor node.

10.6 Is tierless IoT programming easier than tiered?
This section investigates whether tierless languages make IoT programming easier
by comparing the UoG smart campus implementations. The CRS and CWS
implementations allow us to evaluate tierless languages for resource-rich and for
resource-constrained sensor nodes respectively. The PRS and PWS allow a like-for-
like comparison with tiered Python implementations.

10.6.1 Comparing tiered and tierless codebases
Code size is widely recognised as an approximate measure of the development
and maintenance effort required for a software system (Rosenberg, 1997). SLOC is
a common code size metric, and is especially useful for multi-paradigm systems
like IoT systems. It is based on the simple principle that the more SLOC, the
more developer effort and the increased likelihood of bugs (Rosenberg, 1997). It
is a simple measure, not dependent on some formula, and can be automatically
computed (Sheetz et al., 2009).

Of course SLOC must be used carefully as it is easily influenced by programming
style, language paradigm, and counting method (Alpernas et al., 2020). Here we are
counting code to compare development effort, use the same idiomatic programming
style in each component, and only count lines of code, omitting comments and
blank lines.

Table 10.2 enumerates the SLOC required to implement the UoG smart campus
functionalities in PWS, PRS, CWS and CRS. Both Python and Clean implemen-
tations use the same server and communication code for Raspberry Pi and for
WEMOS sensor nodes (rows 5–7 of the table). The Sensor Interface (SI) refers
to code facilitating the communication between the peripherals and the sensor
node software. Sensor Node (SN) code contains all other code on the sensor node
that does not belong to any another category, such as control flow. Manage Nodes
(MN) is code that coordinates sensor nodes, e.g. to add a new sensor node to the
system. Web Interface (WI) code provides the web interface from the server, i.e.
the presentation layer. Database Interface (DI) code communicates between the
server and the database(s). Communication (CO) code provides communication
between the server and the sensor nodes, and executes on both sensor node and
server, i.e. the network layer.

The most striking information in table 10.2 is that the tierless implementations
require far less code than the tiered implementations. For example 166/562 SLOC for
CWS/PWS, or 70% fewer SLOC. We attribute the code reduction to three factors:
reduced interoperation, automatic communication, and high level programming
abstractions. We analyse each of these aspects in the following subsections.



Chapter 10. Could tierless languages reduce IoT development grief? 165

Table 10.2: Comparing tiered and tierless smart campus code sizes: SLOC and
number of source files. PWS and CWS execute on resource-constrained sensor
nodes, while PRS and CRS execute on resource-rich sensor nodes.

Tiered Python Tierless Clean
Code location Functionality PWS PRS CWS CRS
Sensor Node Sensor Interface 52 57 11 11

Sensor Node 178 183 9 4
Server Manage Nodes 76 35 30

Web Interface 56 28
Database Interface 106 78

Communication Communication 94 98 5 4
Total SLOC 562 576 166 155
№ Files 35 38 3 3

Code proportions. Comparing the percentages of code required to implement
the smart campus functionalities normalises the data and avoids some issues
when comparing SLOC for different programming languages, and especially for
languages with different paradigms like object-oriented Python and functional
Clean. Figure 10.9 shows the percentage of the total SLOC required to implement
the smart campus functionalities in each of the four implementations, and is
computed from the data in table 10.2. It shows that there are significant differences
between the percentage of code for each functionality between the tiered and
tierless implementations. For example 17% of the tiered implementations specifies
communication, whereas this requires only 3% of the tierless implementations, i.e.
6× less. We explore the reasons for this in section 10.6.4. The other major difference
is the massive percentage of Database Interface code in the tierless implementations:
at least 47%. The smart campus specification required a standard DBMS, and
the Clean/iTask SQL interface occupies some 78 SLOC. While this is a little less
than the 106 SLOC used in Python (table 10.2), it is a far higher percentage of
systems with total codebases of only around 160 SLOC. Idiomatic Clean/iTask
would use high level abstractions to store persistent data in an SDS, requiring just
a few SLOC. The total size of CWS and CRS would be reduced by a factor of
two and the percentage of Database Interface code would be even less than in the
tiered Python implementations.

10.6.2 Comparing codebases for resource-rich/constrained
sensor nodes

Before exploring the reasons for the smaller tierless codebase we compare the im-
plementations for resource-rich and resource-constrained sensor nodes, again using
SLOC and code proportions. Table 10.2 shows that the two tiered implementations
are very similar in size: with PWS for microcontrollers requiring 562 SLOC and



166 10.6. Is tierless IoT programming easier than tiered?

PWS PRS CWS CRS
0

20

40

60

80

100

%
 c

ov
er

ag
e

17 17

3 3

19 18 47 50

10 10

17
18

14 13

21
19

32 32

5 3
9 10 7 7

Sensor Interface
Sensor Node
Manage Nodes
Web Interface
Database Interface
Communication

Figure 10.9: Comparing the percentage of code required to implement each func-
tionality in tiered/tierless and resource-rich/constrained smart campus implemen-
tations.

PRS for supersensors requiring 576 SLOC. The two tierless implementations are
also similar in size: CWS requiring 166 and CRS 155 SLOC.

There are several main reasons for the similarity. One is that the server-
side code, i.e. for the presentation and application layers, is identical for both
resource rich/constrained implementations. The identical server code accounts for
approximately 40% of the PWS and PRS codebases, and approximately 85% of
the CWS and CRS codebases (figure 10.9). For the perception and network layers
on the sensor nodes, the Python and MicroPython implementations have the same
structure, e.g. a class for each type of sensor, and use analogous libraries. Indeed,
approaches like CircuitPython (CircuitPython Team, 2022) allow the same code to
execute on both resource-rich and resource-constrained sensor nodes.

Like Python and MicroPython, iTask and mTask are designed to be similar, as
elaborated in section 10.8. The similarity is apparent when comparing the iTask
CRTS and Clean/iTask/mTask CWTS room temperature systems in listings 10.3
and 10.4. That is, both implementations use similar SDSs and lenses; they have
similar devTasks that execute on the sensor node, and the server-side mainTasks are
almost identical: they deploy the remote devTask before generating the web page
to report the readings.

In both Python and Clean the resource-constrained implementations are less
than 7% larger than the resource-rich implementations. This suggests that the
development and maintenance effort of simple IoT systems for resource-constrained
and for resource-rich sensor nodes is similar in tierless technologies, just as it is
in tiered technologies. A caveat is that the smart campus system is relatively
simple, and developing more complex perception and network code on bare metal
may prove more challenging. That is, the lack of OS support, and the restricted



Chapter 10. Could tierless languages reduce IoT development grief? 167

Table 10.3: Smart campus implementation languages comparison.

Languages

Code Location Functionality PWS PRS CWS CRS

Sensor Node Sensor Int. MicroPython Python mTask iTask
Sensor Node MicroPython Python mTask iTask

Server Manage Nodes Python, JSON iTask
Web Int. HTML, PHP iTask
Database Int. Python,JSON,Redis iTask

Communication Communication MicroPython Python iTask,mTask iTask

Total 7 6 2 1

Table 10.4: Smart campus paradigm comparison.

Paradigms

Code Location Functionality Python Clean

Sensor Node Sensor Interface Imperative Declarative
Sensor Node Imperative Declarative

Server Manage Nodes Imperative Declarative
Web Interface Both Declarative
Database Interface Both Declarative

Communication Communication Imperative Declarative

Total 2 1

languages and libraries, may have greater impact. We return to this issue in
section 10.8.

10.6.3 Reduced interoperation
The vast majority of IoT systems are implemented using a number of different
programming languages and paradigms, and these must be effectively used and
interoperated. A major reason that the tierless IoT implementations are simpler
and shorter than the tiered implementations is that they use far fewer programming
languages and paradigms. Here we use language to distinguish eDSLs from their
host language: so iTask and mTask are considered distinct from Clean; and to
distinguish dialects: so MicroPython is considered distinct from Python.

The tierless implementations use just two conceptually-similar DSLs embedded
in the same host language, and a single paradigm (tables 10.3 and 10.4). In contrast,
the tiers in PRS and PWS use six or more very different languages, and both
imperative and declarative paradigms. Multiple languages are commonly used in
other typical software systems like web stacks, e.g. a recent survey of open source
projects reveals that on average at least five different languages are used (Mayer



168 10.6. Is tierless IoT programming easier than tiered?

and Bauer, 2015). Interoperating components in multiple languages and paradigms
raises a plethora of issues.

Interoperation increases the cognitive load on the developer who must simul-
taneously think in multiple languages and paradigms. This is commonly known
as semantic friction or impedance mismatch (Ireland et al., 2009). A simple illus-
tration of this is that the tiered PRS source code comprises some 38 source and
configuration files, whereas the tierless CRS requires just 3 files (table 10.2). The
source could be structured as a single file, but to separate concerns is structured
into three modules, one each for SDSs, types, and control logic (Stutterheim et al.,
2018).

The developer must correctly interoperate the components, e.g. adhere to the API
or communication protocols between components. The interoperation often entails
additional programming tasks like marshalling or unmarshalling data between
components. For example, in the tiered PRS and PWS architectures, JSON is
used to serialise and deserialise data strings from the Python collector component
before storing the data in the Redis database (listing 10.5).
channel = 'sensor_status.%s.%s ' % (hostname,

sensor_types.sensor_type_name(s.sensor_type))
self.r.publish(channel, s.SerializeToString())

.....................................................................................

for message in p.listen():
i f message[ ' type '] not in [ 'message ', 'pmessage ']:

continue

try:
status = collector_pb2.SensorStatus.FromString(message[ 'data '])

Listing (Python) 10.5: JSON Data marshalling in PRS and PWS: sensor node
above, server below.

To ensure correctness the developer must maintain type safety across a range
of very different languages and diverse type systems, and we explore this further in
section 10.7.1. The developer must also deal with the potentially diverse failure
modes, not only of each component, but also of their interoperation, e.g. if a
value of an unexpected type is passed through an API. We explore this further in
section 10.7.2.

10.6.4 Automatic communication
In conventional tiered IoT implementations the developer must write and maintain
code to communicate between tiers. For example PRS and PWS create, send
and read MQTT (Light, 2017) messages between the perception and application
layers. Table 10.2 shows that communication between these layers require some 94
SLOC in PWS and 98 in PRS, accounting for 17% of the codebase (bottom bars
in figure 10.9). To illustrate, listing 10.6 shows part of the code to communicate
sensor readings from the PWS sensor node to the Redis store on the server.



Chapter 10. Could tierless languages reduce IoT development grief? 169

Not only must the tiered developer write additional code, but IoT communication
code is often intricate. In such a distributed system the sender and receiver must
be correctly configured, correctly follow the communication protocol through all
execution states, and deal with potential failures. For example line 3 of listing 10.6:
redis host = config.get( ' Redis ', 'Host ') will fail if either the host or IP are
incorrect.

def main():
config.init( 'mqtt ')
redis_host = config.get( 'Redis ', 'Host ')
redis_port = config.getint( 'Redis ', 'Port ')
r = redis.StrictRedis(host=redis_host, port=redis_port)
p = r.pubsub()
p.psubscribe("sensor_status.∗")
for message in p.listen():

i f message[ ' type '] not in [ 'message ', 'pmessage ']:
print "Ignoring message %s" % message
...

Listing (Python) 10.6: Tiered communication example: MQTT transmission of
sensor values in PWS.

In contrast, the tierless CWS and CRS communication is not only highly
automated, but also automatically correct because matching sender and receiver
code is generated by the compiler. Table 10.2 shows that communication is specified
in just 5 SLOC in CWS and 4 in CRS, or just 3% of the codebase (bottom bars in
figure 10.9).

Listing 10.4 illustrates communication in a tierless IoT language. That is, the
CWTS temperature sensor requires just three lines of communication code, and uses
just three communication functions. The withDevice function on line 29 integrates
a sensor node with the server, allowing tasks to be sent to it. The liftmTask on
line 29 integrates an mTask in the iTask runtime by compiling it and sending it for
interpretation to the sensor node. The lowerSds on line 21 integrates SDSs from
iTask into mTask, allowing mTask tasks to interact with data from the iTask server.
The exchange of data, user interface, and communication are all automatically
generated.

10.6.5 High level abstractions
Another reason that the tierless Clean implementations are concise is because they
use powerful higher order IoT programming abstractions. For comprehensibility the
simple temperature sensor from section 10.4.4 (listing 10.4) is used to compare the
expressive power of Clean and Python-based IoT programming abstractions. There
are implementations for all four configurations: Python Raspberry Pi temperature
sensor (PRTS),1 MicroPython WEMOS temperature sensor (PWTS),1 CRTS2 and

1Lubbers, M.; Koopman, P.; Ramsingh, A.; Singer, J.; Trinder, P. (2021): Source code, line
counts and memory stats for PRS, PWS, PRT and PWT. Zenodo. 10.5281/zenodo.5081386.

https://doi.org/10.5281/zenodo.5081386


170 10.6. Is tierless IoT programming easier than tiered?

Table 10.5: Comparing Clean and Python programming abstractions using the
PWTS and CWTS temperature sensors (SLOC and total number of files).

Location Functionality PWTS CWTS Lines (listing 10.4)
Sensor Node Sensor Interface 14 3 8, 20 and 24

Sensor Node 67 4 7, 22, 23 and 25
Server Web Interface 17 3 10, 30 and 31

Database Interface 106 2 13 and 16
Communication Communication 94 3 6, 21 and 29
Total SLOC 298 15
№ Files 27 1

CWTS.2 but as the programming abstractions are broadly similar, we compare
only the PWTS and CWTS implementations.

Although the temperature sensor applications are small compared to the smart
campus application, they share some typical IoT stack traits. The architecture
consists of a server and a single sensor node (figure 10.6). The sensor node measures
and reports the temperature every ten seconds to the server while the server displays
the latest temperature via a web interface to the user.

Table 10.5 compares the SLOC required for the MicroPython and Clean/iTask/
mTask WEMOS temperature sensors: PWTS and CWTS respectively. The code
sizes here should not be used to compare the programming models as implementing
such a small application as a conventional IoT stack requires a significant amount
of configuration and other machinery that would be reused in a larger application.
Hence, the ratio between total PWTS and CWTS code sizes (298:15) is far greater
than for realistic applications like PWS and CWS (471:166).

The multiple tiers in PRS and PWS provide different levels of abstraction and
separation of concerns. However, there are various ways that high-level abstractions
make the CWS much shorter than PRS and PWS implementations.

Firstly, FP languages are generally more concise than most other programming
languages because their powerful abstractions like higher-order and/or polymorphic
functions require less code to describe a computation. Secondly, the TOP paradigm
used in iTask and mTask reduces the code size further by making it easy to specify
IoT functionality concisely. As examples, the step combinator >>*. allows the
task value on the left-hand side to be observed until one of the steps is enabled;
and the viewSharedInformation (line 31 of listing 10.4) part of the UI will be
automatically updated when the value of the SDS changes. Moreover, each SDS
provides automatic updates to all coupled SDSs and associated tasks. Thirdly, the
amount of explicit type information is minimised in comparison to other languages,
as much is automatically inferred (Hughes, 1989).

2Lubbers, M.; Koopman, P.; Ramsingh, A.; Singer, J.; Trinder, P. (2021): Source code, line
counts and memory stats for CRS, CWS, CRTS and CWTS. Zenodo. 10.5281/zenodo.5040754.

https://doi.org/10.5281/zenodo.5040754


Chapter 10. Could tierless languages reduce IoT development grief? 171

10.7 Could tierless IoT programming be more re-
liable than tiered?

This section investigates whether tierless languages make IoT programming more
reliable. Arguably the much smaller and simpler code base is inherently more
understandable, and more likely to be correct. Here we explore specific language
issues, namely those of preserving type safety, maintainability, failure management,
and community support.

10.7.1 Type safety
Strong typing identifies errors early in the development cycle, and hence plays
a crucial role in improving software quality. In consequence almost all modern
languages provide strong typing, and encourage static typing to minimise runtime
errors. That said, many distributed system components written in languages that
primarily use static typing, like Haskell and Scala, use some dynamic typing, e.g.
to ensure that the data arriving in a message has the anticipated type (Epstein
et al., 2011; Gupta, 2012).

In a typical tiered multi-language IoT system the developer must integrate
software in different languages with very different type systems, and potentially
executing on different hardware. The challenges of maintaining type safety have long
been recognised as a major component of the semantic friction in multi-language
systems, e.g. Ireland et al. (2009).

Even if the different languages used in two components are both strongly typed,
they may attribute, often quite subtly, different types to a value. Such type errors
can lead to runtime errors, or the application silently reporting erroneous data.
Such errors can be hard to find. Automatic detection of such errors is sometimes
possible, but requires an addition tool like Jinn (Furr and Foster, 2005; Lee et al.,
2010).

message SensorData {
enum SensorType { TEMPERATURE = 1; ... }
SensorType sensor_type = 1;
uint64 timestamp = 2;
double float_value = 3;

}
.....................................................................................
channel = 'sensor_status.%s.%s ' % (hostname,

sensor_types.sensor_type_name(s.sensor_type))
self.r.publish(channel, s.SerializeToString())

Listing (Python) 10.7: PRS loses type safety as a sensor node sends a double, and
the server stores a string.

Analysis of the PRS codebase reveals an instance where it, fairly innocuously,
loses type safety. The fragment in listing 10.7 first shows a double sensor value
being sent from the sensor node, and then shows the value being stored in Redis



172 10.7. Could tierless IoT programming be more reliable than tiered?

as a string on the server. As PWS preserves the same server components it also
suffers from the same loss of type safety.

A tierless language makes it possible to guarantee type safety across an entire
IoT stack. For example the Clean compiler guarantees static type safety as the
entire CWS software stack is type checked, and generated, from a single source.
Tierless web stack languages like Links (Cooper et al., 2007) and Hop (Serrano
et al., 2006) provide the same guarantee for web stacks.

10.7.2 Failure management
Some IoT applications, including smart campus and other building monitoring
applications, require high sensor uptimes. Hence, if a sensor or sensor node fails
the application layer must be notified, so that it can report the failure. In the UoG
smart campus system a building manager is alerted to replace the failed device.

In many IoT architectures, including PRS and PWS, detecting failure is chal-
lenging because the application layer listens to the devices. When a device comes
online, it registered with the application and starts sending data. When a device
goes offline again, it could be because the power was out, the device was broken or
the device just paused the connection.

If a sensor node fails in CWS, the iTask/mTask combinator interacting with
a sensor node will throw an iTask exception. The exception is propagated and a
handler can respond, e.g. rescheduling the task on a different device in the room,
or requesting that a manager replaces the device. That is, iTask, uses standard
succinct declarative exception handling.

failover :: [TCPSettings] (Main (MTask BCInterpret a)) � Task a
failover [] _ = throw "Exhausted device pool"
failover [d:ds] mtask = try (withDevice d (liftmTask mtask)) except
where except MTEUnexpectedDisconnect = failover ds mtask

except e = throw e

Listing (Clean) 10.8: An mTask failover combinator.

In the UoG smart campus application, this can be done by creating a pool of
sensor nodes for each room and when a sensor node fails, assign another one to the
task. Listing 10.8 shows a failover combinator that executes an mTask on one of a
pool of sensor nodes. If a sensor node unexpectedly disconnects, the next sensor
node is tried until there are no sensor nodes left. If other errors occur they are
propagated as usual.

Currently, PRS and PWS both use heartbeats to confirm that the sensor nodes
are operational, and will report failures. At the cost of extending the codebase,
failover to an alternate sensor node could be provided.

10.7.3 Maintainability
Far more engineering effort is expended on maintaining a system, than on the initial
development. Tiered and tierless IoT systems have very different maintainability
properties.



Chapter 10. Could tierless languages reduce IoT development grief? 173

The modularity of the tiered stack makes replacing tiers/components easy. For
example in PWS or PRS the MongoDB NoSQL DBMS could be readily be replaced
by an alternative like CouchDB. Because a tierless compiler must generate code
for components, replacing them may not be so easy. If there are iTask abstractions
for the component then replacement is straightforward. For example replacing
SQLite with some other SQL DBMS simply entails recompilation of the application.
However incorporating a component that does not yet have a task abstraction, like
a NoSQL DBMS, is more involved. That is, a foreign function interface to the
new component must be implemented, along with a suitable iTask abstraction for
operations on the component.

Many maintenance tasks are smaller in scale and occur within the components
or tiers. Consider a simple change, for example if the temperature value recorded
by a sensor changes from integer to real.

All tiers of a tiered stack must be correctly and consistently refactored to
reflect the change of temperature data type: so changes at the perception, network,
application and presentation layers. A PWS developer works in seven languages
and two paradigms to effect the change (table 10.2), and must edit many source
files. Many programming errors are either detected at runtime when testing the
stack, or worse not automatically detected and produce erroneous results.

In a tierless language the source code is much smaller and so it is easier to
comprehend, i.e. to understand what refactoring is required. A CWS developer
works in only two languages and a single paradigm to effect the change, and will
edit no more than three source files (table 10.2). Moreover, the compiler will
statically detect many programming errors.

More substantial in-component maintenance raises similar issues as for tiered
implementations. If the maintenance activity requires a new task combinator, this
is readily constructed in iTask, but may require changing the DSL implementation
in mTask, i.e. to change the compiler and the byte code interpreter. That is, mTask
is more brittle than iTask.

In summary, while a tiered approach makes replacing components easy, refac-
toring within the components is far harder in a multi-tier multi-language IoT
implementation than in a tierless IoT implementation.

10.7.4 Support

Community and tool support are essential for engineering reliable production
software. PRS and PWS are both Python based, and Python/MicroPython are
among the most popular programming languages (Cass, 2020). Python is also a
common choice for some tiers of IoT applications (Tanganelli et al., 2015). Hence,
there are a wide range of development tools like IDEs and debuggers, a thriving
community and a wealth of training material. There are even specialised IoT Boards
like PyBoard & WiPy that are specifically programmed using Python variations
like MicroPython.



174 10.8. Comparing tierless languages for resource-rich/constrained sensor nodes

In contrast, tierless languages are far less mature than the languages used in
tiered stacks, and far less widely adopted. This means that for CWS and CRS
there are fewer tools, a far smaller developer community, and less training material
available.

CWS and CRS are both written in DSLs embedded in Clean, a fairly stable
industrial-grade but niche FP language. The DSLs are implemented in Clean but
require experimental compiler extensions that are often undocumented. There
are few maintainers of the DSLs and documentation is often sparse. Acquiring
information about the systems requires distilling academic papers and referring
to the source code. There is a Clean IDE, but it does not contain support for the
iTask or mTask DSLs.

10.8 Comparing tierless languages for resource-
rich/constrained sensor nodes

This section compares two tierless IoT languages: one for resource-rich, and the
other for resource-constrained, sensor nodes. Key issues are the extent to which
the very significant resource constraints of a microcontroller limit the language,
and the benefits of executing on bare metal, i.e. without an OS.

With the tierless Clean technologies described here, iTask are always used to
program the application and presentation layers of the IoT stack. So any differences
occur in the perception and network layer programming. If sensor nodes have the
capacity to support iTask, a tierless IoT system can be constructed in Clean using
only iTask, as in CRS. Alternatively for sensor nodes with low computational power,
like typical microcontrollers, mTask is used for the perception and network layers,
as in CWS. This section compares the iTask and mTask eDSLs, with reference to
CRS and CWS as exemplars. Table 10.6 summarises the differences between the
Clean embedded IoT eDSLs and their host language.

10.8.1 Language restrictions for resource-constrained execu-
tion

Executing components on a resource-constrained sensor node imposes restrictions
on programming abstractions available in a tierless IoT language or DSL. The
small and fixed-size memory are key limitations. The limitations are shared by any
high-level language that targets microcontrollers such as BIT, PICBIT, PICOBIT,
Microscheme and uLisp (St-Amour and Feeley, 2009; Dubé, 2000; Feeley and
Dubé, 2003; Johnson-Davies, 2020; Suchocki and Kalvala, 2015). Even in low
level languages some language features are disabled by default when targeting
microcontrollers, such as runtime type information (RTTI) in C++.

Here we investigate the restrictions imposed by resource-constrained sensor
nodes on mTask, in comparison with iTask. While iTask and mTask are by design
superficially similar languages, to execute on resource-constrained sensor nodes
mTask tasks are more restricted, and have a different semantics.



Chapter 10. Could tierless languages reduce IoT development grief? 175

Table 10.6: Comparing tierless IoT DSLs for resource-rich sensor nodes (iTask), for
resource-constrained sensor nodes (mTask), and their Clean host language.

Property Clean iTask mTask

Function for an IoT System Host Language Specify distri- Specify sensor
buted workflows node workflow

Referentially transparent Yes Yes Yes
Evaluation strategy Lazy Lazy Strict
Higher-order functions Yes Yes No
User-defined datatypes Yes Yes No
Task oriented No Yes Yes
Higher-order tasks – Yes No
Execution Target Commodity PC Commodity PC Microcontroller

and browser Microcontroller
Language Implementation Compiled or Compiled and Interpreted

interpreted interpreted

Programs in mTask do not support user defined higher order functions, the
only higher order functions available are the predefined mTask combinators. Pro-
grammers can, however, use any construct of the Clean host language to construct
an mTask program, including higher order functions and arbitrary data types. For
example folding an mTask combinator over a list of tasks. The only restriction is
that any higher order function must be macro expanded to a first order mTask
program before being compiled to byte code. As an example in listing 10.4 we use
temperature dht >>~. setSds localSds instead of temperature dht >>~. \temp �
setSds localSds temp.

In contrast to iTask, mTask programs have no user defined or recursive data
types. It is possible to add user defined types—as long as they are not sum
types—to mTask, but this requires significant programming effort. Due to the
language being shallowly embedded, pattern matching and field selection on user
defined types is not readily available and thus needs to be built into the language
by hand. Alleviating this limitation remains future work.

Programs in mTask mainly use strict rather than lazy evaluation to minimise
the requirement for a variable size heap. This has no significant impact for the
mTask programs we have developed here, nor in other IoT applications we have
engineered.

Abstractions in mTask are less easily extended than iTask. For example iTask
can be extended with a new combinator that composes a specific set of tasks for
some application. Without higher order functions the equivalent combinator can
often not be expressed in mTask, and adding it to mTask requires extending the
DSL rather than writing a new definition in it. On the other hand, it is possible to
outsource this logic to the iTask program as mTask and iTask tasks are so tightly
integrated.



176 10.8. Comparing tierless languages for resource-rich/constrained sensor nodes

10.8.2 The benefits of a bare metal execution environment
Despite the language restrictions, components of a tierless language executing on a
microcontroller can exploit the bare metal environment. Many of these benefits are
shared by other bare metal languages like MicroPython or C/C++. So as mTask
executes on bare metal it has some advantages over iTask. Most notably mTask has
better control of timing as on bare metal there are no other processes or threads
that compete for CPU cycles. This makes the mTask repeatEvery (listing 10.4,
line 23) much more accurate than the iTask waitForTimer (listing 10.3, line 13).
While exact timing is not important in this example, it is significant for many
other IoT applications. In contrast iTask cannot give real time guarantees. One
reason is that an iTask server can ship an arbitrary number of iTask or mTask
tasks to a device. Such competing tasks, or indeed other OS threads and processes,
consume processor time and reduce the accuracy of timings. However, even when
using multiple mTask tasks, it is easier to control the number of tasks on a device
than controlling the number of processes and threads executing under an OS.

An mTask program has more control over energy consumption. The mTask
eDSL and the mTask RTS are designed to minimise energy usage (Crooijmans,
2021). Intensional analysis of the declarative task description and current progress
at run time allow the RTS to schedule tasks and maximise idle time. As the RTS
is the only program running on the device, it can enforce deep sleep and wake up
without having to worry about influencing other processes.

The mTask RTS has direct control of the peripherals attached to the microcon-
troller, e.g. over GPIO pins. There is no interaction with, or permission required
from, the OS. Moreover, microcontrollers typically have better support for hardware
interrupts, reducing the need to poll peripherals. The downside of this direct control
is that CWS has to handle some exceptions that would otherwise be handled by
the OS in CRS and hence the device management code is longer: 28 versus 20
SLOC in table 10.2.

10.8.3 Summary
Table 10.6 summarises the differences between the Clean IoT eDSL and their
host language. The restrictions imposed by a resource-constrained execution
environment on the tierless IoT language are relatively minor. Moreover the mTask
programming abstraction is broadly compatible with iTask. As a simple example
compare the iTask and mTask temperature sensors in listings 10.3 and 10.4. As a
more realistic example, the mTask based CWS smart campus implementation is
similar to the iTask based CRS, and requires less than 10% additional code: 166
SLOC compared with 155 SLOC (table 10.2).

Even with these restrictions, mTask programming is at a far higher level of
abstraction than almost all bare metal languages, e.g. BIT, PICBIT, PICOBIT and
Microscheme. That is mTask provides a set of higher order task combinators, shared
distributed data stores, &c. (section 10.4.4). Moreover, it seems that common
sensor node programs are readily expressed using mTask. In addition to the CWTS
and CWS systems outlined here, other case studies include Arduino examples as
well as some bigger tasks (Koopman et al., 2018; Lubbers et al., 2019; Lubbers



Chapter 10. Could tierless languages reduce IoT development grief? 177

et al., 2023b). We conclude that the programming of sensor tasks is well-supported
by both DSLs.

10.9 Conclusion

10.9.1 Summary
We have conducted a systematic comparative evaluation of two tierless language
technologies for IoT stacks: one for resource-rich, and the other for resource-
constrained sensor nodes. The basis is four implementations of a deployed smart
campus IoT stack: two conventional tiered and Python-based stacks, and two
tierless Clean stacks. An operational comparison of implementations demonstrates
that they have equivalent functionality, and meet the UoG smart campus functional
requirements (section 10.5).

We show that tierless languages have the potential to significantly reduce the
development effort for IoT systems. Specifically the tierless CWS and CRS stacks
require far less code, i.e. 70% fewer SLOC, than the tiered PWS and PRS stacks
(table 10.2). We analyse the code reduction and attribute it to the following three
main factors. 1. Tierless developers need to manage less interoperation: CRS uses
a single DSL and paradigm, and CWS uses two DSLs in a single paradigm and
three source code files. In contrast, both PRS and PWS use at least six languages
in two paradigms and spread over at least 35 source code files (tables 10.2 to 10.4).
Thus, a tierless stack minimises semantic friction. 2. Tierless developers benefit
from automatically generated, and hence correct, communication (listing 10.4), and
write 6× less communication code (figure 10.9). 3. Tierless developers can exploit
powerful high-level declarative and task-oriented IoT programming abstractions
(table 10.5), specifically the composable, higher-order task combinators outlined
in section 10.4.2. Our empirical results for IoT systems are consistent with the
benefits claimed for tierless languages in other application domains. Namely that
a tierless language provides a Higher Abstraction Level, Improved Software Design,
and improved Program Comprehension (Weisenburger et al., 2020).

We show that tierless languages have the potential to significantly improve the
reliability of IoT systems. We illustrate how Clean maintains type safety, contrasting
this with a loss of type safety in PRS. We illustrate higher order failure management
in Clean/iTask/mTask in contrast to the Python-based failure management in
PRS. For maintainability a tiered approach makes replacing components easy, but
refactoring within the components is far harder than in a tierless IoT language.
Again our findings are consistent with the simplified Code Maintenance benefits
claimed for tierless languages (Weisenburger et al., 2020). Finally, we contrast
community support for the technologies (section 10.7).

We report the first comparison of a tierless IoT codebase for resource-rich sensor
nodes with one for resource-constrained sensor nodes. 1. The tierless implemen-
tations have very similar code sizes (SLOC), as do the tiered implementations:
less than 7% difference in table 10.2. This suggests that the development and
maintenance effort of simple tierless IoT systems for resource-constrained and
for resource-rich sensor nodes is similar, as it is for tiered technologies. 2. The



178 10.9. Conclusion

percentages of code required to implement each IoT functionality in the tierless
Clean implementations is very similar as it is in the tiered Python implementations
(figure 10.9). This suggests that the code for resource-constrained and resource-rich
sensor nodes can be broadly similar in tierless technologies, as it is in many tiered
technologies (section 10.6.2).

We present the first comparison of two tierless IoT languages: one designed for
resource-constrained sensor nodes (Clean/iTask/mTask), and the other for resource-
rich sensor nodes (Clean/iTask). Clean/iTask can implement all layers of the IoT
stack if the sensor nodes have the computational resources, as the Raspberry
Pis do in CRS. On resource constrained sensor nodes mTask are required to
implement the perception and network layers, as on the WEMOS minis in CWS.
We show that a bare metal execution environment allows mTask to have better
control of peripherals, timing and energy consumption. The memory available on
a microcontroller restricts the programming abstractions available in mTask to a
fixed set of combinators, no user defined or recursive data types, strict evaluation,
and makes it harder to add new abstractions. Even with these restrictions mTask
provide a higher level of abstraction than most bare metal languages, and can
readily express many IoT applications including the CWS UoG smart campus
application (section 10.8). Our empirical results are consistent with the benefits of
tierless languages listed in Weisenburger et al. (2020, section 2.1).

10.9.2 Reflections
This study is based on a specific pair of tierless IoT languages, and the Clean
language frameworks represent a specific set of tierless language design decisions.
Many alternative tierless IoT language designs are possible, and some are outlined
in section 10.3.3. Crucially the limitations of the tierless Clean languages, e.g. that
they currently provide limited security, should not be seen as limitations of tierless
technologies in general.

This study has explored some, but not all, of the potential benefits of tierless
languages for IoT systems. An IoT system specified as a single tierless program
is amenable to a host of programming language technologies. For example, if
the language has a formal semantics, as Links, Hop and Clean tasks do (Cooper
et al., 2007; Plasmeijer et al., 2012; Serrano et al., 2006), it is possible to prove
properties of the system, e.g. (Steenvoorden et al., 2019). As another example
program analyses can be applied, and section 10.3.3 and (Weisenburger et al., 2020)
outline some of the analyses could be, and in some cases have been, used to improve
IoT systems. Examples include automatic tier splitting (Philips et al., 2014), and
controlling information flow to enhance security (Valliappan et al., 2020).

While offering real benefits for IoT systems development, tierless languages
also raise some challenges. Programmers must master new tierless programming
abstractions, and the semantics of these automatic multi-tier behaviours are neces-
sarily relatively complex. In the Clean context this entails becoming proficient with
the iTask and mTask DSLs. Moreover, specifying a behaviour that is not already
provided by the tierless language requires either a workaround, or extending a DSL.
However, implementing the relatively simple smart campus application required



Chapter 10. Could tierless languages reduce IoT development grief? 179

no such adaption. Finally, tierless IoT technology is very new, and both tool and
community support have yet to mature.

10.9.3 Future work
This chapter is a technology comparison between tiered and tierless technologies.
The metrics reported, such as code size, numbers of source code files, and of
paradigms are only indirect, although widely accepted, measures of development
effort. A more convincing evaluation of tierless technologies could be provided by
conducting a carefully designed and substantial user study, e.g. using N-version
programming.

A study that implemented common benchmarks or a case study in multiple
tierless IoT languages would provide additional evidence for the generality of the
tierless approach. Such a study would enable the demonstration and comparison of
alternative design decisions within tierless languages, as outlined in section 10.3.3.

In ongoing work we are extending the mTask system in various ways. One
extension allows mTask tasks to communicate directly, rather than via the iTask
server. Another provides better energy management, which is crucial for battery
powered sensor nodes.

Acknowledgements
Thanks to Kristian Hentschel and Dejice Jacob who developed and maintain PRS
and to funders: Royal Netherlands Navy, the Radboud-Glasgow Collaboration Fund,
and UK EPSRC grants MaRIONet (EP/P006434) and STARDUST (EP/T014628).
We also thank Lito Michala, Jose Cano, Greg Michaelson, Rinus Plasmeijer, and
the anonymous TIOT reviewers for valuable feedback on the paper.



180 10.9. Conclusion



181

Chapter 11

Coda

This chapter concludes the dissertation and reflects on the work.

11.1 Reflections

This dissertation shed light on orchestrating complete IoT systems using TOP.
The term IoT refers to the interconnected network of physical devices that are
connected to each other and the internet. The edge, or perception, layer of an IoT
system is often powered by microcontrollers. These small and cheap computers
do not have powerful hardware but are energy efficient and support many sensors
and actuators. While the term IoT has already been known for almost thirty
years, only recently, the exponential growth of the number of IoT edge devices
is really ramping up. Programming IoT systems is very complex because each
layer of the system is built with different computers, hardware architectures,
programming languages, programming paradigms, and abstraction levels. This
generates a lot of semantic friction and interoperation issues. Furthermore, IoT
systems become convoluted because they are dynamic, multi-tiered, multi-user,
multitasking, interactive, distributed, and collaborative in nature. TOP proves a
suitable programming paradigm that allows the declarative specification of exactly
such systems. However, edge devices are often too computationally restricted to be
able to run a full-fledged TOP system such as iTask. The dissertation is structured
as a purely functional rhapsody in three episodes.

In order to get TOP to resource-constrained edge devices we use special tools:
DSLs. The dissertation shows several techniques for creating eDSLs in episode I.
Then it shows a tool, mTask, a TOP system for IoT edge devices in episode II. Fi-
nally, in episode III it compares how this approach compares to existing approaches
for programming IoT systems.



182 11.1. Reflections

11.1.1 Étude — Domain-Specific Languages
Episode I presents some tool crafting techniques that are useful for creating TOP
languages for IoT edge devices. It presents two novel techniques for embedding
DSLs in FP languages. Both technique make it easier for DSL developers to create
rich and extensible DSLs.

Classy deep embedding is a novel eDSL embedding technique. When embedding
DSLs, one always has to make concessions. It is either easy to add language
constructs, or to add interpretations of the terms, but never both. Some advanced
embedding techniques found ways of mitigate this issue. Tagless-final embedding
offers a way of extending a shallowly embedded DSL both in constructs and
interpretations. Classy deep embedding is the organically grown counterpart for
deep embedding a DSL. It allows orthogonal extension of language constructs and
interpretations with minimal boilerplate and no advanced type system extensions.

When embedding a DSL in a language, much, but not all, of the machinery
is inherited. An example of this are host-language data types. They are not
automatically useable in the DSL because the interfaces such as constructors,
deconstructors, constructor predicates, and pattern matching are not inherited. I
show how to automatically generate the required boilerplate for shallowly embedded
DSLs in order to make data types from the host language first-class citizens in
the DSL. The scaffolding is generated using template metaprogramming and
quasiquotation is used to alleviate the programmer from the syntax burden and
support pattern matching.

11.1.2 Orchestrating the Internet of Things using Task-
Oriented Programming

General-purpose TOP systems cannot run on edge devices due to their significant
hardware requirements. However, with the right techniques, DSLs can be created
that can be executed on edge devices while maintaining the high abstraction level.
By embedding domain-specific knowledge into the language and execution platform,
and leaving out general-purpose functionality, TOP languages can be made suitable
for edge devices.

Episode II contains a complete overview of such a tool: the mTask system. The
mTask language is a unique domain-specific TOP eDSL designed system for edge
devices. The mTask system is fully integrated with the iTask system, a TOP system
for programming distributed web applications. In the iTask system, there are
abstractions for details such as user interfaces, data storage, client-side platforms,
and persistent workflows. The mTask language abstracts away from edge device
specific details such as sensor and actuator access, heterogeneity in hardware, and
multitasking and scheduling. Tasks in the mTask system are compiled at run time
and sent to the device dynamically in order to support create dynamic systems
where tasks are tailor-made for the current work requirements. Using only three
simple functions, devices are connected to iTask servers, mTask tasks are integrated
in iTask, and iTask SDSs accessed from within mTask tasks. Its design, integration
with iTask, implementation, and green computing facilities are shown. This tight



Chapter 11. Coda 183

integration makes programming full IoT systems using TOP possible without major
compromises.

11.1.3 Tiered versus Tierless Programming
Using tierless programming, many issues that arise with tiered programming are
mitigated. This has already been observed in web applications. The mTask
system show that it is possible to program edge devices of a IoT systems using
TOP. Furthermore, when used together with iTask, entire IoT systems can be
programmed tierlessly. Whether this novel approach to programming tiered systems
also reduces the IoT develop grief is answered in episode III. This episode presents
a four-way qualitative and quantitative comparison of the following systems: PRS,
a tiered system based on resource-rich edge devices powered by Python; PWS, a
tiered system based on resource-constrained edge devices by MicroPython; CRS,
a tierless system based on resource-rich edge devices powered by iTask; CWS, a
tierless system based on resource-constrained edge devices powered by mTask.

This comparison shows that when using a programming paradigm that is
available both for resource-rich and resource-constrained edge devices, there is little
difference in developer grief. On the other hand, using a tierless system compared
to a tiered system reduces the developer grief significantly.

Every layer of the entire IoT system is specified in a single source, the same
strong type system, and similar high abstraction level. The tierless approach results
in fewer SLOC, files, programming languages and programming paradigms. All
code is simultaneously checked by a single compiler, reducing interoperability prob-
lems. Furthermore, all communication and integration is automatically generated,
reducing interoperability issues even more.

However, it is not a silver bullet, there are some disadvantages as well. Tierless
languages are novel, and hence often lack tooling and community support. They
contain high-level tierless abstractions that the programmer has to master. The
low-level specific semantics of the final application may become more difficult to
distill from the specification. Finally, the system is more monolithic compared to
tiered approaches. Changing components within the system is easy if it already is
supported in the eDSL, but adding new components to the system requires the
programmer to add it to all complex components of the languages such as the
compiler, and RTS.



184 11.1. Reflections



185

Appendix A

Clean for Haskell
programmers

This appendix is meant give people who are familiar with the FP language Haskell
a concise overview of the programming language Clean and how it differs from
Haskell. The goal is to support the reader when reading Clean code. Table A.1
shows frequently occurring Clean language elements on the left side and their
Haskell equivalent on the right side. Obviously, this summary is not exhaustive.
Some Clean language elements that are not easily translatable to Haskell and thus
do not occur in the summary following below. We hope you enjoy these notes and
that it aids you in reading Clean programs.

Clean—acronym for Clean Language of East-Anglia and Nijmegen (Barendregt
et al., 1987)—, was originally designed as a graph rewriting system (GRS) core
language but quickly served as an intermediate language for other functional lan-
guages (Brus et al., 1987). In the early days it has also been called Concurrent
Clean (Nöcker et al., 1991) but these days the language has no support for concur-
rency anymore. Fast-forward thirty years, Clean is now a robust language with
state-of-the-art features and is actually used in industry as well as academia—albeit
in select areas of the world.

Initially, when it was used mostly as an intermediate language, it had a fairly
spartan syntax. However, over the years, the syntax got friendlier and it currently
it looks a lot like Haskell. In the past, a double-edged fronted even existed that
allowed Clean to be extended with Haskell98 syntax and vice versa (van Groningen
et al., 2010), however this frontend is no longer maintained. This chapter gives
only a brief syntactical and functional comparison. A complete specification of the
Clean language can be found in the latest language report (Plasmeijer et al., 2021).
Much of this is based on work by Achten, although that was based on Clean 2.1
and Haskell98 (Achten, 2007). When Haskell is mentioned we actually mean GHC’s
Haskell1 and by Clean we mean Clean 3.1’s compiler with the iTask extensions.

1If an extension is enabled, a footnote is added stating that SomeExtension is required.



186 A.1. Features

A.1 Features

A.1.1 Modules
Clean has separate implementation and definition modules. The definition module
contains the class definitions, instances, function types and type definitions (possibly
abstract). Implementation modules contain the function implementations as well.
This means that only what is defined in the definition module is exported in Clean.
This differs greatly from Haskell, as there is only a module file there. Choosing
what is exported in Haskell is done using the module Mod(· · · ) syntax.

A.1.2 Strictness
In Clean, by default, all expressions are evaluated lazily. Types can be annotated
with a strictness attributes (!), resulting in the values being evaluated to head-
normal form before the function is entered. In Haskell, in patterns, strictness is
enforced using !.2 Within functions, the strict let (#!) is used to force evaluate an
expression, in Haskell seq or $! is used for this.

A.1.3 Uniqueness typing
Types in Clean may be unique, which means that instances of the type cannot
be shared (Barendsen and Smetsers, 1996). The uniqueness type system allows
the compiler to generate efficient code because unique data structures can be
destructively updated. Furthermore, uniqueness typing serves as a model for side
effects as well (Achten et al., 1993; Achten and Plasmeijer, 1995). Clean uses the
world-as-value paradigm where World represents the external environment and is
always unique (Backus et al., 1990). A program with side effects is characterised
by a Start :: *World � *World start function. In Haskell, interaction with the
world is done using the IO monad (Peyton Jones and Wadler, 1993). An IO monad
could very well be—and actually is—implemented in Clean using a state monad
with the World as a state. Besides marking types as unique, it is also possible to
mark them with uniqueness attributes variables u: and define constraints on them.
For example, to make sure that an argument of a function is at least as unique
as another argument. Finally, using . (a full stop), it is possible to state that
several variables are equally unique. Uniqueness is propagated automatically in
function types but must be marked manually in data types. Examples can be seen
in listing A.1.

f :: *a � *a // f works on unique values only
f :: .a � .a // f works on unique and non−unique values
f :: v:a u:b � u:b, [v<=u] // f works when a is less unique than b

Listing (Clean) A.1: Examples of uniqueness annotations.

2Requires BangPatterns to be enabled.



Chapter A. Clean for Haskell programmers 187

A.1.4 Expressions
Patterns in Clean can be used as predicates as well (Plasmeijer et al., 2021,
section 3.4.3). Using the =: operator, a value is tested against a pattern. Variable
names are not allowed but wildcard patterns (_) are.

isNil :: [a] � Bool
isNil l = l=:[]

:: T = A Int | B Bool

ifAB :: T a a � a
ifAB x ifa ifb = i f (x =: (A _)) ifa ifb

Listing (Clean) A.2: Examples of matches pattern expressions.

Due to the nature of uniqueness typing, many functions in Clean are state
transition functions with possibly unique states. The let before construct allows the
programmer to specify sequential actions without having to invent unique names
for the different versions of the state. Listing A.3 shows an example of the usage
of the let before construct (adapted from (Plasmeijer et al., 2021, section 3.5.4)).

readChars :: *File � ([Char], *File)
readChars file
# (ok, char, file) = freadc file
| not ok = ([], file)
# (chars, file) = readChars file
= ([char:chars], file)

Listing (Clean) A.3: Let before expression example.

A.1.5 Generics
Polytypic functions (Jeuring and Jansson, 1996)—also known as generic or kind-
indexed functions—are built into Clean (Plasmeijer et al., 2021, section 7.1)(Ali-
marine, 2005) whereas in Haskell they are implemented as a library (GHC Team,
2021b, section 6.19.1). The syntax of the built-in generics of Clean is very similar
to that of Generic H∀skell (Hinze and Jeuring, 2003).

For example, defining a generic equality is done as in listing A.4.

generic gEq a :: a a � Bool

gEq{|Int|} x y = x == y
gEq{|Bool|} x y = x == y
gEq{|Real|} x y = x == y
gEq{|Char|} x y = x == y
gEq{|UNIT|} x y = True
gEq{|OBJECT|} f (OBJECT x) (OBJECT y) = f x y
gEq{|CONS|} f (CONS x) (CONS y) = f x y
gEq{|RECORD|} f (RECORD x) (RECORD y) = f x y
gEq{|FIELD|} f (FIELD x) (FIELD y) = f x y



188 A.1. Features

gEq{|PAIR|} fl fr (PAIR lx rx) (PAIR ly ry) = fl lx ly && fr rx ry
gEq{|EITHER|} fl _ (LEFT x) (LEFT y) = fl x y
gEq{|EITHER|} _ fr (RIGHT x) (RIGHT y) = fr x y
gEq{|EITHER|} _ _ _ _ = False

:: T = C1 Int ([Char], ?Bool) | C2
derive gEq [], T, (,), ?

Start = (gEq{|*|} C2 (C1 42 ([], ?Just True))
, gEq{|*�*|} (<) [1,2,3] [2,3,4])

// (False , True)

Listing (Clean) A.4: Generic equality function

Metadata about the types is available using the of syntax that gives the
function access to metadata records, as can be seen in listing A.5 showing a
generic print function. This abundance of metadata allows for very complex generic
functions that near the expression level of template metaprogramming (see chapter 3
and section 7.4).

generic gPrint a :: a [String] � [String]

gPrint{|Int|} x acc = [toString x:acc]
gPrint{|Bool|} x acc = [toString x:acc]
gPrint{|Real|} x acc = [toString x:acc]
gPrint{|Char|} x acc = [toString x:acc]
gPrint{|UNIT|} x acc = acc
gPrint{|PAIR|} fl fr (PAIR l r) acc = fl l [" ":fr r acc]
gPrint{|EITHER|} fl _ (LEFT x) acc = fl x acc
gPrint{|EITHER|} _ fr (RIGHT x) acc = fr x acc

gPrint{|OBJECT|} f (OBJECT x) acc = f x acc
gPrint{|CONS of gcd|} f (CONS x) acc

= ["(", gcd.gcd_name, " ":f x [")":acc]]
gPrint{|RECORD of grd|} f (RECORD x) acc

= ["{", grd.grd_name, " | ":f x ["}":acc]]
gPrint{|FIELD of gfd|} f (FIELD x) acc

= [pre, gfd.gfd_name, "=":f x acc]
where pre = i f (gfd.gfd_index == 0) "" " , "

:: T = {f1 :: Int, f2 :: (Real, [?Int])}
derive gPrint (,), [], ?, T

Start = gPrint{|*|} {f1=42, f2=(3.14, [?None])} []
// {T | f1=42 , f2=(_Tuple2 3.14 (_Cons (_!None ) (_Nil )))}

Listing (Clean) A.5: Generic print function



Chapter A. Clean for Haskell programmers 189

A.1.6 GADTs
GADTs are enriched data types that allow the type instantiation of the constructor
to be explicitly defined (Cheney and Hinze, 2003; Hinze, 2003). While GADTs are
not natively supported in Clean, they can be simulated using embedding-projection
pairs or equivalence types (Cheney and Hinze, 2002, section 2.2). To illustrate this,
listing A.6 shows a GADT in Haskell3 that can be implemented as in listing A.7.
data Expr a where

Lit :: Show a ⇒ a � Expr a
Add :: Num a ⇒ Expr a � Expr a � Expr a
Eq :: Eq e ⇒ Expr e � Expr e � Expr Bool

eval :: Expr a � a
eval (Lit e) = e
eval (Add l r) = eval l + eval r
eval (Eq l r) = eval l == eval r

print :: Expr a � String
print (Lit e) = show e
print (Add l r) = print l ++ "+" ++ print r
print (Eq l r) = print l ++ "==" ++ print r

Listing (Haskell) A.6: Expression GADT.

:: BM a b = { ab :: a � b, ba :: b � a }
bm :: BM a a
bm = {ab=id, ba=id}

:: Expr a
= E.e: Lit (BM a e) e & toString e
| E.e: Add (BM a e) (Expr e) (Expr e) & + e
| E.e: Eq (BM a Bool) (Expr e) (Expr e) & == e

lit e = Lit bm e
add l r = Add bm l r
eq l r = Eq bm l r

eval :: (Expr a) � a
eval (Lit bm e) = bm.ba e
eval (Add bm l r) = bm.ba (eval l + eval r)
eval (Eq bm l r) = bm.ba (eval l == eval r)

print :: (Expr a) � String
print (Lit _ e) = toString e
print (Add _ l r) = print l +++ "+" +++ print r
print (Eq _ l r) = print l +++ "==" +++ print r

Listing (Clean) A.7: Expression GADT using equivalence types.

3Requires GADTs to be enabled.



190 A.2. Syntax

A.2 Syntax

Table A.1: Syntactical differences between Clean and Haskell.

Clean Haskell

Comments
// single line −− single line
/∗ multi line /∗ nested ∗/ ∗/ {− multi line {− nested −} }

Imports
import Mod ⇒ qualified f1, :: t import qualified Mod (f1, t)

import Mod hiding (f1, t)

Basic types
42 :: Int 42 :: Int
True :: Bool True :: Bool
toInteger 42 :: Integer 42 :: Integer
38.0 :: Real 38.0 :: Float −− or Double
"Hello " +++ "World" :: String4 "Hello " ++ "World" :: String5

[' Hello '] :: [Char] "Hello " :: String
?t Maybe t
(?None, ?Just e) (Nothing, Just e)

Type definitions
:: T a0 · · · :== t type T a0 · · · = t
:: T a0 · · · data T a0 · · ·

= C1 f0 · · · fn | · · · | Cn f0 · · · fn = C1 f0 · · · fn | · · · | Cn f0 · · · fn
:: T a0 · · · data T a0 · · ·

= { f0 :: t0, · · · , fn :: tn } = T { f0 :: t0, · · · , fn :: tn }
:: T a0 · · · =: t newtype T a0 · · · = t
:: T = E.t: Box t & C t data T = forall t.C t ⇒ Box t6

Function types
f0 :: a0 a1 · · · � t f0 :: (c0 v0, c1 v1, c2 v2) ⇒

| c0 v0 & c1, c2 v1 a0 � a1 · · · � t
(+) infixl 6 :: Int Int � Int infixl 6 +

(+) :: Int � Int � Int
qid :: (A.a: a � a) � (Bool, Int) qid :: ( forall a: a � a) � (Bool,

Int)7

4Strings are unboxed character arrays.
5Strings are lists of characters by default but may be overloaded as well if OverloadedStrings

is enabled.
6Requires ExistentialQuantification to be enabled.
7Requires RankNTypes to be enabled.



Chapter A. Clean for Haskell programmers 191

Table A.1: Syntactical differences between Clean and Haskell. (continued)

Clean Haskell
qid id = (id True, id 42) qid id = (id True, id 42)

Type classes
class f a :: t class f a where f :: t
class C a | C0, · · · , Cn a8 class (C0 a, · · · , Cn, a) ⇒ C a
class C s ~m where · · · class C s m | m � s where · · · 9

instance C t | C0, · · · , Cn a instance (C0 a, · · · , Cn a) ⇒ C t
where · · · where · · ·

As pattern
x=:p x@p

Lists
[1,2,3] [1,2,3]
[x:xs] x:xs
[e \\ e <- xs | p e] [e | e � xs, p e]
[l \\ l <- xs, r <- ys] [l | l � xs, r � ys]
[(l, r) \\ l <- xs & r <- ys] [(l, r) | (l, r) � zip xs ys]

or [(l, r) | l � xs | r � ys]10

Lambda expressions
\a0 a1 · · · �e or \ · · · .e or \ · · · =e \a0 a1 · · · �e

Case distinction
if p e0 e1 if p then e0 else e1
case e of p0 � e0; · · · case e of p0 � e0; · · ·

or case e of p0 = e0; · · ·
f p0 · · · pn f p0 · · · pn

| c = t | c = t
| otherwise = t or = t | otherwise = t

8In contrast to the Haskell variant, this does not require an instance.
9Requires MultiParamTypeClasses to be enabled.

10Requires ParallelListComp to be enabled.



192 A.2. Syntax

Table A.1: Syntactical differences between Clean and Haskell. (continued)

Clean Haskell
Record expressions

:: R = { f :: t } data R = R { f :: t }
r = { f = e } r = R { f = e }
r.f f r

or r.f11

r!f12 (\v�(f v, v)) r
{r & f = e } r { f = e }

Record patterns
:: R0 = { f0 :: R1 Int } data R0 = R0 { f0 :: R1 Int }
:: R1 t = { f1 :: t } data R1 t = R1 { f1 :: t }
g { f0 } = e f0 g (R0 {f0=x}) = e x

or g (R0 {f0}) = e f013

g { f0 = {f1} } = e f1 g (R0 {f0=R1 {f1=x}}) = e x

Arrays
:: A :== {t} type A = Array Int t
a = {v0, · · · , vn} a = array (0, n+1)

[(0, v0), · · · , (n, vn)]
a = {e \\ p <-: a} a = array (0, length a-1)

[e | (i, a) � zip [0..] a]
a.[i] a!i
a![i]14 (\v�(v!i, v)) a
{ a & [i] = e} a//[(i, e)]

Dynamics
f :: a � Dynamic | TC a f :: Typeable a ⇒ a � Dynamic
f e = dynamic e f e = toDyn (e)
g :: Dynamic � t g :: Dynamic � t
g (e :: t) = e0 g d = case fromDynamic d
g e = e1 Just e � e0

Nothing � e1

11Requires OverloadedRecordDot to be enabled. Requires GHC version 9.2.0 or higher
12This operator allows for field selection from unique records.
13Requires RecordPuns to be enabled.
14This operator allows for field selection from unique arrays.



193

Appendix B

Auxiliary mTask type classes

B.1 Peripherals

This section shows the peripherals not mentioned in chapter 4. All constructors use
HOAS to create a type safe sensor object from a connection specification that can
be used to interact with the sensor. The measurement tasks all yield unstable values
containing the measured value. The auxiliary functions such as calibration yield
stable values indicating the result. Tasks suffixed with the backtick (') indicate
variants for which the timing interval can be specified (see chapter 8).

B.1.1 Air quality sensor

The mTask language supports one type (CCS811 connected via I2C) of air quality
sensors that measures total volatile organic compounds (TVOC) (ppm) and eCO2
(%). Besides the constructor and tasks for the measurements there is also a
calibration task that can be used to calibrate the sensor from temperature and
humidity readings to increase the accuracy. The complete interface is shown in
listing B.1.

:: AirQualitySensor // abstract

class AirQualitySensor v where
airqualitysensor :: I2CAddr ((v AirQualitySensor) � Main (v a)) � Main (v a)
tvoc` :: (TimingInterval v) (v AirQualitySensor) � MTask v Int
tvoc :: (v AirQualitySensor) � MTask v Int
co2` :: (TimingInterval v) (v AirQualitySensor) � MTask v Int
co2 :: (v AirQualitySensor) � MTask v Int
setEnvironmentalData :: (v AirQualitySensor) (v Real) (v Real) � MTask v ()
setEnvFromDHT :: (v AirQualitySensor) (v DHT) � MTask v ()

Listing (Clean) B.1: Air quality sensor interface in mTask.



194 B.1. Peripherals

B.1.2 Gesture sensor

The mTask language supports one type (PAJ7620 connected via I2C) of gesture
sensors. The PAJ7620 contains an optical CMOS array that measures the reflection
of the on-board IR LED to detect up to several gestures. The complete interface
containing the constructor and the measurement task is shown in listing B.2.

:: GestureSensor // abstract
:: Gesture = GNone | GRight | GLeft | GUp | GDown | GForward | GBackward

| GClockwise | GCountClockwise

class GestureSensor v where
gestureSensor :: I2CAddr ((v GestureSensor) � Main (v a)) � Main (v a)
gesture` :: (TimingInterval v) (v GestureSensor) � MTask v Gesture
gesture :: (v GestureSensor) � MTask v Gesture

Listing (Clean) B.2: Gesture sensor interface in mTask.

B.1.3 Light intensity sensor

The mTask language supports one type (BH1750 connected via I2C) of light
intensity sensors that measure the light intensity in lx. The complete interface
containing the constructor and the measurement task is shown in listing B.3.

:: LightSensor // abstract

class LightSensor v where
lightsensor :: I2CAddr ((v LightSensor) � Main (v b)) � Main (v b)
light` :: (TimingInterval v) (v LightSensor) � MTask v Real
light :: (v LightSensor) � MTask v Real

Listing (Clean) B.3: Light intensity sensor interface in mTask.

B.1.4 Motion detection sensor
The mTask language supports motion sensing using a PIR sensor through a type
class that only contains macros. PIR sensors detect motion by the IR reflection
through a number of Fresnel lenses and communicates through a digital GPIO
pin. Therefore, a PIR is nothing more than a DPin according to mTask but for
uniformity, a type class is available (see listing B.4).

:: PIR :== DPin

class PIR v | step, expr, pinMode v & dio DPin v where
PIR :: DPin ((v PIR) � Main (v b)) � Main (v b) | expr, step, pinMode v

motion` :: (TimingInterval v) (v PIR) � MTask v Bool
motion :: (v PIR) � MTask v Bool | dio DPin v

Listing (Clean) B.4: PIR sensor interface in mTask.



Chapter B. Auxiliary mTask type classes 195

B.1.5 Sound detection sensor
The mTask language supports motion sensing using one type of sensor (SEN-
12642 ) that outputs either a gate value through a digital GPIO pin, the envelope
(amplitude) through an analog GPIO pin and an audio output. Only the sound
level—i.e. the envelope—and the sound presence are available in mTask through a
type class containing only macros. Therefore, a sound detector is nothing more than
a tuple of a DPin for the gate value and an APin for the envelope (see listing B.5).
:: SoundDetector :== (DPin, APin)

class SoundDetector v | tupl, expr, pinMode v & dio DPin v where
soundDetector :: DPin APin ((v SoundDetector) � Main (v b)) � Main (v b)

soundPresence` :: (TimingInterval v) (v SoundDetector) � MTask v Bool
soundPresence :: (v SoundDetector) � MTask v Bool | tupl v & dio DPin v

soundLevel` :: (TimingInterval v) (v SoundDetector) � MTask v Bool
soundLevel :: (v SoundDetector) � MTask v Bool | tupl, aio v

Listing (Clean) B.5: Sound detection sensor interface in mTask.

B.1.6 I2C buttons
The mTask language supports one type of I2C buttons (the I2C buttons from the
WEMOS D1 mini OLED shield). The buttons from this shield provide more infor-
mation than just the status (see ButtonStatus). The complete interface containing
the constructor and the measurement tasks is shown in listing B.6.
:: I2CButton // abstract
:: ButtonStatus = ButtonNone | ButtonPress | ButtonLong | ButtonDouble | ButtonHold

class i2cbutton v where
i2cbutton :: I2CAddr ((v I2CButton) � Main (v b)) � Main (v b) | type b

AButton` :: (TimingInterval v) (v I2CButton) � MTask v ButtonStatus
AButton :: (v I2CButton) � MTask v ButtonStatus

BButton` :: (TimingInterval v) (v I2CButton) � MTask v ButtonStatus
BButton :: (v I2CButton) � MTask v ButtonStatus

Listing (Clean) B.6: I2C button interface in mTask.

B.1.7 LED matrix
The mTask language supports one type of LED matrix (the 8 × 8 LED matrix
shield for the WEMOS D1 mini). Instead of containing a TOP-like interface,
the Arduino interface is directly translated to mTask. As a result, every task
immediately returns a stable value indicating the result. The complete interface
containing the constructor and the interaction tasks is shown in listing B.7.
:: LEDMatrix // abstract
:: LEDMatrixInfo = { dataPin :: Pin, clockPin :: Pin }



196 B.1. Peripherals

class LEDMatrix v where
ledmatrix :: LEDMatrixInfo ((v LEDMatrix) � Main (v b)) � Main (v b) | type b
LMDot :: (v LEDMatrix) (v Int) (v Int) (v Bool) � MTask v ()
LMIntensity :: (v LEDMatrix) (v Int) � MTask v ()
LMClear :: (v LEDMatrix) � MTask v ()
LMDisplay :: (v LEDMatrix) � MTask v ()

Listing (Clean) B.7: LED matrix interface in mTask.

B.1.8 Connection types
The connection between the iTask server and the mTask devices are communica-
tion method agnostic. As long as the channelSync type class is implemented, the
communication method can be used. Listing B.8 shows the data types for the
connections.
:: TCPSettings =

{ host :: String
, port :: Int
, pingTimeout :: ?Int
}

:: MQTTSettings =
{ host :: String
, port :: Int
, mcuId :: String
, serverId :: String
, auth :: MQTTAuth
}

:: TTYSettings =
{ devicePath :: String
, baudrate :: BaudRate
, bytesize :: ByteSize
, parity :: Parity
, stop2bits :: Bool
, xonxoff :: Bool
, sleepTime :: Int
}

Listing (Clean) B.8: Data types for the different connections in mTask.



197

Appendix C

Bytecode instruction set

Tasks in mTask are compiled at run time to byte code. This byte code is evaluated
using the interpreter. The result of this evaluation is a task tree. Subsequently, this
task tree is rewritten until a stable value is observed. This appendix describes the
semantics of the byte code instruction set of mTask (see chapter 7). The byte code
instructions are of variable length and automatically encoded and decoded using
generic programming (see section 7.4). Table C.1 shows the notational convention
of the variables used in the table. Table C.2 shows the semantics of all major
byte code instructions, shorthand instructions and auxiliary peripherals have been
omitted for brevity but have the analogous semantics as their counterparts.

Table C.1: Notation convention for the byte code semantics.

variable meaning №bytes
fp frame pointer 2
sp stack pointer 2
pc program counter 2
l label 2
wr return width 1
wa argument width 1
i SDS or sensor id 1
n number 1
d depth 1



198Table C.2: Semantics for the bytecode instructions.

Instruction Arguments Semantics sp pc
push n b0 . . . bn st[sp + i] = s[i] for all i ∈ {0 ..n} sp + n pc + 2 + n
pop n sp 9 n pc + 2
rot d n rotate (d, n) sp pc + 3
dup st[sp] = st[sp 9 1 ] sp + 1 pc + 1

jumpF l sp 9 1
{

pc + 1 if st[sp 9 1 ]
l otherwise

jump l sp 9 1 l
jumpSR wa l st[sp 9 wa 9 1 ] = pc + 2 l
tailCall wa1 wa2 l rotate (wa1 + 3 + wa2 , wa2 ) fp jl

fp = fp 9 wa1 + wa2

where wa1 is the width of the current function and wa2 the
width of the called function

arg n st[sp] = st[fp 9 1 9 n] sp + 1
return wr wa st[fp 9 wa 9 3 + i] = st[fp + 1 ] st[fp 9 wa 9 3 + wr ] st[fp 9 wa 9 1 ]

for all i ∈ {0 ..wr}
fp = st[fp 9 wa 9 2 ]

pushPtrs st[sp] = sp sp + 3 pc + 1
st[sp + 1 ] = fp
st[sp + 2 ] = 0

unOp st[sp 9 1 ] = ⋄st[sp 9 1 ] for all ⋄ ∈ {¬} sp pc + 1
binOp st[sp 9 2 ] = st[sp 9 2 ] ⊕ st[sp 9 1 ] sp 9 1 pc + 1

for all ⊕ ∈ {+, 9, ∗, /, ∧, ∨, ≡, ̸≡, ≤, ≥, <, >}
similar for Real and Long variants

castf-t st[sp 9 1 ] = castf9−t(st[sp 9 1 ]) sp pc + 1
for all f , t ∈ {Int, Real, Long}



C
hapter

C
.B

ytecode
instruction

set
199

Table C.2: Semantics for the bytecode instructions. (continued)

Instruction Arguments Semantics sp pc
mkTask Stablen st[sp 9 n 9 1 ] = node(stable, sp 9 n + 1 pc + 2

st[sp 9 1 ], . . . , st[sp 9 n 9 1 ])
mkTask Unstablen st[sp 9 n 9 1 ] = node(unstable, sp 9 n + 1 pc + 2

st[sp 9 1 ], . . . , st[sp 9 n 9 1 ])
mkTask ReadD st[sp 9 1 ] = node(readd, st[sp 9 1 ]) sp pc + 2
mkTask ReadA st[sp 9 1 ] = node(reada, st[sp 9 1 ]) sp pc + 2
mkTask WriteD st[sp 9 2 ] = node(writed, st[sp 9 1 ], st[sp 9 2 ]) sp 9 1 pc + 2
mkTask WriteA st[sp 9 2 ] = node(writea, st[sp 9 1 ], st[sp 9 2 ]) sp 9 1 pc + 2
mkTask WriteD st[sp 9 2 ] = node(writed, st[sp 9 1 ], st[sp 9 2 ]) sp 9 1 pc + 2
mkTask PinMode st[sp 9 2 ] = node(pinmode, st[sp 9 1 ], st[sp 9 2 ]) sp 9 1 pc + 2
mkTask Repeat st[sp] = node(repeat, st[sp 9 1 ]) sp pc + 2
mkTask Delay st[sp] = node(delay, st[sp 9 1 ]) sp pc + 2
mkTask And st[sp 9 1 ] = node(and, st[sp 9 1 ], st[sp 9 2 ]) sp 9 1 pc + 2
mkTask Or st[sp 9 1 ] = node(and, st[sp 9 1 ], st[sp 9 2 ]) sp 9 1 pc + 2
mkTask Step f wa st[sp] = node(step, st[sp 9 1 ], f , w) sp pc + 5
mkTask SdsGet i st[sp + 1 ] = node(sdsget, i) sp + 1 pc + 3
mkTask SdsSet i st[sp 9 1 ] = node(sdsset, st[sp 9 1 ], i) sp pc + 3
mkTask SdsUpd i l st[sp + 1 ] = node(sdsset, i, l) sp + 1 pc + 5
mkTask Interrupt st[sp 9 2 ] = node(interrupt, st[sp 9 1 ], st[sp 9 2 ]) sp 9 1 pc + 2
mkTask RateLimit st[sp 9 1 ] = node(ratelimit, st[sp 9 1 ]) sp pc + 2
mkTask TuneRate st[sp 9 1 ] = node(tunerate, st[sp 9 1 ], st[sp 9 2 ]) sp 9 1 pc + 2
mkTask DHTTemp i st[sp + 1 ] = node(dhttemp, i) sp + 1 pc + 3
mkTask DHTHumid i st[sp + 1 ] = node(dhthumid, i) sp + 1 pc + 3



200



BIBLIOGRAPHY 201

Bibliography

van der Aalst, W., A. ter Hofstede, B. Kiepuszewski and A. Barros (2003). ‘Workflow Patterns’.
In: Distributed and Parallel Databases 14.1, pp. 5–51. issn: 1573-7578. doi: 10.1023/A:
1022883727209 (cit. on p. 135).

Abadi, M., L. Cardelli, B. Pierce and G. Plotkin (1991). ‘Dynamic Typing in a Statically Typed
Language’. In: ACM Trans. Program. Lang. Syst. 13.2. Place: New York, NY, USA Publisher:
ACM, pp. 237–268. issn: 0164-0925. doi: 10.1145/103135.103138 (cit. on p. 26).

Achten, P. (2007). Clean for Haskell98 Programmers. url: https : / / www . mbsd . cs . ru . nl /
publications/papers/2007/achp2007-CleanHaskellQuickGuide.pdf (cit. on pp. 152, 185).

Achten, P., J. van Groningen and R. Plasmeijer (1993). ‘High Level Specification of I/O in
Functional Languages’. In: Functional Programming, Glasgow 1992. Ed. by J. Launchbury
and P. Sansom. London: Springer London, pp. 1–17. isbn: 978-1-4471-3215-8 (cit. on p. 186).

Achten, P. and R. Plasmeijer (1995). ‘The ins and outs of Clean I/O’. In: Journal of Func-
tional Programming 5.1. Publisher: Cambridge University Press, pp. 81–110. doi: 10.1017/
S0956796800001258 (cit. on p. 186).

Adams, M. D. and T. M. DuBuisson (2012). ‘Template Your Boilerplate: Using Template Haskell
for Efficient Generic Programming’. In: Proceedings of the 2012 Haskell Symposium. Haskell
’12. event-place: Copenhagen, Denmark. New York, NY, USA: ACM, pp. 13–24. isbn: 978-1-
4503-1574-6. doi: 10.1145/2364506.2364509 (cit. on p. 57).

Alhirabi, N., O. Rana and C. Perera (2021). ‘Security and Privacy Requirements for the Internet
of Things: A Survey’. In: ACM Trans. Internet Things 2.1. Place: New York, NY, USA
Publisher: ACM. issn: 2691-1914. doi: 10.1145/3437537 (cit. on pp. 133, 150).

Alimarine, A. (2005). ‘Generic Functional Programming’. PhD thesis. Nijmegen: Radboud Uni-
versity. 198 pp. (cit. on pp. 113, 187).

Alimarine, A. and R. Plasmeijer (2002). ‘A Generic Programming Extension for Clean’. In:
Implementation of Functional Languages. Ed. by T. Arts and M. Mohnen. Berlin, Heidelberg:
Springer Berlin Heidelberg, pp. 168–185. isbn: 978-3-540-46028-2 (cit. on p. 152).

Alpernas, K., Y. M. Y. Feldman and H. Peleg (2020). ‘The Wonderful Wizard of LoC: Paying
Attention to the Man behind the Curtain of Lines-of-Code Metrics’. In: Proceedings of
the 2020 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software. Onward! 2020. Virtual, USA: ACM, pp. 146–156.
isbn: 9781450381789. doi: 10.1145/3426428.3426921 (cit. on pp. 143, 164).

Alphonsa, M. (2021). ‘A Review on IOT Technology Stack, Architecture and Its Cloud Applications
in Recent Trends’. In: ICCCE 2020. Ed. by A. Kumar and S. Mozar. Singapore: Springer
Singapore, pp. 703–711. isbn: 978-981-15-7961-5 (cit. on p. 142).

Amazonas Cabral de Andrade, M. (2018). ‘Developing Real Life, Task Oriented Applications
for the Internet of Things’. Master’s Thesis. Nijmegen: Radboud University. 60 pp. (cit. on
p. 137).

St-Amour, V. and M. Feeley (2009). ‘PICOBIT: a compact scheme system for microcontrollers’.
In: International Symposium on Implementation and Application of Functional Languages.
Springer, pp. 1–17 (cit. on pp. 131, 174).

Antonakakis, M., T. April, M. Bailey, M. Bernhard, E. Bursztein, J. Cochran, Z. Durumeric, J. A.
Halderman, L. Invernizzi, M. Kallitsis, D. Kumar, C. Lever, Z. Ma, J. Mason, D. Menscher,
C. Seaman, N. Sullivan, K. Thomas and Y. Zhou (2017). ‘Understanding the Mirai Botnet’.
In: 26th USENIX Security Symposium (USENIX Security 17). Vancouver, BC: USENIX

https://doi.org/10.1023/A:1022883727209
https://doi.org/10.1023/A:1022883727209
https://doi.org/10.1145/103135.103138
https://www.mbsd.cs.ru.nl/publications/papers/2007/achp2007-CleanHaskellQuickGuide.pdf
https://www.mbsd.cs.ru.nl/publications/papers/2007/achp2007-CleanHaskellQuickGuide.pdf
https://doi.org/10.1017/S0956796800001258
https://doi.org/10.1017/S0956796800001258
https://doi.org/10.1145/2364506.2364509
https://doi.org/10.1145/3437537
https://doi.org/10.1145/3426428.3426921


202 BIBLIOGRAPHY

Association, pp. 1093–1110. isbn: 978-1-931971-40-9. url: https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/antonakakis (cit. on p. 151).

Antonova, E. (2022). ‘mTask Semantics and its Comparison to TopHat’. Bachelor’s Thesis.
Nijmegen: Radboud University. 60 pp. (cit. on pp. 135, 137).

Ashton, K. (1999). ‘Internet of Things’. Presentation. Presentation. Proctor & Gamble. London,
UK (cit. on p. 3).

Ashton, K. (2009). ‘That ‘Internet of Things’ Thing’. In: RFID journal 22.7. Publisher: Hauppauge,
New York, pp. 97–114 (cit. on p. 3).

Atkey, R., S. Lindley and J. Yallop (2009). ‘Unembedding Domain-Specific Languages’. In:
Proceedings of the 2nd ACM SIGPLAN Symposium on Haskell. Haskell ’09. event-place:
Edinburgh, Scotland. New York, NY, USA: ACM, pp. 37–48. isbn: 978-1-60558-508-6. doi:
10.1145/1596638.1596644 (cit. on p. 56).

Baaij, C. P. R. (2015). ‘Digital circuit in CλaSH: functional specifications and type-directed
synthesis’. ISBN: 978-90-365-3803-9. PhD thesis. Netherlands: University of Twente. doi:
10.3990/1.9789036538039 (cit. on pp. 57, 134).

Baars, A. I. and S. D. Swierstra (2002). ‘Typing Dynamic Typing’. In: Proceedings of the Seventh
ACM SIGPLAN International Conference on Functional Programming. ICFP ’02. event-place:
Pittsburgh, PA, USA. New York, NY, USA: ACM, pp. 157–166. isbn: 1-58113-487-8. doi:
10.1145/581478.581494 (cit. on p. 26).

Baccelli, E., J. Doerr, O. Jallouli, S. Kikuchi, A. Morgenstern, F. A. Padilla, K. Schleiser and
I. Thomas (2018). ‘Reprogramming Low-end IoT Devices from the Cloud’. In: 2018 3rd
Cloudification of the Internet of Things (CIoT). IEEE, pp. 1–6 (cit. on pp. 130, 150).

Backus, J., J. H. Williams and E. L. Wimmers (1990). ‘An Introduction to the Programming
Language FL’. In: Research Topics in Functional Programming. USA: Addison-Wesley
Longman Publishing Co., Inc., pp. 219–247. isbn: 0-201-17236-4 (cit. on p. 186).

Balat, V. (2006). ‘Ocsigen: Typing web interaction with objective caml’. In: Proceedings of the
2006 Workshop on ML, pp. 84–94 (cit. on p. 147).

Barendregt, H., M. van Eekelen, J. Glauert, J. Kennaway, M. Plasmeijer and M. Sleep (1987).
‘Towards an intermediate language for graph rewriting’. In: PARLE, Parallel Architectures
and Languages Europe. Vol. 1. Springer Verlag, pp. 159–174 (cit. on p. 185).

Barendsen, E. and S. Smetsers (1996). ‘Uniqueness typing for functional languages with graph
rewriting semantics’. In: Mathematical structures in computer science 6.6, pp. 579–612 (cit. on
pp. 152, 186).

Barišic, A., V. Amaral, M. Goulão and B. Barroca (2014). ‘Evaluating the Usability of Domain-
Specific Languages’. In: Software Design and Development: Concepts, Methodologies, Tools,
and Applications. Ed. by I. R. Management Association. Hershey, PA, USA: IGI Global,
pp. 2120–2141. isbn: 978-1-4666-4301-7. doi: 10.4018/978-1-4666-4301-7.ch098 (cit. on
p. 135).

Bawden, A. (1999). ‘Quasiquotation in Lisp’. In: O. Danvy, Ed., University of Aarhus, Dept. of
Computer Science. ACM SIGPLAN Workshop on Partial Evaluation and Semantics-Based
Program Manipulation. Vol. NS-99-1. BRICS Notes Series. Aarhus, Denmark: BRICS, pp. 88–
99. doi: 10.1.1.22.1290 (cit. on p. 46).

Belle, A. B., G. El-Boussaidi, C. Desrosiers and H. Mili (2013). ‘The layered architecture revisited:
Is it an optimization problem?’ In: Proceedings of the Twenty-Fifth International Conference
on Software Engineering & Knowledge E. Vol. 1. Boston, MA, USA: KSI Research Inc,
pp. 344–349. isbn: 978-1-5108-4159-8 (cit. on p. 146).

Belwal, C., A. M. K. Cheng, J. Ras and Y. Wen (2013). ‘Variable Voltage Scheduling with
the Priority-Based Functional Reactive Programming Language’. In: Proceedings of the
2013 Research in Adaptive and Convergent Systems. RACS ’13. event-place: Montreal,
Quebec, Canada. New York, NY, USA: ACM, pp. 440–445. isbn: 978-1-4503-2348-2. doi:
10.1145/2513228.2513271 (cit. on p. 136).

Bjornson, J., A. Tayanovskyy and A. Granicz (2010). ‘Composing reactive GUIs in F# using
WebSharper’. In: Symposium on Implementation and Application of Functional Languages.
Springer, pp. 203–216 (cit. on p. 147).

Blanchette, H., N. Vazou and L. Lampropoulos (2022). ‘Liquid Proof Macros’. In: Proceedings
of the 15th ACM SIGPLAN International Haskell Symposium. Haskell 2022. event-place:
Ljubljana, Slovenia. New York, NY, USA: ACM, pp. 27–38. isbn: 978-1-4503-9438-3. doi:
10.1145/3546189.3549921 (cit. on p. 57).

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
https://doi.org/10.1145/1596638.1596644
https://doi.org/10.3990/1.9789036538039
https://doi.org/10.1145/581478.581494
https://doi.org/10.4018/978-1-4666-4301-7.ch098
https://doi.org/10.1.1.22.1290
https://doi.org/10.1145/2513228.2513271
https://doi.org/10.1145/3546189.3549921


BIBLIOGRAPHY 203

de Boer, M. (2020). ‘Secure Communication Channels for the mTask System.’ Bachelor’s Thesis.
Nijmegen: Radboud University. 39 pp. (cit. on pp. 133, 137, 151).

Bolingbroke, M. (2011). Constraint Kinds for GHC. :: (Bloggable a) => a -> IO (). url:
http : / / blog . omega - prime . co . uk / 2011 / 09 / 10 / constraint - kinds - for - ghc/ (visited on
09/06/2021) (cit. on p. 23).

Boulton, R., A. Gordon, M. Gordon, J. Harrison, J. Herbert and J. V. Tassel (1992). ‘Experience
with embedding hardware description languages in HOL’. In: IFIP TC10/WG. Proceedings
of the IFIP TC10/WG 10.2 International Conference on Theorem Provers in Circuit Design:
Theory, Practice and Experience. Ed. by V. Stavridou, T. F. Melham and R. T. Boute. Vol. 10.
event-place: Nijmegen, NL. North-Holland: Elsevier, pp. 129–156. isbn: 0-444-89686-4 (cit. on
p. 17).

Brus, T. H., M. C. J. D. van Eekelen, M. O. van Leer and M. J. Plasmeijer (1987). ‘Clean
— A language for functional graph rewriting’. In: Functional Programming Languages and
Computer Architecture. Ed. by G. Kahn. Berlin, Heidelberg: Springer Berlin Heidelberg,
pp. 364–384. isbn: 978-3-540-47879-9 (cit. on p. 185).

Carette, J., O. Kiselyov and C.-C. Shan (2009). ‘Finally tagless, partially evaluated: Tagless
staged interpreters for simpler typed languages’. In: Journal of Functional Programming
19.5. Publisher: Cambridge University Press, pp. 509–543. doi: 10.1017/S0956796809007205
(cit. on pp. 18, 31, 41).

Cass, S. (2020). ‘The top programming languages: Our latest rankings put Python on top-again-
[Careers]’. In: IEEE Spectrum 57.8, pp. 22–22 (cit. on p. 173).

Cheney, J. and R. Hinze (2002). ‘A lightweight implementation of generics and dynamics’. In:
Proceedings of the 2002 ACM SIGPLAN workshop on Haskell. event-place: Pittsburgh
Pennsylvania, USA. ACM, pp. 90–104. doi: 10.1145/581690.581698. (Visited on 15/05/2017)
(cit. on pp. 28, 189).

Cheney, J. and R. Hinze (2003). First-class phantom types. TR2003-1901. Cornell University.
url: https://ecommons.cornell.edu/handle/1813/5614 (visited on 15/05/2017) (cit. on pp. 28,
189).

Chlipala, A. (2008). ‘Parametric Higher-Order Abstract Syntax for Mechanized Semantics’. In:
Proceedings of the 13th ACM SIGPLAN International Conference on Functional Programming.
ICFP ’08. event-place: Victoria, BC, Canada. New York, NY, USA: ACM, pp. 143–156. isbn:
978-1-59593-919-7. doi: 10.1145/1411204.1411226 (cit. on pp. 42, 76).

Chong, S., J. Liu, A. C. Myers, X. Qi, K. Vikram, L. Zheng and X. Zheng (2007). ‘Secure web
applications via automatic partitioning’. In: ACM SIGOPS Operating Systems Review 41.6,
pp. 31–44 (cit. on p. 151).

CircuitPython Team (2022). CircuitPython. [Online; accessed 2-March-2022]. url: https ://
circuitpython.org/ (cit. on p. 166).

Clifton-Everest, R., T. L. McDonell, M. M. T. Chakravarty and G. Keller (2014). ‘Embedding
Foreign Code’. In: Practical Aspects of Declarative Languages. Ed. by M. Flatt and H.-F. Guo.
Cham: Springer International Publishing, pp. 136–151. isbn: 978-3-319-04132-2 (cit. on p. 58).

Cooper, E., S. Lindley, P. Wadler and J. Yallop (2007). ‘Links: Web Programming Without Tiers’.
In: Formal Methods for Components and Objects. Ed. by F. S. de Boer, M. M. Bonsangue,
S. Graf and W.-P. de Roever. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 266–296.
isbn: 978-3-540-74792-5 (cit. on pp. 142, 147, 149, 172, 178).

Crooijmans, S. (2021). ‘Reducing the Power Consumption of IoT Devices in Task-Oriented
Programming’. Master’s Thesis. Nijmegen: Radboud University. 78 pp. (cit. on pp. 137, 176).

Crooijmans, S., M. Lubbers and P. Koopman (2022). ‘Reducing the Power Consumption of
IoT with Task-Oriented Programming’. In: Trends in Functional Programming. Ed. by W.
Swierstra and N. Wu. Cham: Springer International Publishing, pp. 80–99. isbn: 978-3-031-
21314-4 (cit. on pp. 13, 128, 137).

Czarnecki, K., J. T. O’Donnell, J. Striegnitz and W. Taha (2004). ‘DSL Implementation in
MetaOCaml, Template Haskell, and C++’. In: Domain-Specific Program Generation: Inter-
national Seminar, Dagstuhl Castle, Germany, March 23-28, 2003. Revised Papers. Ed. by
C. Lengauer, D. Batory, C. Consel and M. Odersky. Berlin, Heidelberg: Springer Berlin
Heidelberg, pp. 51–72. isbn: 978-3-540-25935-0. doi: 10.1007/978-3-540-25935-0_4 (cit. on
p. 56).

Domoszlai, L., B. Lijnse and R. Plasmeijer (2014). ‘Parametric Lenses: Change Notification for
Bidirectional Lenses’. In: Proceedings of the 26th International Symposium on Implemen-

http://blog.omega-prime.co.uk/2011/09/10/constraint-kinds-for-ghc/
https://doi.org/10.1017/S0956796809007205
https://doi.org/10.1145/581690.581698
https://ecommons.cornell.edu/handle/1813/5614
https://doi.org/10.1145/1411204.1411226
https://circuitpython.org/
https://circuitpython.org/
https://doi.org/10.1007/978-3-540-25935-0_4


204 BIBLIOGRAPHY

tation and Application of Functional Languages. IFL ’14. Boston, MA, USA: ACM. isbn:
9781450332842. doi: 10.1145/2746325.2746333 (cit. on p. 152).

Dubé, D. (2000). ‘BIT: A very compact Scheme system for embedded applications’. In: Proceedings
of the Fourth Workshop on Scheme and Functional Programming (cit. on pp. 131, 174).

Duregård, J. and P. Jansson (2011). ‘Embedded Parser Generators’. In: Proceedings of the 4th
ACM Symposium on Haskell. Haskell ’11. event-place: Tokyo, Japan. New York, NY, USA:
ACM, pp. 107–117. isbn: 978-1-4503-0860-1. doi: 10.1145/2034675.2034689 (cit. on p. 57).

Egi, S., A. Kawata, M. Kori and H. Ogawa (2022). ‘Embedding Non-linear Pattern Matching
with Backtracking for Non-free Data Types into Haskell’. In: New Generation Computing
40.2, pp. 481–506. issn: 1882-7055. doi: 10.1007/s00354-022-00177-z (cit. on p. 58).

Eisenberg, R. A. and J. Stolarek (2014). ‘Promoting Functions to Type Families in Haskell’. In:
Proceedings of the 2014 ACM SIGPLAN Symposium on Haskell. Haskell ’14. event-place:
Gothenburg, Sweden. New York, NY, USA: ACM, pp. 95–106. isbn: 978-1-4503-3041-1. doi:
10.1145/2633357.2633361 (cit. on p. 58).

Ekblad, A. and K. Claessen (2014). ‘A Seamless, Client-Centric Programming Model for Type
Safe Web Applications’. In: SIGPLAN Not. 49.12, pp. 79–89. issn: 0362-1340. doi: 10.1145/
2775050.2633367 (cit. on pp. 147–149).

Elliott, C., S. Finne and O. de Moor (2003). ‘Compiling embedded languages’. In: Journal of
Functional Programming 13.3. Publisher: Cambridge University Press, pp. 455–481. doi:
10.1017/S0956796802004574 (cit. on pp. 6, 40).

Elliott, C. and P. Hudak (1997). ‘Functional reactive animation’. In: ACM SIGPLAN Notices.
Vol. 32. ACM, pp. 263–273 (cit. on p. 132).

Elliott, T., L. Pike, S. Winwood, P. Hickey, J. Bielman, J. Sharp, E. Seidel and J. Launchbury
(2015). ‘Guilt free ivory’. In: ACM SIGPLAN Notices. Vol. 50. ACM, pp. 189–200 (cit. on
pp. 131, 148).

Epstein, J., A. P. Black and S. Peyton Jones (2011). ‘Towards Haskell in the Cloud’. In: Proceedings
of the 4th ACM Symposium on Haskell. Haskell ’11. Tokyo, Japan: ACM, pp. 118–129. isbn:
9781450308601. doi: 10.1145/2034675.2034690 (cit. on p. 171).

Evans, D. (2011). The Internet of Things: How the Next Evolution of the Internet Is Changing
Everything. url: https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_
0411FINAL.pdf (cit. on p. 3).

Feeley, M. and D. Dubé (2003). ‘PICBIT: A Scheme system for the PIC microcontroller’. In:
Proceedings of the Fourth Workshop on Scheme and Functional Programming. Citeseer,
pp. 7–15 (cit. on pp. 131, 174).

Feijs, L. (2013). ‘Multi-tasking and Arduino : why and how?’ In: 8th International Conference on
Design and Semantics of Form and Movement (DeSForM 2013). 8th International Conference
on Design and Semantics of Form and Movement (DeSForM 2013). Ed. by L. L. Chen, T.
Djajadiningrat, L. M. G. Feijs, S. Fraser, J. Hu, S. Kyffin and D. Steffen. Wuxi, China,
pp. 119–127. isbn: 978-90-386-3462-3 (cit. on pp. 67, 131).

Folmer, H. H., R. d. Groote and M. J. G. Bekooij (2022). ‘High-Level Synthesis of Digital
Circuits from Template Haskell and SDF-AP’. In: Embedded Computer Systems: Architectures,
Modeling, and Simulation. Ed. by A. Orailoglu, M. Reichenbach and M. Jung. Cham: Springer
International Publishing, pp. 3–27. isbn: 978-3-031-15074-6 (cit. on p. 57).

Fowler, M. (2010). Domain Specific Languages. 1st. Addison-Wesley Professional. isbn: 0-321-
71294-3 (cit. on p. 5).

Furr, M. and J. S. Foster (2005). ‘Checking Type Safety of Foreign Function Calls’. In: SIGPLAN
Not. 40.6, pp. 62–72. issn: 0362-1340. doi: 10.1145/1064978.1065019 (cit. on p. 171).

van Gemert, D. (2022). ‘Task Oriented Programming in LUA’. Bachelor’s Thesis. Nijmegen:
Radboud University. 63 pp. (cit. on p. 12).

GHC Team (2021a). Data.Dynamic. url: https://hackage.haskell.org/package/base-4.14.1.0/
docs/Data-Dynamic.html (visited on 24/02/2021) (cit. on p. 26).

GHC Team (2021b). GHC User’s Guide Documentation. url: https://downloads.haskell.org/
~ghc/latest/docs/users_guide.pdf (visited on 24/02/2021) (cit. on pp. 18, 22, 29, 44, 187).

Gibbons, J. and N. Wu (2014). ‘Folding Domain-Specific Languages: Deep and Shallow Embeddings
(Functional Pearl)’. In: Proceedings of the 19th ACM SIGPLAN International Conference on
Functional Programming. ICFP ’14. event-place: Gothenburg, Sweden. New York, NY, USA:
ACM, pp. 339–347. isbn: 978-1-4503-2873-9. doi: 10.1145/2628136.2628138 (cit. on p. 20).

https://doi.org/10.1145/2746325.2746333
https://doi.org/10.1145/2034675.2034689
https://doi.org/10.1007/s00354-022-00177-z
https://doi.org/10.1145/2633357.2633361
https://doi.org/10.1145/2775050.2633367
https://doi.org/10.1145/2775050.2633367
https://doi.org/10.1017/S0956796802004574
https://doi.org/10.1145/2034675.2034690
https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
https://doi.org/10.1145/1064978.1065019
https://hackage.haskell.org/package/base-4.14.1.0/docs/Data-Dynamic.html
https://hackage.haskell.org/package/base-4.14.1.0/docs/Data-Dynamic.html
https://downloads.haskell.org/~ghc/latest/docs/users_guide.pdf
https://downloads.haskell.org/~ghc/latest/docs/users_guide.pdf
https://doi.org/10.1145/2628136.2628138


BIBLIOGRAPHY 205

Gill, A. (2009). ‘A Haskell Hosted DSL for Writing Transformation Systems’. In: Domain-Specific
Languages. Ed. by W. M. Taha. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 285–309.
isbn: 978-3-642-03034-5 (cit. on p. 58).

Grebe, M. and A. Gill (2016). ‘Haskino: A remote monad for programming the arduino’. In:
International Symposium on Practical Aspects of Declarative Languages. Springer, pp. 153–
168 (cit. on p. 130).

Grebe, M. and A. Gill (2019). ‘Threading the Arduino with Haskell’. In: Trends in Functional
Programming. Ed. by D. Van Horn and J. Hughes. Cham: Springer International Publishing,
pp. 135–154. isbn: 978-3-030-14805-8 (cit. on p. 130).

van Groningen, J., T. van Noort, P. Achten, P. Koopman and R. Plasmeijer (2010). ‘Exchanging
sources between Clean and Haskell: A double-edged front end for the Clean compiler’. In:
ACM Sigplan Notices 45.11, pp. 49–60 (cit. on p. 185).

Guinard, D. and V. Trifa (2016). Building the Web of Things: With Examples in Node.Js and
Raspberry Pi. 1st. USA: Manning Publications Co. isbn: 1-61729-268-0 (cit. on p. 147).

Gupta, M. (2012). Akka essentials. Livery Place, 35 Livery Street, Birmingham B3 2PB, UK:
Packt Publishing Ltd (cit. on p. 171).

Haenisch, T. (2016). ‘A case study on using functional programming for internet of things
applications’. In: Athens Journal of Technology & Engineering 3.1 (cit. on p. 131).

Hall, C., K. Hammond, W. Partain, S. L. Peyton Jones and P. Wadler (1993). ‘The Glasgow
Haskell compiler: a retrospective’. In: Functional Programming, Glasgow 1992. Springer,
pp. 62–71 (cit. on p. 148).

Hammond, K., J. Berthold and R. Loogen (2003). ‘Automatic Skeletons in Template Haskell’.
In: Parallel Processing Letters 13.3, pp. 413–424. doi: 10.1142/S0129626403001380 (cit. on
p. 57).

Harth, N., C. Anagnostopoulos and D. Pezaros (2018). ‘Predictive intelligence to the edge: impact
on edge analytics’. In: Evolving Systems 9.2, pp. 95–118 (cit. on p. 144).

HaskellWiki contributors (2020). Introduction to IO — HaskellWiki. [Online; accessed 19-January-
2021]. url: https://wiki.haskell.org/index.php?title=Introduction_to_IO&oldid=63493
(cit. on p. 152).

van der Heijden, M., B. Lijnse, P. J. Lucas, Y. F. Heijdra and T. R. Schermer (2011). ‘Managing
COPD exacerbations with telemedicine’. In: Conference on Artificial Intelligence in Medicine
in Europe. Springer, pp. 169–178 (cit. on p. 133).

Helbling, C. and S. Z. Guyer (2016). ‘Juniper: a functional reactive programming language for
the Arduino’. In: Proceedings of the 4th International Workshop on Functional Art, Music,
Modelling, and Design. ACM, pp. 8–16 (cit. on pp. 133, 148).

Hentschel, K., D. Jacob, J. Singer and M. Chalmers (2016). ‘Supersensors: Raspberry Pi Devices
for Smart Campus Infrastructure’. In: 2016 IEEE 4th International Conference on Future
Internet of Things and Cloud (FiCloud). 2016 IEEE 4th International Conference on Future
Internet of Things and Cloud (FiCloud). Vienna, Austria: IEEE, pp. 58–62. isbn: 978-1-
5090-4052-0. doi: 10.1109/FiCloud.2016.16. (Visited on 04/09/2019) (cit. on pp. 14, 143,
144).

Herwig, S., K. Harvey, G. Hughey, R. Roberts and D. Levin (2019). ‘Measurement and Analysis
of Hajime, a Peer-to-peer IoT Botnet’. In: Network and Distributed Systems Security (NDSS)
Symposium 2019. San Diego, CA, USA, p. 15. isbn: 1-891562-55-X. doi: 10.14722/ndss.2019.
23488 (cit. on p. 151).

Hess, J. (2020). arduino-copilot: Arduino programming in haskell using the Copilot stream DSL.
url: https://hackage.haskell.org/package/arduino-copilot (visited on 14/02/2020) (cit. on
pp. 131, 133, 148).

Hester, J. and J. Sorber (2019). ‘Batteries Not Included’. In: XRDS 26.1. Place: New York, NY,
USA Publisher: ACM, pp. 23–27. issn: 1528-4972. doi: 10.1145/3351474 (cit. on p. 134).

Hinze, R. (2000). ‘A New Approach to Generic Functional Programming’. In: Proceedings of the
27th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. POPL
’00. Boston, MA, USA: ACM, pp. 119–132. isbn: 1581131259. doi: 10.1145/325694.325709
(cit. on p. 152).

Hinze, R. (2003). ‘Fun With Phantom Types’. In: The Fun of Programming. Ed. by J. Gibbons
and O. de Moor. Cornerstones of Computing. Palgrave: Bloomsbury Publishing, pp. 245–262.
isbn: 978-0-333-99285-2 (cit. on pp. 28, 59, 189).

https://doi.org/10.1142/S0129626403001380
https://wiki.haskell.org/index.php?title=Introduction_to_IO&oldid=63493
https://doi.org/10.1109/FiCloud.2016.16
https://doi.org/10.14722/ndss.2019.23488
https://doi.org/10.14722/ndss.2019.23488
https://hackage.haskell.org/package/arduino-copilot
https://doi.org/10.1145/3351474
https://doi.org/10.1145/325694.325709


206 BIBLIOGRAPHY

Hinze, R. and J. Jeuring (2003). ‘Generic Haskell: Practice and Theory’. In: Generic Programming:
Advanced Lectures. Ed. by R. Backhouse and J. Gibbons. Berlin, Heidelberg: Springer Berlin
Heidelberg, pp. 1–56. isbn: 978-3-540-45191-4. doi: 10.1007/978-3-540-45191-4_1 (cit. on
p. 187).

Hinze, R. and S. Peyton Jones (2001). ‘Derivable Type Classes’. In: Electronic Notes in Theoretical
Computer Science 41.1, pp. 5–35. issn: 1571-0661. doi: https://doi.org/10.1016/S1571-
0661(05)80542-0 (cit. on p. 113).

Hudak, P. (1998). ‘Modular domain specific languages and tools’. In: Proceedings. Fifth Inter-
national Conference on Software Reuse (Cat. No.98TB100203), pp. 134–142. doi: 10.1109/
ICSR.1998.685738 (cit. on p. 6).

Hughes, J. (1989). ‘Why functional programming matters’. In: The computer journal 32.2, pp. 98–
107 (cit. on p. 170).

Ireland, C., D. Bowers, M. Newton and K. Waugh (2009). ‘A Classification of Object-Relational
Impedance Mismatch’. In: First International Conference on Advances in Databases, Knowl-
edge, and Data Applications. First International Conference on Advances in Databases,
Knowledge, and Data Applications. Cancun, Mexico: IEEE, pp. 36–43. isbn: 978-0-7695-3550-
0. doi: 10.1109/DBKDA.2009.11 (cit. on pp. 4, 146, 168, 171).

Jansen, J. M., B. Lijnse and R. Plasmeijer (2010). ‘Towards dynamic workflows for crisis man-
agement’. In: 7th Proceedings of the International Conference on Information Systems for
Crisis Response and Management, Seattle, WA, USA, May, 2010. 7th International ISCRAM
Conference on Information Systems for Crisis Response and Management. Ed. by S. French,
n. Tomaszewski and C. Zobel. Seattle, USA: Information Systems for Crisis Response and
Management, ISCRAM. isbn: 978-972-49-2247-8 (cit. on p. 133).

Jeuring, J. and P. Jansson (1996). ‘Polytypic programming’. In: Advanced Functional Programming.
Ed. by J. Launchbury, E. Meijer and T. Sheard. Berlin, Heidelberg: Springer Berlin Heidelberg,
pp. 68–114. isbn: 978-3-540-70639-7 (cit. on p. 187).

Johnson-Davies, D. (2020). Lisp for microcontrollers. Lisp for microcontrollers. url: https :
//ulisp.com (visited on 14/02/2020) (cit. on pp. 131, 174).

Kariotis, P. S., A. M. Procter and W. L. Harrison (2008). ‘Making Monads First-Class with
Template Haskell’. In: Proceedings of the First ACM SIGPLAN Symposium on Haskell.
Haskell ’08. event-place: Victoria, BC, Canada. New York, NY, USA: ACM, pp. 99–110. isbn:
978-1-60558-064-7. doi: 10.1145/1411286.1411300 (cit. on p. 58).

Kiselyov, O. (2011). ‘Implementing Explicit and Finding Implicit Sharing in Embedded DSLs’.
In: Electronic Proceedings in Theoretical Computer Science 66. Publisher: Open Publishing
Association, pp. 210–225. doi: 10.4204/eptcs.66.11 (cit. on p. 35).

Kiselyov, O. (2012). ‘Typed Tagless Final Interpreters’. In: Generic and Indexed Programming:
International Spring School, SSGIP 2010, Oxford, UK, March 22-26, 2010, Revised Lectures.
Ed. by J. Gibbons. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 130–174. isbn: 978-3-
642-32202-0. doi: 10.1007/978-3-642-32202-0_3 (cit. on pp. 18, 40).

Kochhar, P. S., D. Wijedasa and D. Lo (2016). ‘A Large Scale Study of Multiple Programming
Languages and Code Quality’. In: 23rd International Conference on Software Analysis,
Evolution, and Reengineering. Osaka, Japan: IEEE, pp. 563–573. doi: 10.1109/SANER.2016.
112 (cit. on p. 147).

Kodali, R. K. and K. S. Mahesh (2016). ‘Low cost ambient monitoring using ESP8266’. In: 2016
2nd International Conference on Contemporary Computing and Informatics (IC3I). IEEE.
Greater Noida, India: IEEE, pp. 779–782 (cit. on p. 161).

Kohlbecker, E., D. P. Friedman, M. Felleisen and B. Duba (1986). ‘Hygienic Macro Expansion’.
In: Proceedings of the 1986 ACM Conference on LISP and Functional Programming. LFP
’86. event-place: Cambridge, Massachusetts, USA. New York, NY, USA: ACM, pp. 151–161.
isbn: 0-89791-200-4. doi: 10.1145/319838.319859 (cit. on p. 45).

Koopman, P., M. Lubbers and R. Plasmeijer (2018). ‘A Task-Based DSL for Microcomputers’. In:
Proceedings of the Real World Domain Specific Languages Workshop 2018 on - RWDSL2018.
the Real World Domain Specific Languages Workshop 2018. Vienna, Austria: ACM Press,
pp. 1–11. isbn: 978-1-4503-6355-6. doi: 10.1145/3183895.3183902. (Visited on 14/01/2019)
(cit. on pp. 10, 13, 137, 176).

Koopman, P., M. Lubbers and R. Plasmeijer (2023). ‘Simulation of a Task-Based Embedded
Domain Specific Language for the Internet of Things’. In: Composability, Comprehensibility
and Correctness of Working Software, 7th Winter School, Kosice, Slovakia, January 22–26,

https://doi.org/10.1007/978-3-540-45191-4_1
https://doi.org/https://doi.org/10.1016/S1571-0661(05)80542-0
https://doi.org/https://doi.org/10.1016/S1571-0661(05)80542-0
https://doi.org/10.1109/ICSR.1998.685738
https://doi.org/10.1109/ICSR.1998.685738
https://doi.org/10.1109/DBKDA.2009.11
https://ulisp.com
https://ulisp.com
https://doi.org/10.1145/1411286.1411300
https://doi.org/10.4204/eptcs.66.11
https://doi.org/10.1007/978-3-642-32202-0_3
https://doi.org/10.1109/SANER.2016.112
https://doi.org/10.1109/SANER.2016.112
https://doi.org/10.1145/319838.319859
https://doi.org/10.1145/3183895.3183902


BIBLIOGRAPHY 207

2018, Revised Selected Papers. Lecture Notes in Computer Science 11916. in-press. Cham:
Springer, p. 51 (cit. on pp. 13, 137).

Koopman, P., S. Michels and R. Plasmeijer (2021). ‘Dynamic Editors for Well-Typed Expressions’.
In: Trends in Functional Programming. Ed. by V. Zsók and J. Hughes. Cham: Springer
International Publishing, pp. 44–66. isbn: 978-3-030-83978-9 (cit. on p. 135).

Koopman, P. and R. Plasmeijer (2019). ‘Type-Safe Functions and Tasks in a Shallow Embedded
DSL for Microprocessors’. In: Central European Functional Programming School: 6th Summer
School, CEFP 2015, Budapest, Hungary, July 6–10, 2015, Revised Selected Papers. Ed. by
V. Zsók, Z. Porkoláb and Z. Horváth. Cham: Springer International Publishing, pp. 283–340.
isbn: 978-3-030-28346-9. doi: 10.1007/978-3-030-28346-9_8 (cit. on p. 137).

Koopman, P., R. Plasmeijer and P. Achten (2011). ‘An Executable and Testable Semantics for
iTasks’. In: Implementation and Application of Functional Languages. Ed. by S.-B. Scholz and
O. Chitil. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 212–232. isbn: 978-3-642-24452-0
(cit. on p. 134).

Krishnamurthi, S. (2001). ‘Linguistic reuse’. PhD thesis. Houston, USA: Rice University. 119 pp.
(cit. on pp. 6, 75).

Krishnamurthi, S., M. Felleisen and D. P. Friedman (1998). ‘Synthesizing object-oriented and
functional design to promote re-use’. In: ECOOP’98 — Object-Oriented Programming. Ed.
by E. Jul. event-place: Brussels, Belgium. Berlin, Heidelberg: Springer Berlin Heidelberg,
pp. 91–113. isbn: 978-3-540-69064-1 (cit. on p. 18).

Lämmel, R. and S. Peyton Jones (2003). ‘Scrap Your Boilerplate: A Practical Design Pattern for
Generic Programming’. In: Proceedings of the 2003 ACM SIGPLAN International Workshop
on Types in Languages Design and Implementation. TLDI ’03. event-place: New Orleans,
Louisiana, USA. New York, NY, USA: ACM, pp. 26–37. isbn: 1-58113-649-8. doi: 10.1145/
604174.604179 (cit. on p. 56).

Läufer, K. (1994). ‘Combining type classes and existential types’. In: Proceedings of the Latin
American Informatic Conference (PANEL). Latin American Informatics Conferenc. event-
place: Monterrey, Mexico. ITESM (cit. on p. 22).

Läufer, K. (1996). ‘Type classes with existential types’. In: Journal of Functional Programming
6.3. Publisher: Cambridge University Press, pp. 485–518. doi: 10.1017/S0956796800001817
(cit. on p. 22).

Lee, B., B. Wiedermann, M. Hirzel, R. Grimm and K. S. McKinley (2010). ‘Jinn: Synthesizing
Dynamic Bug Detectors for Foreign Language Interfaces’. In: SIGPLAN Not. 45.6, pp. 36–49.
issn: 0362-1340. doi: 10.1145/1809028.1806601 (cit. on p. 171).

Lee, J. K., S. J. Jung, S. D. Kim, W. H. Jang and D. H. Ham (2001). ‘Component identification
method with coupling and cohesion’. In: Proceedings Eighth Asia-Pacific Software Engineering
Conference. IEEE. Macao, China: IEEE, pp. 79–86 (cit. on p. 146).

Leijen, D. and E. Meijer (2000). ‘Domain Specific Embedded Compilers’. In: Proceedings of the
2nd Conference on Domain-Specific Languages. DSL ’99. event-place: Austin, Texas, USA.
New York, NY, USA: ACM, pp. 109–122. isbn: 1-58113-255-7. doi: 10.1145/331960.331977
(cit. on p. 42).

Leijen, D. and E. Meijer (2001). Parsec: Direct Style Monadic Parser Combinators For The Real
World. UU-CS-2001-27. Utrecht: Universiteit Utrecht, p. 22 (cit. on p. 54).

Levis, P. and D. Culler (2002). ‘Maté: A tiny virtual machine for sensor networks’. In: ACM
Sigplan Notices 37.10, pp. 85–95 (cit. on pp. 130, 150).

Lewis, P. T. (1985). ‘Speech’. Speech. Speech. Congressional Black Caucus Foundation 15th Annual
Legislative Weekend. Washington, D.C. url: http://www.chetansharma.com/correcting-the-
iot-history/ (cit. on p. 3).

Light, R. (2017). ‘Mosquitto: server and client implementation of the MQTT protocol’. In: Journal
of Open Source Software 2.13, p. 265 (cit. on p. 168).

Lijnse, B. (2022). Toppyt. url: https://gitlab.com/baslijnse/toppyt (visited on 07/10/2022)
(cit. on p. 12).

Lijnse, B., J. M. Jansen, R. Plasmeijer et al. (2012). ‘Incidone: A task-oriented incident coordination
tool’. In: Proceedings of the 9th International Conference on Information Systems for Crisis
Response and Management, ISCRAM. Vol. 12 (cit. on p. 133).

Lijnse, B., R. Nanne, J. M. Jansen and R. Plasmeijer (2011). ‘Capturing the Netherlands Coast
Guard’s SAR Workflow with iTasks’. In: Proceedings of the 8th International ISCRAM
Conference. Lisbon, Portugal, p. 10 (cit. on p. 133).

https://doi.org/10.1007/978-3-030-28346-9_8
https://doi.org/10.1145/604174.604179
https://doi.org/10.1145/604174.604179
https://doi.org/10.1017/S0956796800001817
https://doi.org/10.1145/1809028.1806601
https://doi.org/10.1145/331960.331977
http://www.chetansharma.com/correcting-the-iot-history/
http://www.chetansharma.com/correcting-the-iot-history/
https://gitlab.com/baslijnse/toppyt


208 BIBLIOGRAPHY

Lilis, Y. and A. Savidis (2019). ‘A Survey of Metaprogramming Languages’. In: ACM Comput.
Surv. 52.6. Place: New York, NY, USA Publisher: ACM. issn: 0360-0300. doi: 10.1145/3354584
(cit. on p. 44).

Löh, A. and R. Hinze (2006). ‘Open Data Types and Open Functions’. In: Proceedings of the
8th ACM SIGPLAN International Conference on Principles and Practice of Declarative
Programming. PPDP ’06. event-place: Venice, Italy. New York, NY, USA: ACM, pp. 133–144.
isbn: 1-59593-388-3. doi: 10.1145/1140335.1140352 (cit. on pp. 30, 59).

Lubbers, M., P. Koopman and R. Plasmeijer (2019). ‘Multitasking on Microcontrollers using
Task Oriented Programming’. In: 2019 42nd International Convention on Information and
Communication Technology, Electronics and Microelectronics (MIPRO). COnference on
COmposability, COmprehensibility and COrrectness of Working Software. Opatija, Croatia,
pp. 1587–1592. doi: 10.23919/MIPRO.2019.8756711 (cit. on pp. 13, 137, 176).

Lubbers, M. (2017). ‘Task Oriented Programming and the Internet of Things’. Master’s Thesis.
Nijmegen: Radboud University. 69 pp. (cit. on pp. 13, 137).

Lubbers, M. (2022a). ‘Deep Embedding with Class’. In: Trends in Functional Programming.
Ed. by W. Swierstra and N. Wu. Cham: Springer International Publishing, pp. 39–58. isbn:
978-3-031-21314-4 (cit. on p. 12).

Lubbers, M. (2022b). hTask. url: https://gitlab.com/mlubbers/hTask (visited on 07/10/2022)
(cit. on p. 12).

Lubbers, M. and P. Koopman (2022). ‘Green Computing for the Internet of Things’. In: Sus-
Trainable Summer School 2022, Rijeka, Croatia, July 4–5, 2022, Revised Selected Papers.
in-press. Cham: Springer International Publishing, p. 1 (cit. on pp. 14, 137).

Lubbers, M., P. Koopman and R. Plasmeijer (2018). ‘Task Oriented Programming and the Internet
of Things’. In: Proceedings of the 30th Symposium on the Implementation and Application
of Functional Programming Languages. International Symposium on Implementation and
Application of Functional Languages. Lowell, MA: ACM, p. 12. isbn: 978-1-4503-7143-8. doi:
10.1145/3310232.3310239 (cit. on pp. 13, 137).

Lubbers, M., P. Koopman and R. Plasmeijer (2021). ‘Interpreting Task Oriented Programs on
Tiny Computers’. In: Proceedings of the 31st Symposium on Implementation and Application
of Functional Languages. Symposium on Implementation and Application of Functional
Languages. Ed. by J. Stutterheim and W. N. Chin. IFL ’19. event-place: Singapore, Singapore.
New York, NY, USA: ACM. isbn: 978-1-4503-7562-7. doi: 10.1145/3412932.3412936 (cit. on
pp. 13, 137, 142).

Lubbers, M., P. Koopman and R. Plasmeijer (2023a). ‘First-Class Data Types in Shallow Embedded
Domain-Specific Languages using Metaprogramming’. In: Proceedings of the 34st Symposium
on Implementation and Application of Functional Languages. Symposium on Implementation
and Application of Functional Languages. IFL ’22. event-place: Copenhagen, Denmark. in-
press. New York, NY, USA: ACM. isbn: 978-1-4503-9831-2. doi: 10.1145/3587216.3587219
(cit. on p. 12).

Lubbers, M., P. Koopman and R. Plasmeijer (2023b). ‘Writing Internet of Things Applica-
tions with Task Oriented Programming’. In: Composability, Comprehensibility and Cor-
rectness of Working Software, 8th Summer School, Budapest, Hungary, June 17–21, 2019,
Revised Selected Papers. Lecture Notes in Computer Science 11950. in-press. preprint at:
https://arxiv.org/abs/2212.04193. Cham: Springer, p. 51 (cit. on pp. 13, 137, 176).

Lubbers, M., P. Koopman, A. Ramsingh, J. Singer and P. Trinder (2020). ‘Tiered versus Tierless
IoT Stacks: Comparing Smart Campus Software Architectures’. In: Proceedings of the 10th
International Conference on the Internet of Things. 10th International Conference on the
Internet of Things. IoT ’20. event-place: Malmö, Sweden. Malmö: ACM. isbn: 978-1-4503-
8758-3. doi: 10.1145/3410992.3411002 (cit. on pp. 14, 138, 144).

Lubbers, M., P. Koopman, A. Ramsingh, J. Singer and P. Trinder (2023c). ‘Could Tierless
Languages Reduce IoT Development Grief?’ In: ACM Trans. Internet Things 4.1. Place: New
York, NY, USA Publisher: ACM. issn: 2691-1914. doi: 10.1145/3572901 (cit. on pp. 14, 138).

Lynagh, I. (2003). Unrolling and Simplifying Expressions with Template Haskell. url: http:
//web.comlab.ox.ac.uk/oucl/work/ian.lynagh/papers/ (visited on 07/09/2021) (cit. on p. 57).

MacCormack, A., J. Rusnak and C. Y. Baldwin (2007). ‘The impact of component modularity
on design evolution: Evidence from the software industry’. In: Harvard Business School
Technology & Operations Mgt. Unit Research Paper 08.038. doi: 10.2139/ssrn.1071720 (cit. on
p. 146).

https://doi.org/10.1145/3354584
https://doi.org/10.1145/1140335.1140352
https://doi.org/10.23919/MIPRO.2019.8756711
https://gitlab.com/mlubbers/hTask
https://doi.org/10.1145/3310232.3310239
https://doi.org/10.1145/3412932.3412936
https://doi.org/10.1145/3587216.3587219
https://doi.org/10.1145/3410992.3411002
https://doi.org/10.1145/3572901
http://web.comlab.ox.ac.uk/oucl/work/ian.lynagh/papers/
http://web.comlab.ox.ac.uk/oucl/work/ian.lynagh/papers/
https://doi.org/10.2139/ssrn.1071720


BIBLIOGRAPHY 209

Mainland, G. (2007). ‘Why It’s Nice to Be Quoted: Quasiquoting for Haskell’. In: Proceedings of the
ACM SIGPLAN Workshop on Haskell Workshop. Haskell ’07. event-place: Freiburg, Germany.
New York, NY, USA: ACM, pp. 73–82. isbn: 978-1-59593-674-5. doi: 10.1145/1291201.1291211
(cit. on pp. 53, 58).

Materzok, M. (2022). ‘Generating Circuits with Generators’. In: Proc. ACM Program. Lang. 6
(ICFP). Place: New York, NY, USA Publisher: ACM. doi: 10.1145/3549821 (cit. on p. 57).

Mayer, P. and A. Bauer (2015). ‘An Empirical Analysis of the Utilization of Multiple Programming
Languages in Open Source Projects’. In: Proceedings of the 19th International Conference on
Evaluation and Assessment in Software Engineering. EASE ’15. Nanjing, China: ACM. isbn:
9781450333504. doi: 10.1145/2745802.2745805 (cit. on p. 167).

Mayer, P., M. Kirsch and M. A. Le (2017). ‘On multi-language software development, cross-
language links and accompanying tools: a survey of professional software developers’. In:
Journal of Software Engineering Research and Development 5.1, p. 1 (cit. on p. 147).

Mazzei, D., G. Baldi, G. Montelisciani and G. Fantoni (2018). ‘A full stack for quick prototyping
of IoT solutions’. In: Annals of Telecommunications 73.7-8, pp. 439–449 (cit. on p. 146).

McDonell, T. L., J. D. Meredith and G. Keller (2022). ‘Embedded Pattern Matching’. In:
Proceedings of the 15th ACM SIGPLAN International Haskell Symposium. Haskell 2022.
event-place: Ljubljana, Slovenia. New York, NY, USA: ACM, pp. 123–136. isbn: 978-1-4503-
9438-3. doi: 10.1145/3546189.3549917 (cit. on p. 56).

MicropythonTeam (2022). MicroPython Differences from CPython. url: https://docs.micropython.
org/en/latest/genrst/index.html (cit. on p. 163).

Mitchell, J. C. and G. D. Plotkin (1988). ‘Abstract Types Have Existential Type’. In: ACM Trans.
Program. Lang. Syst. 10.3. Place: New York, NY, USA Publisher: ACM, pp. 470–502. issn:
0164-0925. doi: 10.1145/44501.45065 (cit. on p. 22).

Motta, R. C., K. M. de Oliveira and G. H. Travassos (2018). ‘On Challenges in Engineering
IoT Software Systems’. In: Proceedings of the XXXII Brazilian Symposium on Software
Engineering. SBES ’18. Sao Carlos, Brazil: ACM, pp. 42–51. isbn: 9781450365031. doi:
10.1145/3266237.3266263 (cit. on p. 147).

Muccini, H. and M. T. Moghaddam (2018). ‘IoT Architectural Styles’. In: Software Architecture.
Ed. by C. E. Cuesta, D. Garlan and J. Pérez. Cham: Springer International Publishing,
pp. 68–85. isbn: 978-3-030-00761-4 (cit. on p. 144).

Najd, S., S. Lindley, J. Svenningsson and P. Wadler (2016). ‘Everything Old is New Again: Quoted
Domain-Specific Languages’. In: Proceedings of the 2016 ACM SIGPLAN Workshop on Partial
Evaluation and Program Manipulation. PEPM ’16. event-place: St. Petersburg, FL, USA. New
York, NY, USA: ACM, pp. 25–36. isbn: 978-1-4503-4097-7. doi: 10.1145/2847538.2847541
(cit. on p. 58).

Najd, S. and S. Peyton Jones (2017). ‘Trees that Grow’. In: Journal of Universal Computer
Science 23.1, pp. 42–62 (cit. on p. 30).

Nilsson, H., A. Courtney and J. Peterson (2002). ‘Functional Reactive Programming, Continued’.
In: Proceedings of the 2002 ACM SIGPLAN Workshop on Haskell. Haskell ’02. event-place:
Pittsburgh, Pennsylvania. New York, NY, USA: ACM, pp. 51–64. isbn: 1-58113-605-6. doi:
10.1145/581690.581695 (cit. on pp. 132, 148).

Nižetić, S., P. Šolić, D. L.-I. González-de-Artaza and L. Patrono (2020). ‘Internet of Things (IoT):
Opportunities, issues and challenges towards a smart and sustainable future’. In: Journal of
Cleaner Production 274, p. 122877. issn: 0959-6526. doi: https://doi.org/10.1016/j.jclepro.
2020.122877 (cit. on p. 115).

Nöcker, E. G. J. M. H., J. E. W. Smetsers, M. C. J. D. van Eekelen and M. J. Plasmeijer (1991).
‘Concurrent clean’. In: PARLE ’91 Parallel Architectures and Languages Europe. Ed. by
E. H. L. Aarts, J. van Leeuwen and M. Rem. Berlin, Heidelberg: Springer Berlin Heidelberg,
pp. 202–219. isbn: 978-3-540-47472-2 (cit. on p. 185).

Norell, U. and P. Jansson (2004). ‘Prototyping Generic Programming in Template Haskell’. In:
Mathematics of Program Construction. Ed. by D. Kozen. Berlin, Heidelberg: Springer Berlin
Heidelberg, pp. 314–333. isbn: 978-3-540-27764-4 (cit. on p. 57).

O’Donnell, J. T. (2004). ‘Embedding a Hardware Description Language in Template Haskell’. In:
Domain-Specific Program Generation: International Seminar, Dagstuhl Castle, Germany,
March 23-28, 2003. Revised Papers. Ed. by C. Lengauer, D. Batory, C. Consel and M.
Odersky. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 143–164. isbn: 978-3-540-25935-0.
doi: 10.1007/978-3-540-25935-0_9 (cit. on p. 57).

https://doi.org/10.1145/1291201.1291211
https://doi.org/10.1145/3549821
https://doi.org/10.1145/2745802.2745805
https://doi.org/10.1145/3546189.3549917
https://docs.micropython.org/en/latest/genrst/index.html
https://docs.micropython.org/en/latest/genrst/index.html
https://doi.org/10.1145/44501.45065
https://doi.org/10.1145/3266237.3266263
https://doi.org/10.1145/2847538.2847541
https://doi.org/10.1145/581690.581695
https://doi.org/https://doi.org/10.1016/j.jclepro.2020.122877
https://doi.org/https://doi.org/10.1016/j.jclepro.2020.122877
https://doi.org/10.1007/978-3-540-25935-0_9


210 BIBLIOGRAPHY

Odersky, M. and K. Läufer (1996). ‘Putting Type Annotations to Work’. In: Proceedings of the
23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. POPL
’96. event-place: St. Petersburg Beach, Florida, USA. New York, NY, USA: ACM, pp. 54–67.
isbn: 0-89791-769-3. doi: 10.1145/237721.237729 (cit. on pp. 29, 74).

Omar, C., I. Voysey, M. Hilton, J. Aldrich and M. A. Hammer (2017). ‘Hazelnut: A Bidirectionally
Typed Structure Editor Calculus’. In: Proceedings of the 44th ACM SIGPLAN Symposium
on Principles of Programming Languages. POPL ’17. event-place: Paris, France. New York,
NY, USA: ACM, pp. 86–99. isbn: 978-1-4503-4660-3. doi: 10.1145/3009837.3009900 (cit. on
p. 135).

Oortgiese, A., J. van Groningen, P. Achten and R. Plasmeijer (2017). ‘A Distributed Dynamic
Architecture for Task Oriented Programming’. In: Proceedings of the 29th Symposium on
Implementation and Application of Functional Programming Languages. Bristol, UK: ACM,
p. 7 (cit. on pp. 150, 152, 161).

Peyton Jones, S. (1987). The Implementation of Functional Programming Languages. Hertford-
shire: Prentice Hall. url: https://www.microsoft.com/en-us/research/publication/the-
implementation-of-functional-programming-languages/ (cit. on p. 54).

Peyton Jones, S., ed. (2003). Haskell 98 language and libraries: the revised report. Cambridge:
Cambridge University Press. 270 pp. isbn: 0-521 826144 (cit. on pp. 18, 20, 22, 41, 42).

Peyton Jones, S. and P. Wadler (1993). ‘Imperative Functional Programming’. In: Proceedings of
the 20th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
POPL ’93. event-place: Charleston, South Carolina, USA. New York, NY, USA: ACM, pp. 71–
84. isbn: 0-89791-560-7. doi: 10.1145/158511.158524 (cit. on pp. 152, 186).

Pfenning, F. and C. Elliott (1988). ‘Higher-Order Abstract Syntax’. In: Proceedings of the ACM
SIGPLAN 1988 Conference on Programming Language Design and Implementation. PLDI
’88. event-place: Atlanta, Georgia, USA. New York, NY, USA: ACM, pp. 199–208. isbn:
0-89791-269-1. doi: 10.1145/53990.54010 (cit. on pp. 42, 76).

Philips, L., C. de Roover, T. van Cutsem and W. de Meuter (2014). ‘Towards Tierless Web
Development without Tierless Languages’. In: Proceedings of the 2014 ACM International
Symposium on New Ideas, New Paradigms, and Reflections on Programming & Software.
Onward! 2014. Portland, Oregon, USA: ACM, pp. 69–81. isbn: 9781450332101. doi: 10.1145/
2661136.2661146 (cit. on pp. 149, 178).

Pickering, M., A. Löh and N. Wu (2020). ‘Staged Sums of Products’. In: Proceedings of the 13th
ACM SIGPLAN International Symposium on Haskell. Haskell 2020. event-place: Virtual
Event, USA. New York, NY, USA: ACM, pp. 122–135. isbn: 978-1-4503-8050-8. doi: 10.1145/
3406088.3409021 (cit. on p. 58).

Pickering, M., N. Wu and C. Kiss (2019). ‘Multi-Stage Programs in Context’. In: Proceedings of
the 12th ACM SIGPLAN International Symposium on Haskell. Haskell 2019. event-place:
Berlin, Germany. New York, NY, USA: ACM, pp. 71–84. isbn: 978-1-4503-6813-1. doi:
10.1145/3331545.3342597 (cit. on p. 58).

Piers, J. (2016). ‘Task-Oriented Programming for developing non-distributed interruptible em-
bedded systems’. Master’s Thesis. Nijmegen: Radboud University. 81 pp. (cit. on pp. 12,
133).

Plamauer, S. and M. Langer (2017). ‘Evaluation of micropython as application layer programming
language on cubesats’. In: ARCS 2017; 30th International Conference on Architecture of
Computing Systems. VDE. Vienna, Austria: VDE, pp. 1–9 (cit. on p. 163).

Plasmeijer, R. and P. Achten (2006). ‘A conference management system based on the iData
toolkit’. In: Symposium on Implementation and Application of Functional Languages. Springer,
pp. 108–125 (cit. on p. 133).

Plasmeijer, R., P. Achten and P. Koopman (2007a). ‘iTasks: Executable Specifications of Interactive
Work Flow Systems for the Web’. In: Proceedings of the 12th ACM SIGPLAN International
Conference on Functional Programming (ICFP 2007). Freiburg, Germany: ACM, pp. 141–152.
isbn: 978-1-59593-815-2 (cit. on p. 152).

Plasmeijer, R., P. Achten and P. Koopman (2007b). ‘iTasks: executable specifications of interactive
work flow systems for the web’. In: ACM SIGPLAN Notices 42.9, pp. 141–152 (cit. on p. 8).

Plasmeijer, R., M. van Eekelen and J. van Groningen (2021). Clean Language Report version 3.1.
Nijmegen: Institute for Computing and Information Sciences, p. 127. (Visited on 22/12/2021)
(cit. on pp. 73, 74, 185, 187).

https://doi.org/10.1145/237721.237729
https://doi.org/10.1145/3009837.3009900
https://www.microsoft.com/en-us/research/publication/the-implementation-of-functional-programming-languages/
https://www.microsoft.com/en-us/research/publication/the-implementation-of-functional-programming-languages/
https://doi.org/10.1145/158511.158524
https://doi.org/10.1145/53990.54010
https://doi.org/10.1145/2661136.2661146
https://doi.org/10.1145/2661136.2661146
https://doi.org/10.1145/3406088.3409021
https://doi.org/10.1145/3406088.3409021
https://doi.org/10.1145/3331545.3342597


BIBLIOGRAPHY 211

Plasmeijer, R. and P. Koopman (2016). ‘A Shallow Embedded Type Safe Extendable DSL for
the Arduino’. In: Trends in Functional Programming. Vol. 9547. Lecture Notes in Computer
Science. Cham: Springer International Publishing. isbn: 978-3-319-39110-6. doi: 10.1007/978-
3-319-39110-6. (Visited on 22/02/2017) (cit. on p. 137).

Plasmeijer, R., B. Lijnse, S. Michels, P. Achten and P. Koopman (2012). ‘Task-Oriented Program-
ming in a Pure Functional Language’. In: Proceedings of the 14th Symposium on Principles
and Practice of Declarative Programming. PPDP ’12. event-place: Leuven, Belgium. New
York, NY, USA: ACM, pp. 195–206. isbn: 978-1-4503-1522-7. doi: 10.1145/2370776.2370801
(cit. on pp. 6, 8, 134, 152, 178).

Polak, G. and J. Jarosz (2006). ‘Automatic Graphical User Interface Form Generation Using
Template Haskell’. In: Revised Selected Papers from the Seventh Symposium on Trends in
Functional Programming, TFP 2006, Nottingham, United Kingdom, 19-21 April 2006. Ed. by
H. Nilsson. Vol. 7. Trends in Functional Programming. event-place: Nottingham, UK. Bristol,
UK: Intellect, pp. 1–11. isbn: 978-1-84150-188-8 (cit. on p. 57).

Ravulavaru, A. (2018). Enterprise internet of things handbook : build end-to-end IoT solutions
using popular IoT platforms. eng. Birmingham, UK: Packt Publishing. isbn: 1-78883-378-3
(cit. on p. 142).

Reynolds, J. C. (1978). ‘User-Defined Types and Procedural Data Structures as Complementary
Approaches to Data Abstraction’. In: Programming Methodology: A Collection of Articles by
Members of IFIP WG2.3. Ed. by D. Gries. New York, NY: Springer New York, pp. 309–317.
isbn: 978-1-4612-6315-9. doi: 10.1007/978-1-4612-6315-9_22 (cit. on p. 18).

Rhiger, M. (2009). ‘Type-safe pattern combinators’. In: Journal of Functional Programming 19.2.
Publisher: Cambridge University Press, pp. 145–156. doi: 10.1017/S0956796808007089 (cit. on
p. 56).

Rodriguez, A., J. Jeuring, P. Jansson, A. Gerdes, O. Kiselyov and B. C. d. S. Oliveira (2008).
‘Comparing Libraries for Generic Programming in Haskell’. In: Proceedings of the First ACM
SIGPLAN Symposium on Haskell. Haskell ’08. Victoria, BC, Canada: ACM, pp. 111–122.
isbn: 9781605580647. doi: 10.1145/1411286.1411301 (cit. on p. 152).

Rosenberg, J. (1997). ‘Some misconceptions about lines of code’. In: Proceedings fourth interna-
tional software metrics symposium. IEEE. Albuquerque, NM, USA: IEEE, pp. 137–142. doi:
10.1109/METRIC.1997.637174 (cit. on pp. 143, 164).

Sanchez-Iborra, R. and A. F. Skarmeta (2020). ‘TinyML-Enabled Frugal Smart Objects: Challenges
and Opportunities’. In: IEEE Circuits and Systems Magazine 20.3, pp. 4–18. doi: 10.1109/
MCAS.2020.3005467 (cit. on p. 134).

Sant’Anna, F., N. Rodriguez, R. Ierusalimschy, O. Landsiedel and P. Tsigas (2013). ‘Safe system-
level concurrency on resource-constrained nodes’. In: Proceedings of the 11th ACM Conference
on Embedded Networked Sensor Systems. ACM, p. 11 (cit. on p. 132).

Sarkar, A. and M. Sheeran (2020). ‘Hailstorm: A Statically-Typed, Purely Functional Language
for IoT Applications’. In: Proceedings of the 22nd International Symposium on Principles
and Practice of Declarative Programming. PPDP ’20. event-place: Bologna, Italy. New York,
NY, USA: ACM. isbn: 978-1-4503-8821-4. doi: 10.1145/3414080.3414092 (cit. on pp. 133,
148).

Sawada, K. and T. Watanabe (2016). ‘Emfrp: a functional reactive programming language
for small-scale embedded systems’. In: Companion Proceedings of the 15th International
Conference on Modularity. ACM, pp. 36–44 (cit. on pp. 132, 148).

Seefried, S., M. Chakravarty and G. Keller (2004). ‘Optimising Embedded DSLs Using Template
Haskell’. In: Generative Programming and Component Engineering. Ed. by G. Karsai and E.
Visser. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 186–205. isbn: 978-3-540-30175-2
(cit. on p. 58).

Serrano, A. (2018). ‘Type Error Customization for Embedded Domain-Specific Languages’. PhD
Thesis. Utrecht University (cit. on p. 135).

Serrano, M., E. Gallesio and F. Loitsch (2006). ‘Hop: a language for programming the web 2.0’.
In: OOPSLA Companion. Portland, Oregon, USA: ACM, pp. 975–985 (cit. on pp. 142, 147,
172, 178).

Sethi, P. and S. R. Sarangi (2017). ‘Internet of things: architectures, protocols, and applications’.
In: Journal of Electrical and Computer Engineering 2017 (cit. on pp. 142, 144).

https://doi.org/10.1007/978-3-319-39110-6
https://doi.org/10.1007/978-3-319-39110-6
https://doi.org/10.1145/2370776.2370801
https://doi.org/10.1007/978-1-4612-6315-9_22
https://doi.org/10.1017/S0956796808007089
https://doi.org/10.1145/1411286.1411301
https://doi.org/10.1109/METRIC.1997.637174
https://doi.org/10.1109/MCAS.2020.3005467
https://doi.org/10.1109/MCAS.2020.3005467
https://doi.org/10.1145/3414080.3414092


212 BIBLIOGRAPHY

Sheard, T. (2001). ‘Accomplishments and Research Challenges in Meta-programming’. In: Se-
mantics, Applications, and Implementation of Program Generation. Ed. by W. Taha. Berlin,
Heidelberg: Springer Berlin Heidelberg, pp. 2–44. isbn: 978-3-540-44806-8 (cit. on pp. 6, 44).

Sheard, T. and S. Peyton Jones (2002). ‘Template Meta-Programming for Haskell’. In: Proceedings
of the 2002 ACM SIGPLAN Workshop on Haskell. Haskell ’02. event-place: Pittsburgh,
Pennsylvania. New York, NY, USA: ACM, pp. 1–16. isbn: 1-58113-605-6. doi: 10.1145/581690.
581691 (cit. on pp. 44, 57).

Sheetz, S. D., D. Henderson and L. Wallace (2009). ‘Understanding developer and manager
perceptions of function points and source lines of code’. In: Journal of Systems and Software
82.9, pp. 1540–1549 (cit. on p. 164).

Shi, W., J. Cao, Q. Zhang, Y. Li and L. Xu (2016). ‘Edge Computing: Vision and Challenges’. In:
IEEE Internet of Things Journal 3.5, pp. 637–646. doi: 10.1109/JIOT.2016.2579198 (cit. on
p. 134).

Shibanai, K. and T. Watanabe (2018). ‘Distributed Functional Reactive Programming on Actor-
Based Runtime’. In: Proceedings of the 8th ACM SIGPLAN International Workshop on
Programming Based on Actors, Agents, and Decentralized Control. AGERE 2018. event-place:
Boston, MA, USA. New York, NY, USA: ACM, pp. 13–22. isbn: 978-1-4503-6066-1. doi:
10.1145/3281366.3281370 (cit. on pp. 133, 148, 149, 151).

Shioda, M., H. Iwasaki and S. Sato (2014). ‘LibDSL: A Library for Developing Embedded
Domain Specific Languages in d via Template Metaprogramming’. In: Proceedings of the
2014 International Conference on Generative Programming: Concepts and Experiences.
GPCE 2014. event-place: Västerås, Sweden. New York, NY, USA: ACM, pp. 63–72. isbn:
978-1-4503-3161-6. doi: 10.1145/2658761.2658770 (cit. on p. 57).

Sivieri, A., L. Mottola and G. Cugola (2012). ‘Drop the phone and talk to the physical world:
Programming the internet of things with Erlang’. In: 2012 Third International Workshop on
Software Engineering for Sensor Network Applications (SESENA). IEEE, pp. 8–14 (cit. on
pp. 149, 151).

Software, T. (2023). VIIA (Vessel Information Integrating Application). url: https://www.top-
software.nl/VIIA.html (visited on 06/02/2023) (cit. on p. 8).

Staps, C., J. van Groningen and R. Plasmeijer (2019). ‘Lazy Interworking of Compiled and
Interpreted Code for Sandboxing and Distributed Systems’. In: Proceedings of the 31st
Symposium on Implementation and Application of Functional Languages. IFL ’19. event-
place: Singapore, Singapore. New York, NY, USA: ACM. isbn: 978-1-4503-7562-7. doi:
10.1145/3412932.3412941 (cit. on p. 8).

Steenvoorden, T. (2022). TopHat: Task-Oriented Programming with Style. Nijmegen: UB Nijmegen.
isbn: 978-94-6458-595-7 (cit. on p. 12).

Steenvoorden, T., N. Naus and M. Klinik (2019). ‘TopHat: A Formal Foundation for Task-
Oriented Programming’. In: Proceedings of the 21st International Symposium on Principles
and Practice of Declarative Programming. PPDP ’19. event-place: Porto, Portugal. New York,
NY, USA: ACM. isbn: 978-1-4503-7249-7. doi: 10.1145/3354166.3354182 (cit. on pp. 12, 135,
178).

Steiner, H.-C. (2009). ‘Firmata: Towards Making Microcontrollers Act Like Extensions of the
Computer.’ In: NIME, pp. 125–130 (cit. on p. 130).

Strack, I. (2015). Getting Started with Meteor.js JavaScript Framework. Packt Publishing Ltd
(cit. on p. 147).

Stutterheim, J., P. Achten and R. Plasmeijer (2018). ‘Maintaining Separation of Concerns Through
Task Oriented Software Development’. In: Trends in Functional Programming. Ed. by M.
Wang and S. Owens. Vol. 10788. Cham: Springer International Publishing, pp. 19–38. isbn:
978-3-319-89718-9. doi: 10.1007/978-3-319-89719-6. (Visited on 14/01/2019) (cit. on pp. 6, 7,
132, 148, 168).

Suchocki, R. and S. Kalvala (2015). ‘Microscheme: Functional programming for the Arduino’.
In: Proceedings of the 2014 Scheme and Functional Programming Workshop. Scheme and
Functional Programming Workshop. CS Techreport 718. Washington DC, USA: University of
Indiana, p. 9 (cit. on pp. 131, 174).

Sun, Y., U. Dhandhania and B. C. d. S. Oliveira (2022). ‘Compositional Embeddings of Domain-
Specific Languages’. In: Proc. ACM Program. Lang. 6 (OOPSLA2), p. 34. doi: 10.1145/3563294
(cit. on pp. 31, 32, 35).

https://doi.org/10.1145/581690.581691
https://doi.org/10.1145/581690.581691
https://doi.org/10.1109/JIOT.2016.2579198
https://doi.org/10.1145/3281366.3281370
https://doi.org/10.1145/2658761.2658770
https://www.top-software.nl/VIIA.html
https://www.top-software.nl/VIIA.html
https://doi.org/10.1145/3412932.3412941
https://doi.org/10.1145/3354166.3354182
https://doi.org/10.1007/978-3-319-89719-6
https://doi.org/10.1145/3563294


BIBLIOGRAPHY 213

Suzuki, K., K. Nagayama, K. Sawada and T. Watanabe (2017). ‘CFRP: A Functional Reactive
Programming Language for Small-Scale Embedded Systems’. en. In: Theory and Practice of
Computation. The University of The Philippines Cebu, Cebu City, The Philippines: WORLD
SCIENTIFIC, pp. 1–13. isbn: 978-981-323-406-2. doi: 10.1142/9789813234079_0001. (Visited
on 02/03/2022) (cit. on pp. 133, 148).

Svenningsson, J. and E. Axelsson (2013). ‘Combining Deep and Shallow Embedding for EDSL’.
In: Trends in Functional Programming. Ed. by H.-W. Loidl and R. Peña. Berlin, Heidelberg:
Springer Berlin Heidelberg, pp. 21–36. isbn: 978-3-642-40447-4. doi: 10.1007/978-3-642-
40447-4_2 (cit. on p. 31).

Swierstra, W. (2008). ‘Data types à la carte’. In: Journal of functional programming 18.4, pp. 423–
436. doi: 10.1017/S0956796808006758 (cit. on pp. 30, 59).

Tanganelli, G., C. Vallati and E. Mingozzi (2015). ‘CoAPthon: Easy development of CoAP-based
IoT applications with Python’. In: 2015 IEEE 2nd World Forum on Internet of Things
(WF-IoT). Milan, Italy: IEEE, pp. 63–68 (cit. on p. 173).

Terei, D., S. Marlow, S. Peyton Jones and D. Mazières (2012). ‘Safe Haskell’. In: Proceedings of
the 2012 Haskell Symposium. Haskell ’12. event-place: Copenhagen, Denmark. New York,
NY, USA: ACM, pp. 137–148. isbn: 978-1-4503-1574-6. doi: 10.1145/2364506.2364524 (cit. on
p. 45).

Torrano, C. and C. Segura (2005). ‘Strictness Analysis and let-to-case Transformation using Tem-
plate Haskell’. In: Revised Selected Papers from the Sixth Symposium on Trends in Functional
Programming, TFP 2005, Tallinn, Estonia, 23-24 September 2005. Ed. by M. C. J. D. v.
Eekelen. Vol. 6. Trends in Functional Programming. event-place: Talinn, Estonia. Bristol,
UK: Intellect, pp. 429–442. isbn: 978-1-84150-176-5 (cit. on p. 58).

Transforma Insights (2023). Current IoT Forecast Highlights. accessed-on: 2023-01-19. Transforma
Insights. url: https ://transformainsights .com/research/forecast/highlights (visited on
16/01/2023) (cit. on p. 1).

Tratt, L. (2008). ‘Domain Specific Language Implementation via Compile-Time Meta-Program-
ming’. In: ACM Trans. Program. Lang. Syst. 30.6. Place: New York, NY, USA Publisher:
ACM. issn: 0164-0925. doi: 10.1145/1391956.1391958 (cit. on p. 6).

Troyer de, C., J. Nicolay and W. Meuter de (2018). ‘Building IoT Systems Using Distributed First-
Class Reactive Programming’. In: 2018 IEEE International Conference on Cloud Computing
Technology and Science (CloudCom). Nicosia, Cyprus: IEEE, pp. 185–192 (cit. on pp. 132,
142, 147, 148).

Valliappan, N., R. Krook, A. Russo and K. Claessen (2020). ‘Towards Secure IoT Programming
in Haskell’. In: Proceedings of the 13th ACM SIGPLAN International Symposium on Haskell.
New York, NY, USA: ACM, pp. 136–150. isbn: 978-1-4503-8050-8 (cit. on pp. 133, 148, 151,
178).

van der Veen, E. (2020). ‘Mutable Collection Types in Shallow Embedded DSLs’. Master’s Thesis.
Nijmegen: Radboud University. 68 pp. (cit. on pp. 134, 137).

Verna, D. (2013). ‘Extensible Languages: Blurring the Distinction between DSL and GPL’. In:
Formal and Practical Aspects of Domain-Specific Languages: Recent Developments. Ed. by M.
Mernik. Hershey, PA, USA: IGI Global, pp. 1–31. isbn: 978-1-4666-2092-6. doi: 10.4018/978-
1-4666-2092-6.ch001 (cit. on p. 5).

Viera, M., F. Balestrieri and A. Pardo (2018). ‘A Staged Embedding of Attribute Grammars
in Haskell’. In: Proceedings of the 30th Symposium on Implementation and Application of
Functional Languages. IFL 2018. event-place: Lowell, MA, USA. New York, NY, USA: ACM,
pp. 95–106. isbn: 978-1-4503-7143-8. doi: 10.1145/3310232.3310235 (cit. on p. 57).

de Vries, E. and A. Löh (2014). ‘True Sums of Products’. In: Proceedings of the 10th ACM
SIGPLAN Workshop on Generic Programming. WGP ’14. event-place: Gothenburg, Sweden.
New York, NY, USA: ACM, pp. 83–94. isbn: 978-1-4503-3042-8. doi: 10.1145/2633628.2633634
(cit. on p. 58).

Wadler, P. (1998). The expression problem. E-mail. url: https://homepages.inf.ed.ac.uk/wadler/
papers/expression/expression.txt (visited on 24/02/2021) (cit. on p. 18).

Wand, M. (1980). ‘Continuation-based multiprocessing’. In: Proceedings of the 1980 ACM confer-
ence on LISP and functional programming - LFP ’80. the 1980 ACM conference. Stanford
University, California, United States: ACM Press, pp. 19–28. doi: 10.1145/800087.802786.
(Visited on 13/02/2019) (cit. on p. 131).

https://doi.org/10.1142/9789813234079_0001
https://doi.org/10.1007/978-3-642-40447-4_2
https://doi.org/10.1007/978-3-642-40447-4_2
https://doi.org/10.1017/S0956796808006758
https://doi.org/10.1145/2364506.2364524
https://transformainsights.com/research/forecast/highlights
https://doi.org/10.1145/1391956.1391958
https://doi.org/10.4018/978-1-4666-2092-6.ch001
https://doi.org/10.4018/978-1-4666-2092-6.ch001
https://doi.org/10.1145/3310232.3310235
https://doi.org/10.1145/2633628.2633634
https://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt
https://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt
https://doi.org/10.1145/800087.802786


214 BIBLIOGRAPHY

Weisenburger, P., J. Wirth and G. Salvaneschi (2020). ‘A survey of multitier programming’. In:
ACM Computing Surveys (CSUR) 53.4, pp. 1–35 (cit. on pp. 147, 150, 151, 177, 178).

Wijkhuizen, M. (2018). ‘Security analysis of the iTasks framework’. English. Bachelor’s Thesis.
Nijmegen: Radboud University. (Visited on 08/04/2017) (cit. on p. 151).

Wikipedia contributors (2022). Rhapsody (music) — Wikipedia, The Free Encyclopedia. In:
Wikipedia. accessed on: 2022-09-06. url: https://en.wikipedia.org/w/index.php?title=
Rhapsody_(music)%5C&oldid=1068385257 (visited on 06/09/2022) (cit. on p. 2).

Willis, J., N. Wu and M. Pickering (2020). ‘Staged Selective Parser Combinators’. In: Proc. ACM
Program. Lang. 4 (ICFP). Place: New York, NY, USA Publisher: ACM. doi: 10.1145/3409002
(cit. on p. 58).

Xie, N., M. Pickering, A. Löh, N. Wu, J. Yallop and M. Wang (2022). ‘Staging with Class: A
Specification for Typed Template Haskell’. In: Proc. ACM Program. Lang. 6 (POPL). Place:
New York, NY, USA Publisher: ACM. doi: 10.1145/3498723 (cit. on p. 58).

Yorgey, B. A., S. Weirich, J. Cretin, S. Peyton Jones, D. Vytiniotis and J. P. Magalhães (2012).
‘Giving Haskell a Promotion’. In: Proceedings of the 8th ACM SIGPLAN Workshop on Types
in Language Design and Implementation. TLDI ’12. event-place: Philadelphia, Pennsylvania,
USA. New York, NY, USA: ACM, pp. 53–66. isbn: 978-1-4503-1120-5. doi: 10.1145/2103786.
2103795 (cit. on pp. 23, 33).

Young, D., M. Grebe and A. Gill (2021). ‘On Adding Pattern Matching to Haskell-Based Deeply
Embedded Domain Specific Languages’. In: Practical Aspects of Declarative Languages:
23rd International Symposium, PADL 2021, Copenhagen, Denmark, January 18-19, 2021,
Proceedings. event-place: Copenhagen, Denmark. Berlin, Heidelberg: Springer-Verlag, pp. 20–
36. isbn: 978-3-030-67437-3. doi: 10.1007/978-3-030-67438-0_2 (cit. on p. 56).

Zdancewic, S., L. Zheng, N. Nystrom and A. C. Myers (2002). ‘Secure program partitioning’. In:
ACM Transactions on Computer Systems (TOCS) 20.3, pp. 283–328 (cit. on p. 151).

https://en.wikipedia.org/w/index.php?title=Rhapsody_(music)%5C&oldid=1068385257
https://en.wikipedia.org/w/index.php?title=Rhapsody_(music)%5C&oldid=1068385257
https://doi.org/10.1145/3409002
https://doi.org/10.1145/3498723
https://doi.org/10.1145/2103786.2103795
https://doi.org/10.1145/2103786.2103795
https://doi.org/10.1007/978-3-030-67438-0_2


215

Summary

The development of reliable software for the internet of things (IoT) is difficult
because IoT systems are dynamic, interactive, distributed, collaborative, multi-
tiered, and multitasking in nature. The complexity is increased further by semantic
friction that arises through different hardware and software characteristics between
tiers. Many computers that operate in IoT systems are edge devices that interact
with the environment using sensors and actuators. Edge devices are often powered
by low-cost microcontrollers designed for embedded applications. They have little
memory, unhurried processors, and are slow in communication but are also small
and energy efficient.

Task-oriented programming (TOP) can cope with the challenges of IoT program-
ming. In TOP, the main building blocks are tasks, an abstract representation of
work. During execution, the current value of the task is observable, and other tasks
can act upon it. Collaboration patterns can be modelled by combining and trans-
forming tasks into compound tasks. Programming edge devices benefits from TOP
as well, but running such a system within the limitations of resource-constrained
microcontrollers is not straightforward.

This dissertation demonstrates how to include edge devices in TOP systems
using domain-specific languages (DSLs). With these techniques, all tiers and their
interoperation of an IoT system are specified in a single high-level source, language,
paradigm, high abstraction level, and type system. First, I present advanced DSL
embedding techniques. Then mTask is shown, a TOP DSL for IoT edge devices,
embedded in iTask. Tasks are constructed and compiled at run time in order to
allow tasks to be tailored to the current work requirements. The task is then sent
to the device for interpretation. A device is programmed once with a lightweight
domain-specific OS to be used in an mTask system. This OS executes tasks in
an energy-efficient way and automates all communications and data sharing. All
aspects of the mTask system are shown: example applications, language design,
implementation details, integration with iTask, and green computing facilities such
as automatic sleeping.

Finally, tierless IoT programming is compared to traditional tiered programming.
In tierless programming frameworks, the size of the code and the number of required
programming languages is reduced significantly. By using a single paradigm and a
system-wide type system, tierless programming reduces problems such as semantic
friction; maintainability and robustness issues; and interoperation safety.



216



217

Samenvatting

Het ontwikkelen van betrouwbare software voor Internet of Things (IoT) systemen is
moeilijk omdat ze dynamisch, interactief, gedistribueerd, samenwerkend, meerlaags
en multitasking zijn. Ook draagt de semantische wrijving voorkomend uit de grote
verscheidenheid aan hard- en software karakteristieken tussen de lagen bij aan dit
probleem. Veel van deze computers zijn randcomputers die onderdeel zijn van het
IoT. Randcomputers bestaan vaak uit goedkope microcontrollers, ontworpen voor
geïntegreerde systemen, en ze interacteren met de buitenwereld door sensoren en
actuatoren. Enerzijds hebben ze weinig geheugen, langzame rekenkernen en trage
communicatie. Anderzijds zijn ze klein en hoogst energie-efficiënt.

Taakgeörienteerd programmeren (TOP) is geschikt om met de uitdagingen
van IoT systemen om te gaan. In TOP zijn abstracte representaties van werk, de
taken, de bouwstenen. Tijdens het uitvoeren van een taak kan de huidige waarde
geobserveerd worden en hierop kunnen andere taken reageren. Door taken te
combineren of te transformeren kunnen samenwerkingsvormen uitgedrukt worden.
Van deze beschrijving wordt een computersysteem gegenereerd dat gebruikers
begeleidt in het uitvoeren van het werk. Randcomputers hebben ook baat bij TOP,
al is niet eenvoudig om TOP-systemen erop in te zetten.

Deze dissertatie laat zien hoe gehele IoT-systemen georkestreerd kunnen worden
met TOP. Gebruik makend van techniek kunnen alle lagen van een IoT-systeem
en hun samenwerking uitgedrukt worden in één hoog abstractieniveau, program-
meertaal, paradigma en typesysteem. Allereerst laat ik enkele technieken zien
om ingebedde domein-specifieke talen te maken. Daarna beschrijf ik mTask, een
TOP-systeem voor randcomputers ingebed in iTask. Taken worden tijdens het uit-
voeren opgebouwd, waardoor ze afgestemd kunnen worden op de huidige werkeisen.
Vervolgens worden ze naar het apparaat gestuurd ter interpretatie. Na eenmalig uit-
gerust te worden met het domeinspecifieke besturingssysteem is een randcomputer
geschikt voor mTask. Dit stuurprogramma voert de ontvangen taken energiezuinig
uit en automatiseert tevens alle communicatie en dataverwerking. Alle aspecten
van het mTask-systeem worden beschreven: voorbeeldprogramma’s, taalontwerp,
implementatiedetails, integratie met iTask en de energiezuinige functionaliteit.

Het laagloos programmeren van IoT systemen wordt ook vergeleken met tra-
ditioneel gelaagd programmeren. Laagloos programmeren leidt tot minder code
en minder programmeertalen. Door het gebruik van één paradigma en een sys-
teembreed typesysteem verlaagt laagloos programmeren de semantische wrijving,
onderhouds- en robuustheidsproblematiek en moeizame onderlinge samenwerking.



218



219

Acknowledgements

While the research and writing carried out for this thesis was mostly done by me,
it could not have been done without the support of many others.

First of all I would like to thank Rinus Plasmeijer, Pieter Koopman, and Jan
Martin Jansen for the supervision, I learned a lot from you, not only regarding
academia but in many other aspects of life as well. The BEST people, Adrian
Ramsingh, Jeremy Singer, and Phil Trinder for the fruitful collaboration and
memorable trip to Glasgow. The entire 3COWS/SusTrainable group, for offering
a platform for the various summer schools I had the opportunity to teach; and
not to mention the countless meetings, dinners, and drinks we had. The Royal
Dutch Navy, in particular Teun de Groot and Ton van Heusden, for trusting me
by funding the project. The manuscript committee, Sven-Bodo Scholz, Gabrielle
Keller, Mary Sheeran, for reading this work carefully.

All colleagues and others that I had the privilege of sharing an office with,
meeting in conferences and summer schools, interact with in the department,
or work with in some other way: Anett Fekete, Arjan Oortgiese, Bas Lijnse,
Ellie Kimenai, Fok Bolderheij, Hans-Nikolai Vießmann, Ia Mgvdliashvili, Ingrid
Berenbroek, John van Groningen, Jurriën Stutterheim, László Domoslai, Marie-
José van Diem, Markus Klinik, Máté Cserép, Peter Achten, Ralf Hinze, Simone
Meeuwsen, Sjaak Smetsers, Steffen Michels, Sven-Bodo Scholz, Tim Steenvoorden,
and everyone else from department.

The many students that allowed and trusted me to (co) supervise them in their
theses: Arjen Nederveen, Colin de Roos, Dave Artz, Elina Antonova, Erin van der
Veen, Gijs Alberts, Haye Böhm, Matheus Amazonas Cabral de Andrade, Michel
de Boer, Sjoerd Crooijmans, Willem de Vos.

I give special thanks to my mentors: Jos Baack for getting me to graduate high
school, Francisco Torreira for sparking my love for academia, and Larry Caruthers
for giving me valuable practical experience.

All friends that supported me in real life or through pen throughout the process:
Pieter and Anouk; Chris and Maudy; Koen and Michelle; Alba; Александер;
Annerieke; Camil and Devika; Emma; George; Jules and Nadia; Tim; and Truman.

Mijn ouders bedank ik voor hun tomeloze liefde en vertrouwen. Mijn oma,
broers, schoonfamilie en alle andere familieleden die op wat voor manier dan ook
bijgedragen hebben. Als laatste wil ik diegenen bedanken die het dichtst bij mij
staan: Elvira, Rosalie en Liselotte. Bedankt voor jullie onmisbare en oneindige
geduld, ondersteuning en liefde wanneer dat nodig was.



220



221

Research data management

This thesis research has been carried out under the research data management
policy of the Institute for Computing and Information Science of the Radboud
University, the Netherlands.1

The following research datasets have been produced during this PhD research:

• Chapter 2: Deep embedding with class:

– Lubbers, M. (Radboud University) (2022): Literate Haskell/lhs2TEX
source code for the paper “Deep Embedding with Class”: TFP 2022.
Zenodo. 10.5281/zenodo.6650880

– Section 2.A: Reprise: reducing boilerplate:
∗ Lubbers, M. (Radboud University) (2022): Library and examples for

enhanced classy deep embedding. Zenodo. 10.5281/zenodo.7277498

• Chapter 3: First-class data types in shallow embedded domain-specific lan-
guages using metaprogramming:

– Lubbers, M. (Radboud University); & Koopman, P. (Radboud Univer-
sity) (2022): Code for the paper “First-Class Data Types in Shallow
Embedded Domain-Specific Languages using Metaprogramming”: IFL
2022. Zenodo. 10.5281/zenodo.6416747

• Episode II: Orchestrating the Internet of Things using Task-Oriented Pro-
gramming:

– Lubbers, M. (Radboud University); Koopman, P. (Radboud University);
& Plasmeijer, R. (Radboud University) (2020): Source code for the
mTask language. DANS. 10.17026/dans-xx4-8zs9

– Lubbers, M. (Radboud University); Koopman, P. (Radboud University);
& Plasmeijer, R. (Radboud University) (2020): Source code for the
multitasking mTask language integrated with the iTask system. DANS.
10.17026/dans-x2y-rtxx

– Lubbers, M. (Radboud University); Koopman, P. (Radboud Univer-
sity); & Plasmeijer, R. (Radboud University) (2020): Source code for
a simplified mTask language integrated with the iTask system. DANS.
10.17026/dans-xv6-fvxd

1https://www.ru.nl/icis/research-data-management/, accessed on: 20th January, 2020

https://doi.org/10.5281/zenodo.6650880
https://doi.org/10.5281/zenodo.7277498
https://doi.org/10.5281/zenodo.6416747
https://doi.org/10.17026/dans-xx4-8zs9
https://doi.org/10.17026/dans-x2y-rtxx
https://doi.org/10.17026/dans-xv6-fvxd
https://www.ru.nl/icis/research-data-management/


222

– Lubbers, M. (Radboud University); Koopman, P. (Radboud University);
& Plasmeijer, R. (Radboud University) (2021): Source code for the
interpreted mTask language. DANS. 10.17026/dans-zrn-2wv3

– Crooijmans, S. (Radboud University); Lubbers, M. (Radboud Uni-
versity); & Koopman, P. (Radboud University) (2023): Code for the
paper “Reducing the Power Consumption of IoT with Task-Oriented
Programming”: TFP 2022. Zenodo. 10.5281/zenodo.7634538

– Lubbers, M. (Radboud University); & Koopman, P. (Radboud Univer-
sity); Plasmeijer, R. (Radboud University) (2023): Code for the lecture
notes: “Writing Internet of Things Applications with Task Oriented
Programming”. Zenodo. 10.5281/zenodo.7643284

– Lubbers, M. (Radboud University); & Koopman, P. (Radboud Univer-
sity) (2023): Code for the lecture notes: “Green Computing for the
Internet of Things”. Zenodo. 10.5281/zenodo.7643316

• Episode III: Tiered versus Tierless Programming:
– Lubbers, M. (Radboud University); Koopman, P. (Radboud University);

Ramsingh, A. (University of Glasgow); Singer, J. (University of Glasgow);
& Trinder, P. (University of Glasgow) (2021): Source code, line counts
and memory statistics for CRS, CWS, CRTS and CWTS. Zenodo.
10.5281/zenodo.5040754

– Lubbers, M. (Radboud University); Koopman, P. (Radboud Univer-
sity); Ramsingh, A. (University of Glasgow); Singer, J. (University of
Glasgow); & Trinder, P. (University of Glasgow) (2021): Source code,
line counts and memory stats for PRS, PWS, PRT and PWT. Zenodo.
10.5281/zenodo.5081386

– Lubbers, M. (Radboud University); Koopman, P. (Radboud University);
Ramsingh, A. (University of Glasgow); Singer, J. (University of Glasgow);
& Trinder, P. (University of Glasgow) (2021): Source code of the PRSS
and CWSS applications. DANS. 10.17026/dans-zvf-4p9m

https://doi.org/10.17026/dans-zrn-2wv3
https://doi.org/10.5281/zenodo.7634538
https://doi.org/10.5281/zenodo.7643284
https://doi.org/10.5281/zenodo.7643316
https://doi.org/10.5281/zenodo.5040754
https://doi.org/10.5281/zenodo.5081386
https://doi.org/10.17026/dans-zvf-4p9m


223

Curriculum Vitæ

Mart Lubbers

1992 Born May 27th, Oldenzaal
2004–2011 VWO at the Twents Carmelcollege De Thij, Oldenzaal
2011–2015 Bachelor’s degree Artificial Intelligence at the Radboud Uni-

versity, Nijmegen
2013–2015 Research assistant at the Max Planck Institute for Psycholin-

guistics
2015–2017 Master’s degree (cum laude) Computing Science (Software

Science track) at the Radboud University, Nijmegen
2015–2017 Entrepreneur as IT Lubbers, Nijmegen

2017 Researcher at the Netherlands Defense Academy, Den Helder
in the faculty of Military Sciences (fMIL).

2018 Junior researcher at the Radboud University, Nijmegen in the
Institute for Computing and Information Sciences (iCIS).

2018–2023 PhD candidate at the Radboud University, Nijmegen in the
Institute for Computing and Information Sciences (iCIS).



224



Glossary 225

Glossary

I2C a simple serial communication pro-
tocol often used to connect sen-
sors to microcontrollers

IoT internet of things
1-wire a simple single wire communica-

tion protocol often used to con-
nect sensors to microcontrollers

3COWS the three “CO” (composability,
comprehensibility, correctness)
of working software

ABC Clean’s intermediate graph-
rewriting language

ADC analog-to-digital converter
ADT algebraic data type
API application programming interface
ARDSL Arduino DSL
Arduino a widely used framework for

programming microcontrollers
AST abstract syntax tree

C a general-purpose imperative program-
ming

C++ a general-purpose imperative pro-
gramming language based on
C

Clean a pure lazy functional program-
ming language based on graph
rewriting

CRS Clean Raspberry Pi system
CRTS Clean Raspberry Pi temperature

sensor
CWS Clean WEMOS system
CWTS Clean WEMOS temperature

sensor

DHT digital humidity and temperature
DSL domain-specific language
DVFS dynamic voltage and frequency

scaling

eCO2 CO2 concentration calculated
from TVOC measurements

eDSL embedded domain-specific lan-
guage

FP functional programming
FPGA field-programmable gate array
FRP functional reactive programming

GADT generalised ADT
GHC Glasgow Haskell compiler
GPIO general-purpose input/output
GPL general-purpose language
GRS graph rewriting system
GUI graphical user interface

Haskell a pure lazy functional pro-
gramming language designed
by a committe as a concept lan-
guage

HOAS high-order abstract syntax

I/O input/output
IDE integrated development environ-

ment
IR intermediate representation
ISR interrupt service routine
iTask a TOP eDSL for creating dis-

tributed multi-user collabora-
tive web applications



226 Glossary

JSON a open data interchange format
using human readable text

LED light-emitting diode

MicroPython a Python implemen-
tation tailored for microcon-
trollers

MQTT a publish-subscribe network pro-
tocol designed for resource con-
strained devices

mTask a TOP eDSL for edge devices in-
tegrated with the iTask system

OLED organic LED
OS operating system

P-FRP priority-based FRP
PIR passive infrared
PRS Python Raspberry Pi system
PRTS Python Raspberry Pi tempera-

ture sensor
PWS MicroPython WEMOS system
PWTS MicroPython WEMOS temper-

ature sensor
Python a multi-paradigm interpreted

programming language

QDSL quoted DSL

RAM random-access memory
RFID radio-frequency identification

RTOS real-time OS
RTS run-time system

SDS shared data source
SLOC source lines of code
SPI a synchronous serial communication

protocol often used to connect
sensors to microcontrollers

TCP transmission control protocol
TH Template Haskell
TOP task-oriented programming
TopHat a TOP language designed to

formally capture the essence of
TOP

TOSD task-oriented software develop-
ment

TTH typed Template Haskell
TVOC total volatile organic compounds

UI user interface
UoD universe of discourse
UoG University of Glasgow

VM virtual machine

WEMOS a popular ESP8266 microcon-
troller based prototyping plat-
form supporting Arduino.

Wi-Fi is a family of wireless network
protocols commonly used for
local area networking


	Titlepage
	Motto
	Contents
	Dedication
	Prelude
	Reading guide
	Internet of things
	Domain-specific languages
	Task-oriented programming
	Contributions

	I Étude — Domain-Specific Languages
	Deep embedding with class
	Introduction
	Deep embedding
	Shallow embedding
	Lifting the interpretations
	Existential data types
	Transformation semantics
	Generalised algebraic data types
	Related work
	Conclusion
	Reprise: reducing boilerplate
	Data types and definitions

	First-class data types in shallow embedded domain-specific languages using metaprogramming
	Introduction
	Tagless-final embedding
	Template metaprogramming
	Metaprogramming for generating DSL functions
	Pattern matching
	Related work
	Discussion


	II Orchestrating the Internet of Things using Task-Oriented Programming
	An introduction to edge device programming
	TOP for the IoT
	Hello world!
	Multitasking
	Conclusion and reading guide

	The mTask language
	Class-based shallow embedding
	Types
	Expressions
	Tasks and task combinators
	Interpretations
	Conclusion

	The integration of mTask and iTask
	Connecting edge devices
	Lifting mTask tasks
	Lowering iTask shared data sources
	Conclusion
	Home automation

	The implementation of mTask
	Compiler
	Compilation rules
	Run-time system
	C code generation for communication
	Conclusion

	Green computing with mTask
	Green IoT computing
	Rewrite interval
	Task scheduling in the mTask engine
	Interrupts
	Conclusion

	Finale
	Finale
	Related work
	Future work
	History of mTask


	III Tiered versus Tierless Programming
	Could tierless languages reduce IoT development grief?
	Introduction
	Background and related work
	Tierless languages
	Task-oriented and IoT programming in Clean
	UoG smart campus case study
	Is tierless IoT programming easier than tiered?
	Could tierless IoT programming be more reliable than tiered?
	Comparing tierless languages for resource-rich/constrained sensor nodes
	Conclusion


	Coda
	Reflections

	Appendix
	Clean for Haskell programmers
	Features
	Syntax

	Auxiliary mTask type classes
	Peripherals

	Bytecode instruction set

	Bibliography
	Summary
	Samenvatting
	Acknowledgements
	Research data management
	Curriculum Vitæ
	Glossary

