
Strongly-Typed Multi-View Stack-Based Computations
Pieter Koopman
Radboud University

Nijmegen, Netherlands
pieter@cs.ru.nl

Mart Lubbers
Radboud University

Nijmegen, Netherlands
mart@cs.ru.nl

Abstract
High-level language languages are often implemented by
transforming them to a stack-based intermediate language.
To ensure correctness of the implementation, it is desirable
to have a type-system for the stack-based code that ensures
that the required arguments are available on the stack. This
is quite challenging since the stack contains values of mixed
types. Moreover, a single stack is shared by all basic stack
instructions and the functions implemented with those in-
structions. Just like basic instructions, function calls are ex-
pected to replace their arguments by the result and to leave
the rest of the stack untouched.
This paper shows a Domain-Specific Language, DSL, for

stack-based computations embedded in strongly typed func-
tional programming language. We use heterogeneous lists
in the DSL to ensure that the top of the stack contains the
required elements for instructions and functions. Type cor-
rectness of the composition of instructions and functions is
ensured by requiring that the remainder of the stack is un-
changed. However, standard typing restrictions impose that
all function applications have identically typed arguments
and hence an identical stack layout. We present a simple so-
lution based on data types with universally quantified type
variables. The resulting DSL supports multiple views and
handles mutually recursive functions of arbitrary arities.

CCS Concepts: • Software and its engineering→ Func-
tional languages; Domain specific languages; Source
code generation.

Keywords: DSL, Stack-Based Computing, Strongly-Typed

ACM Reference Format:
Pieter Koopman and Mart Lubbers. 2023. Strongly-Typed Multi-
View Stack-Based Computations. In PPDP23: 25th International Sym-
posium on Principles and Practice of Declarative Programming. ACM,
New York, NY, USA, 13 pages. https://doi.org/XXXXXXX.XXXXXXX

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
PPDP23, October 22–23, 2023, Lisbon, Portugal
© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $XX.00
https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
Strong static type systems provide widely used support to
prevent runtime type errors. Such type systems are known
for all kinds of programming paradigms, ranging from im-
perative via object-oriented to functional programming. A
significant amount of work has been done to carry over the
advantages of statically typed programming languages to
embedded Domain-Specific Languages, DSLs, constructed in-
side these programming languages. This resulted in language
extensions like GADTs [38] and advanced uses of language
constructs like class-based embedding of DSLs [6].
Many implementations of programming languages use

stack-based computations somewhere in their implementa-
tion. A stack-based language expects instruction and func-
tions arguments to be on the stack, the result replaces those
arguments. This abstraction level is a convenient step be-
tween high-level language constructs and actual machine
code, but also a convenient representation in many inter-
preters. Famous examples in functional programming in-
clude the G-machine [13] used as a basis for the Haskell
implementation and the ABC-machine [17] used in the im-
plementation of Clean. More recently, we used a stack ma-
chine in the implementation of mTask which is our task-
oriented programming interpreter on small IoT devices [21].
Stack-based machines are by no means limited to functional
programming, e.g., the famous Java virtual machine is stack
based [1, 37].
When we embedded a stack-based DSL in a high level

language like Clean or Haskell, the stack typically becomes
a list of tagged values. The tagged values are required since
the stack contains values of various types, like integers and
booleans. This implies that each and every operation has to
check dynamically whether enough arguments of the cor-
rect type are available on the stack. This results in possible
runtime type errors and has a performance penalty. For ex-
ample, the addition instruction of a stack machine requires
two integers values on the stack and replaces them by their
sum.

:: Elem = I Int | B Bool

:: Stack :== [Elem]

add :: Stack � MaybeError String Stack

add stack = case stack of

[I x:I y:s] = pure [I (x+y):s]
stack = fail "wrong stack in add"

https://orcid.org/0000-0002-3688-0957
https://orcid.org/0000-0002-4015-4878
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

PPDP23, October 22–23, 2023, Lisbon, Portugal Pieter Koopman and Mart Lubbers

One can also use an array to represent a stack [36]. Lists can
grow and shrink by need, while arrays typically have a fixed
size. All required actions modify the initial part of the list
and are O(1).
In this paper, we show how a variant of heterogeneous

lists guarantees statically that the required arguments of
the proper type are available at runtime. This eliminates the
need for runtime checks and the corresponding dynamic
errors.
For interpretations of our stack-based DSL other than

evaluation, like pretty printing and code generation, it is
required that functions are part of the DSL. Using functions
of the host language to mimic recursive DSL functions pro-
duces infinite results. We use Higher-Order abstract syntax,
HOAS [31], to make strongly typed functions in our DSL. A
simplified example defines the increment function in some
basic computations of which the details are explained later.
The operator :. denotes sequencing of stack manipulations.

example1 =

(_inc � push 5 :. inc :. push 6 :. inc :. mul)
(push 1 :. add)

The type system of host languages like Clean and Haskell
requires that all applications of a function argument have
exactly the same type. More precisely, this is the monomor-
phism restriction for bound variables in Hindley-Milner type
systems [10, 26]. This causes a problem when we use hetero-
geneous lists to type the stack. The type system correctly
determines that the first application of inc requires a stack
with one integer as argument and result. However, the type
system correctly determines that there are two integers on
the stack in the second application. Hence, this example is
rejected by the compiler since the rest of the stack cannot
be a variable s as well as this s with an additional integer on
the stack.
Instantiating polymorphic type variables with polymor-

phic types is called impredicative polymorphism1 citeAQuick-
LookAtImpredicativity. We propose a light-weight solution
that is based on the universally quantified variables that
are allowed in algebraic data types [18]. This requires no
extensions of the Clean type system2, nor is it required to
specify types. We show how these data types allow function
definitions in an evaluator for stack computations, as well
as in a muli-view DSL based on type classes [6].

Section 2 introduces the type concepts in a shallowly em-
bedded evaluator for strongly-types stack programs. In Sec-
tion 3 we show that the same approach also applies to a
class-based DSL that has multiple views. In Section 4 we
briefly show how such type safe code can be generated. Fi-
nally, we discuss related word and draw conclusions.

1Haskell requires the ImpredicativeTypes extension to allow this and re-
quires explicit types. In our embedded DSL those types can become quite
elaborated and tedious to write. Moreover, Clean does not allow this.
2Haskell requires the ExistentialQuantification extension to allow this.

2 Strongly-Typed Stack Manipulations
To introduce our approach, we start with a single view DSL
for stack manipulations. This DSL is a shallowly embedded
interpreter. This interpreter is a function that takes the typed
stack as argument and produces the final stack as a result.

For self-contained expressions it would be enough to type
only the expressions manipulating the stack. These expres-
sions can still evaluate a traditional stack that contains values
of different types, e.g., a list of tagged values. The type of
the expression guarantees that the type matches will never
fail. By using a typed stack we can avoid all dynamic type
checks. This is more elegant and efficient. In this paper we
only used typed stacks.

2.1 The Stack
We use Clean as host language for the implementation of
our DSLs [32]. A very similar implementation can be made
in Haskell [22]. Some details on types, especially restrictions
on quantifier for type variables and class constraints, might
differ.
The implementation of a typed stack is very similar to

heterogeneous collections known as HLists [16]. The type
of heterogeneous lists reflects the type of the various ele-
ments of such a list. The static type system guarantees that
those elements are used type safely. A similar idea is used in
dependently-typed programming to distinguish empty lists
from non-empty lists, or to reason at the type level, i.e. at
compile time, about the length of lists [9, 14, 23, 29, 36].
The key difference between our stacks and this work is

that we are only interested in the top segment of the stack
and not the whole stack. However, it is important that the
remainder of the stack is unchanged. For instance, the addi-
tion replaces two numbers on top of the stack by their sum.
The type system ensures that these elements are available
and have the desired type. The rest of the stack is unaffected.
Hence, the operation does not put any other restrictions on
that part of the stack. In contrast to the HList package, we
use algebraic data types for to represent the stack instead of
classes.
The stack types are defined by two algebraic data types.

The type Bot denotes the empty stack, bottom. We use Push

to add an element of type a to a stack s.

:: Push a s = Push a s

:: Bot = Bot

For example, the operation f pushes a Boolean and two
integers on a stack.

f :: s � Push Int (Push Int (Push Bool s))
f s = Push 42 (Push 7 (Push False s))

This function works for any stack s. Apart from the three
new elements, the stack is unchanged.

Strongly-Typed Multi-View Stack-Based Computations PPDP23, October 22–23, 2023, Lisbon, Portugal

In the same style, we can make instructions to push and
pop an element from the stack and to swap the two elements
on top of the stack3.
push :: a s � Push a s

push a s = Push a s

pop :: (Push a s) � s

pop (Push a s) = s

swap :: (Push x (Push y s)) � Push y (Push x s)
swap (Push x (Push y s)) = Push y (Push x s)

2.2 Arithmetic Instructions
A limited set of instructions contains addition, subtraction,
multiplication, and equality.
add :: ((Push a (Push a s)) � Push a s) | + a

add = binop (+)

sub :: ((Push a (Push a s)) � Push a s) | - a

sub = binop (-)

mul :: ((Push a (Push a s)) � Push a s) | * a

mul = binop (*)

equ :: ((Push v (Push v s)) � Push Bool s) | == v

equ = binop (==)

binop :: (x y�z) (Push y (Push x s)) � Push z s

binop op (Push y (Push x s)) = Push (op y x) s

It is obvious how to add more of those instructions to our
DSL. Note that these stack instructions are overloaded by
design. By choosing appropriate types for our instructions,
we specify whether they are overloaded or work only for a
single type. For instance, when we replace the type variable
a by Int in the definition of add, it can only add integers.
Such restricted types are relevant when we want to generate
assembly code with our DSL.

2.3 Moving Stack Elements
Apart from the real computations, we typically need a set
of instructions to copy elements from the stack to the top.
Some typical instructions are:
copy0 :: (Push x s) � (Push x (Push x s))
copy0 (Push x s) = (Push x (Push x s))

copy1 :: (Push x (Push y s)) � Push y (Push x (Push y s))

3The type notation in Clean differs slightly from Haskell [32]. In Clean the
number of function arguments is reflected in the type. Information about
the number of arguments is used by the compiler for optimization. There
is no arrow separating the function arguments. An arrow in a function
type separates the arguments from the result. Finally, class constraints (like
| + a) are written at the end of the type. The Haskell equivalent of the first
type is add :: Num a => Push a (Push a stack) � Push a stack.

The additional parenthesis in the type of add indicate that it has zero ar-
guments. The function is used like any other curried function. The function
binop has two arguments.

copy1 (Push x (Push y s)) = Push y (Push x (Push y s))

copy2 :: (Push x (Push y (Push z s)))
� Push z (Push x (Push y (Push z s)))

copy2 (Push x (Push y (Push z s)))
= Push z (Push x (Push y (Push z s)))

We can generalize those instructions by using a typed counter
to indicate the depth in the stack. This would work similar
to H-lists.

Other instructions keep the top element and remove some
elements after that value. This is very useful to keep the result
of a function body and remove the function arguments that
are below this result on the stack.
trim1 :: (Push x (Push y s)) � Push x s

trim1 (Push x (Push y s)) = Push x s

trim2 :: (Push x (Push y (Push z s))) � Push y (Push x s)
trim2 (Push x (Push y (Push z s))) = Push y (Push x s)

Depending on the calling conventions, clearing of the stack
is done by the caller or the callee. The given instructions can
handle both conventions.
It is obvious how more instructions to manipulate the

items on the stack can be added by need. The type of the
manipulations closely follows the implementation. Hence,
the type system of the host language is able to derive those
types.

2.4 Composition of Stack Manipulations
We introduce the operator :. to denote sequential compo-
sition of stack instructions. The name of the operator re-
sembles the semicolon used in imperative languages. This
is just function composition, where the function on the left-
hand side is executed first. The listed priority and binding
direction limits the amount of parentheses needed in our
stack-based programs.
(:.) infixr 2 :: (a�b) (b�c) � a�c

(:.) s t = t o s

The example function f from Section 2.1 is now reformulated
as
f :: (s � Push Int (Push Int (Push Bool s)))
f = push False :. push 0 :. push 42

2.5 Conditional and Repetition
In the tradition of stack machines, the conditional statement
cond expects a Boolean value on top of the stack. The condi-
tional operator has two arguments. When the boolean value
on top of the stack is True the first argument is executed.
Otherwise, the else-part is executed.
cond :: (s�t) (s�t) � (Push Bool s)�s

cond then else = _(Push b s) � (if b then else) s

A conditional statement parametrized by three functions
is more common in high-level programming languages. The

PPDP23, October 22–23, 2023, Lisbon, Portugal Pieter Koopman and Mart Lubbers

first argument computes the condition and leaves the result
as a boolean on the stack. The other arguments are the then-
and else-part.
If :: (s�Push Bool s) (s�t) (s�t) � s�t

If pred then else = pred :. cond then else

In the same spirit, we define the repetition statement While.
The condition has to be evaluated here before each evaluation
of the body. This makes it convenient to specify it only once
as a parameter of While.
While :: (s�Push Bool s) (s�s) � s�s

While pred body = pred :. cond (body :. While pred body) id

An imperative version of the famous factorial function is
defined as follows using the tooling above. It expects the
argument as an integer on the stack and leaves its result,
also as an integer, on the stack.
facWhile :: ((Push Int s) � Push Int s)
facWhile =

push 1 :. / / result r
While (push 1 :. copy2 :. equ :. new) (/ / n <> 1

copy1 :. mul :. / / r = r * n
copy1 :. push 1 :. sub :. trim2 / / n = n - 1

) :.
trim1 / / clean up stack

A simple application applies this statement to a stack con-
taining the integer 5.
Start = facWhile (Push 5 Bot)

Execution yields the desired result: Push 120 Bot.

2.6 Function Calls
Using the lazy evaluation of the host language, we can also
use functions in the host language to define recursive func-
tions in the DSL, like a recursive version of the factorial.
fac :: ((Push Int s) � Push Int s)
fac =

If (copy0 :. push 0 :. equ) / / n == 0
(pop :. push 1) / / replace n by 1
(copy1 :. push 1 :. sub :. fac :. mul) / / else n * fac (n-1)

Note that polymorphism on the stack s is used here ac-
tively. In the recursive application of fac, there is one in-
teger more on the stack than in the initial function invo-
cation. So, if we execute fac (Push 5 Bot) the type of fac

is Push Int Bot�Push Int Bot. In the recursive call, this is
Push Int (Push Int Bot) � Push Int (Push Int Bot). Since fac

is a top level function, this works flawlessly even when we
do not specify the type. However, when such a function
is used as an argument, the type system requires that all
type variables have a single value. For the factorial function
and its first recursive call, the required argument stack type
is respectively Push Int s and Push Int (Push Int s). Hence,
the type checker will reject the use of such a function as
argument. We discuss how to circumvent this restriction in
Section 2.9 below.

Although this approach works correctly thanks to lazy
evaluation, it is not a very satisfactory solution. When we
would like to add another interpretation of our DSL, like
pretty printing or low-level code generation, all recursive
calls would be unfolded. It is basically old-fashioned macro
expansion. This results in infinite printed versions or an
unbounded amount of generated code.

2.7 First-Class Functions in the DSL
To tackle the problem of automatic function expansion of
host language functions in the DSL, we need to make func-
tion definitions part of our DSL. This allows us to expand
a function definition as well as to do other things with the
function definition such as printing the name of that func-
tion or generating code for a function call. To ensure type
safety, we use host language functions to define the needed
variables [8, 31]. The basic idea is to have a definition primi-
tive like def :: a (a�b) � b. The first argument is the body
of the function, and the second argument is the expression
where the function is applied. For evaluation, the definition
is just def body app = app body.
This is a bit too simple for recursive functions; the body

is outside the scope of the application. To solve this problem,
we type definitions as def :: (a�(a,b)) � b. We replace the
normal tuple by the infix version In, to make the syntax more
appealing,

:: In a b = In infixr 1 a b

def :: (a � (In a b)) � b

def f = let (a In b) = f a in b

As illustration we show a recursive factorial function with
an accumulator. The function acc expects two integers on
the stack, the factorial argument and the accumulator on
top of that. When the argument is zero, it replaces the argu-
ment by the accumulator using trim1. Otherwise, it multiplies
the accumulator by the argument and decrements the argu-
ment before the recursive call. The factorial function fac just
pushes the initial accumulator on the stack and calls acc. The
main expression pushes the argument of factorial on the
stack and calls fac.

facAcc :: Int � (s�Push Int s)
facAcc n =

def _acc =

If (copy1 :. push 0 :. equ)
trim1

(copy1 :. mul :. copy1 :. push 1 :. sub :. upd2 :. acc)
In def _fac = push 1 :. acc

In push n :. fac

Evaluating the expression facAcc 4 Bot produces the required
result Push 24 Bot.

Strongly-Typed Multi-View Stack-Based Computations PPDP23, October 22–23, 2023, Lisbon, Portugal

2.8 Mutual Recursive Functions
The facAcc example above shows that we can define nested
functions. However, for mutual recursion, this is not good
enough. The second function is outside the scope of the
first function. A solution is to define the mutual recursive
functions as tuple.
As illustration, we define the functions even and odd that

call each other to determine if the argument of even is a
positive even number.
evenDef :: Int � (s�Push Bool s)
evenDef n =

def _(even, odd) =

(If (copy0 :. push 0 :. equ)
(pop :. push True)
(push 1 :. sub :. odd)

,If (copy0 :. push 0 :. equ)
(pop :. push False)
(push 1 :. sub :. even)

)
In push n :. even

The additional strictness induced by the pattern match on
the tuple (even,odd) cause a cycle in spine error; the value of
the body tuple is needed before it can be calculated. We com-
pensate for this additional strictness by introducing an extra
tuple calculation in the situation that a tuple of functions is
defined by def. To distinguish this situation, we make def a
class with two (overlapping) instances.
class def a :: (a � (In a b)) � b

instance def a where def f = let (a In b) = f a in b

instance def (x,y)
where def f = let (a In b) = f (fst a, snd a) in b

With this new def the expression evenDef 7 Bot correctly pro-
duces the desired result Push False Bot.
Whenever we would need three or more mutual recur-

sive functions, the corresponding instances of def should be
provided.

2.9 Calling Functions in Different Contexts
Although the examples above work correctly, there is in
general a serious problem. The type system of the host lan-
guage derives the correct type for the functions in our DSL,
but requires that this type is identical in all applications of
the DSL function. The Hindley-Milner rules require that a
function argument can only have a monomorphic type. This
unfortunately implies that a DSL program is rejected as soon
as a DSL function created with def is applied in situations
with a different stack layout. Nevertheless, we need such a
def in all views of the DSL apart from evaluation to ensure
termination of that view for recursive functions.
A very simple example is a DSL program that defines a

function p1 that pushes the integers one on the stack. This
function is applied twice before we add those integers.
sumDef :: (s � Push Int s)

sumDef = def _p1 = push 1 In p1 :. p1 :. add

The type system correctly determines that the first appli-
cation of p1 has type s � Push Int s while the second one
has type s � Push Int (Push Int s)). These types cannot be
coerced. Hence, the program is rejected. This is a well known
problem in Hindley-Milner type systems for functional pro-
gramming languages; polymorphic types are themselves not
first class. The polymorphic type variables inside function
arguments are monomorphic inside a function application.
There are at least two solutions for this polymorphism

problem. The first solution is to pack the function in an alge-
braic data type that has a universal quantified type variable
for the variable that needs several instances. Each time we
take the function from this data type, we get a fresh vari-
able for this universal quantified type variable. These fresh
variables solve our polymorphism problem.

The second solution for the polymorphism problem is a
special language extension that deviates from the normal
Hindley-Milner types. Since version 9.2.1, GHC offers an
alternative for these constructor-call pairs in the form of the
ImpredicativeTypes extension, allowing for impredicative
polymorphism. It requires that the user of the DSL fully spec-
ifies the types of the function, including a forall quantifier.
See the paper of Serrano et al. for details [33]. The sumDef

example from above becomes:

sumHaskell :: s � Push Int s

sumHaskell

= def ((_f�(push 1, f .: f .: add))
:: (forall s1.s1 � Push Int s1) �

(forall s0.s0 � Push Int s0, s2 � Push Int s2)
)

Le Botlan and Didier give an overview of other extensions
of type systems to solve this problem [5].

The first solution with data types has the advantage that
the compiler can derive all types whenwe indicate the proper
data types and unpack functions. This implies that the user
can indicate types as usual, but is not forced to write the
somewhat intimidating types. Clean has no extension to
allow impredicative polymorphism, this makes the choice
obvious as long as we want to use that host language for
our DSL. We will discuss the solution based on special data
types in detail.

The idea of the solution is to give every occurrence of the
DSL-function call its own type. This is done by an explicit
quantifier for the rest of the stack. We define algebraic data
types to hold those functions. These types are necessary to
allow the explicit quantification. We need a type for each
number of arguments and results on the stack. The first digit
in the name indicates the number of function arguments, the
last digit the number of results on the stack.

:: Fun11 a b = Fun11 (∀ s:(Push a s)�Push b s)
:: Fun10 a = Fun10 (∀ s:(Push a s)�s)
:: Fun01 b = Fun01 (∀ s:s�Push b s)

PPDP23, October 22–23, 2023, Lisbon, Portugal Pieter Koopman and Mart Lubbers

:: Fun21 a b c = Fun21 (∀ s:(Push a (Push b s))�Push c s)

These types are sufficient for all our examples. In the same
style, we can make instances with other numbers of argu-
ments or results.

For all applications of the function, we extract it from the
data type. The various call functions just do that. Since we
extract a fresh function for each application, every instance
s of the rest of the stack is fresh.
call11 :: (Fun11 a b) � (Push a s)�Push b s

call11 (Fun11 f) = f

call10 :: (Fun10 a) � (Push a s)�s

call10 (Fun10 f) = f

call01 :: (Fun01 b) � s�Push b s

call01 (Fun01 f) = f

call21 :: (Fun21 a b c) � (Push a (Push b s))�Push c s

call21 (Fun21 f) = f

The packing of functions in the data types Fun𝑛𝑚 and the
unpacking by call𝑛𝑚 is designed such that the required ele-
ments on the stack are checked. The rest of the stack can be
anything, but is unaffected by applying the function.
With this tooling, we can write a well typed version of

our sumDef example from above. The function p1 expects no
arguments on the stack and leaves just one element on the
stack. Hence, we use Fun01.
sumDef :: (s � Push Int s)
sumDef =

def _p1 = Fun01 (push 1)
In call01 p1 :. call01 p1 :. add

The normal recursive factorial function in the DSL suf-
fers from the same problem as in recursive calls, the stack
contains an extra element. This is spotted by the compiler
and hence the program is rejected. The Fun11 type solves the
problem. It indicates that the call expects one element on the
stack and yields one result. All other items on the stack are
ignored for this function call.
facDef :: ((Push Int s)�Push Int s)
facDef =

def _fac =

Fun11 (If (copy0 :. push 0 :. equ)
(pop :. push 1)
(copy0 :. push 1 :. sub :. call11 fac :. mul)) In

call11 fac

This function can be applied to any stack containing one
integer at the top. For example:
Start = facDef (Push 5 Bot)

The execution of this program produces the desired stack
Push 120 Bot.
Using the constructors to indicate the number of argu-

ments and results is always allowed. However, it is only
required when the defined function is used in contexts with

a different stack layout. The type system determines the
types of these stack elements in both situations. When the
user forgets to use such a constructor and the associated call
or uses the wrong pair, the type system of the host language
will reject the embedded DSL program.

In contrast to the definition of fac in Section 2.6, this defini-
tion is completely part of the DSL and hence we can control
both the function definition and the function call.

3 A Multi-View Strongly-Typed Stack DSL
The previous section shows that it is possible to construct
type-safe DSLs to execute stack-based computations. The
type system ensures that those manipulations cannot fail,
the required elements are always available on the stack.
In many situations we want to do more with a DSL pro-

gram than just executing it. For instance, it might be very
convenient to print a DSL program. Especially when such a
term is generated such a print option is convenient. Another
required use of a DSL-program might be the generation of
code for some particular hardware platform. Typically, we
would like to produce a file containing the generated code.
Hence, this it is just a special form of printing.

Making specific DSLs for those various purposes is an un-
satisfactory solution. It is much better to have a single DSL
that can serve all existing and future uses. The holy grail in
DSL definitions is to make strongly-typed DSL with multiple
interpretations, views. A well-known approach for deep em-
bedding uses Generalized Algebraic data types, GADTs [38].
This is a variant of algebraic data types where one can spec-
ify the type of constructor by a function type. These function
types are sufficient to specify the intended stack manipula-
tions. The various views of the DSL are functions that take
this GADT as argument.
An alternative is class-based shallow embedding, also

known as tagless final [6]. Here, the idea it to replace each
function from the evaluation DSL, as introduced in the pre-
vious section, by a type (constructor) class. Each instance of
these type classes provides its own view of the DSL. We port
our function-based approach to a class-based multi-view ver-
sion since it is much easier to build such a DSL and its views
incrementally4.

3.1 DSL definition
The DSL consists of a set of type constructor classes. As
language designers we have to choose how many functions
we put in one class. For fine grain control we can give each
language element its own class. To reduce the number of
classes needed as much as possible we can collect all class
members in a single class. We have chosen an intermediate
design that uses separate classes for arithmetic operations,
stack manipulations and control structures. For convenience,

4The code is available at https://gitlab.science.ru.nl/mlubbers/typed-stack.

https://gitlab.science.ru.nl/mlubbers/typed-stack

Strongly-Typed Multi-View Stack-Based Computations PPDP23, October 22–23, 2023, Lisbon, Portugal

we define the type class stack that is the union of all class
members in those classes.

class stack v | arith, plumbing, control v

The multi-view function definition deserve its own class.

3.1.1 Arithmetic Instructions. Arithmetic stack opera-
tions are treated first. We reuse the types Push and Bot from
Section 2.1 to type the segment of the stack that is needed
for the operations. Apart from the new type variable v these
types are similar to the corresponding instructions in the
previous DSL. There are two design decisions made in these
types. Firstly, we only lift the stack manipulations to the
view. The argument of push remains a plain value in the host
language, rather than becoming a member of v a. Lifting
the argument inside the instruction to the required view
eliminates the need for explicitly lifting the values pushed
to v a. Secondly, we create a view on the changed stack
rather than a view on the initial and final stack. A version
with a view on the given and produced stack is typed as
push :: a � (v s) � v (Push a s). Both versions work fine,
but our choice yields more concise code.

class arith v where

push :: a � v (s�Push a s) | toString a

pop :: v ((Push a s) � s)
add :: v ((Push a (Push a s)) � Push a s) | + a

sub :: v ((Push a (Push a s)) � Push a s) | - a

mul :: v ((Push a (Push a s)) � Push a s) | * a

equ :: v ((Push a (Push a s)) � Push Bool s) | == a

neg :: v ((Push a s) � Push a s) | ∼ a

The type a pushed on the stack and manipulated in the
other operations is no type parameter of the class. Hence,
we add the required class constraints, toString a and + a,
to the member functions. Apart from the add type class
variable v, these types are identical to the corresponding
stack manipulation in Section 2.1.
The class plumbing defines operations to move and copy

stack elements. Like above, the types tell exactly what these
operations do. The type system ensures that they exactly
perform the desired action.

class plumbing v where

pop :: (v ((Push a s) � s))
copy0 :: (v ((Push x s) � Push x (Push x s)))
copy1 :: (v ((Push x (Push y s)) �

Push y (Push x (Push y s))))
copy2 :: (v ((Push x (Push y (Push z s))) �

Push z (Push x (Push y (Push z s)))))
swap :: (v (Push x (Push y stack)) �

Push y (Push x stack))
trim1 :: (v ((Push x (Push y s)) � Push x s))
trim2 :: (v ((Push x (Push y (Push z s))) �

Push y (Push x s)))
no_op :: (v (s�s))

3.1.2 Control Structures. The class control contains the
control structures of our language and the sequencing oper-
ator for sequencing. They are the direct lifting of the control
structures from the evaluator to the multi-view class. In con-
trast to the previous class, the members of this class have
multiple arguments with a view v. Each of the stack manipu-
lation functions provided here as argument is lifted to a view
on the stack operations.
class control v where

If :: (v (s�Push Bool u)) (v (u�t)) (v (u�t)) �
v (s�t)

cond :: (v (s�t)) (v (s�t)) � v ((Push Bool s)�t)
While :: (v (s�Push Bool s)) (v (s�s)) � v (s�s)
(:.) infixr 1 :: (v (a�b)) (v (b�c)) � v (a�c)

3.1.3 Function Calls. This uses the data type In from
Section 2. We extend the function definition with a type
variable v to allow different views on the function definition.
class def v a :: (a � (In a (v b))) � v b

To allow function calls in different stack contexts we reuse
the approach with a data type to allow universal quantifica-
tion over the rest of the stack s. The only difference between
the data types here and in Section 2.9 is the added type
variable v to denote the view.
:: Fun11 v a b = Fun11 (∀ s:v ((Push a s)�Push b s))
:: Fun10 v a = Fun10 (∀ s:v ((Push a s)�s))
:: Fun01 v b = Fun01 (∀ s:v (s�Push b s))
:: Fun21 v a b c = Fun21 (∀ s:v ((Push a (Push b s))�

Push c s))

call11 :: (Fun11 v a b) � v ((Push a s)�Push b s)
call11 (Fun11 f) = f

We have skipped the other call functions for brevity. They
follow exactly the same pattern as call11.

3.2 Evaluation View
To make an instance of the classes of our DSL we need a
type. The newtype E is defined for the evaluation view.
:: E a =: E a

deE :: (E a) � a

deE (E a) = a

This type is just a wrapper for its argument. The evalua-
tion view differs only from the plain evaluation defined in
Section 2 by the adding and removing of the constructor
E. There are at least two implementation strategies for this.
Tailor made monad instances can handle the packing and
unpacking of the stack, or we can explicitly handle these
constructors in our code. The monadic approach does not
yield more concise code for the evaluation view. Hence, we
explicitly add and remove the E constructors. The print view
defined below in Section 3.4 does use a monadic approach,
since there is a more complex state passed around.

PPDP23, October 22–23, 2023, Lisbon, Portugal Pieter Koopman and Mart Lubbers

3.2.1 Arithmetic Instructions. The evaluation of the
arithmetic instructions is basically equal to the DSL in Sec-
tion 2. The use of an updated binop function hides the con-
structor E for many class members.
instance arith E where

push a = E _s � Push a s

pop = E _(Push a s) � s

add = binop (+)
sub = binop (-)
mul = binop (*)
equ = binop (==)
neg = E _(Push x s) � Push (∼ x) s

binop :: (a b�c) � E ((Push b (Push a s)) � Push c s)
binop f = E _(Push b (Push a s)) � Push (f a b) s

Like above, we assume that the first argument is pushed first
on the stack and, hence becomes the deepest element for
operations.

3.3 Evaluation of Plumbing Operations
Like earlier, the operations to copy and move elements on
the stack are completely specified by their type.
instance plumbing E where

copy0 = E _(Push x s)�Push x (Push x s)
copy1 = E _(Push x (Push y s))�Push y (Push x (Push y s))
copy2 = E _(Push x (Push y (Push z s))�

Push z (Push x (Push y (Push z s)))
trim1 = E _(Push x (Push y s))�Push x s

trim2 = E _(Push x (Push y (Push z s)))�Push y (Push x s)
no_op = E id

3.3.1 Evaluating Control Structures. The control struc-
tures also follow the patterns from Section 2.
instance control E where

If c t e = c :. cond t e

cond t e = E _(Push b s) � deE (if b t e) s

While c b = If c (b :. While c b) no_op

(:.) f g = E (deE g o deE f)

Due to lazy evaluation, the recursive expansion for While

works fine in this view. In the printing view, such an imple-
mentation would lead to infinite recursion. See Section 3.4.2
for our print view of the control structures. Hence, While
must be part of the DSL and cannot be defined as the given
macro expansion in the host language. Function definitions
must be part of the DSL for exactly the same reason.

3.3.2 Evaluating Function Definitions and Calls. For
the function definitions, we use the same cyclic definition as
above.
instance def E a where def f = let (a In b) = f a in b

instance def E (x,y) | def E x & def E y

where def f = let (a In b) = f (fst a, snd a) in b

Like above we add another computation for the instance for
tuple definitions which is needed to define mutual recursive
functions.

3.3.3 Evaluation. The actual evaluator just takes an E

view of the DSL as argument and applies that function to
the empty stack, Bot.
eval :: (E (Bot�a)) � a

eval (E f) = f Bot

All examples from above can be directly ported to this multi-
view DSL. When we skip the type definitions, the host lan-
guage compiler derives the correct types. When we specify
the types manually, they should include the class variable
v and the required class constraints. The factorial function
becomes:
facDef :: Int � (v (s�Push Int s))

| stack v & def v (Fun11 v Int Int)
facDef n =

def _fac =

Fun11 (If (copy0 :. push 0 :. equ)
(pop :. push 1)
(copy0 :. push 1 :. sub :. call11 fac :. mul))

In push n :. call11 fac

Elements from the Hofstader female sequences are computed
by the mutual recursive functions male and female [11, 40].
Since the calls to these mutually recursive functions are
nested, the implementation of these functions in our DSL
will be called with various stack layouts. The data type Fun11

ensures that the type system considers only the top most
element as argument and result for each call.

𝐹 (0) = 1
𝐹 (𝑛) = 𝑛 −𝑀 (𝐹 (𝑛 − 1)), 𝑛 > 0
𝑀 (0) = 0
𝑀 (𝑛) = 𝑛 − 𝐹 (𝑀 (𝑛 − 1)), 𝑛 > 0

Element n of the female sequence is computed in our DSL
by hofstadter n. This sequence is known as A005378 in the
online encyclopedia of integer sequences [34].
hofstadter :: Int � (v (s�Push Int s))

| stack v & def v (Fun11 v Int Int,Fun11 v Int Int)
hofstadter n =

def _(male,female) =

(Fun11 (If (copy0 :. push 0 :. equ) (pop :. push 0)
(copy0 :. push 1 :. sub :. call11 male :.
call11 female :. sub))

,Fun11 (If (copy0 :. push 0 :. equ)
(pop :. push 1)
(copy0 :. push 1 :. sub :. call11 female :.
call11 male :. sub)))

In push n :. call11 female

We use this as Start = eval (hofstadter 6). It yields the de-
sired result Push 4 Bot.

These functions provide an additional example of how our
approach leverages data types with universally quantified
type variables. By using data types for the types of functions
in the DSL, the notation becomes more concise.

Strongly-Typed Multi-View Stack-Based Computations PPDP23, October 22–23, 2023, Lisbon, Portugal

3.4 Print View
Printing the DSL is the process of transforming the terms in
the language to a string representation. The printing state PS

contains an integer, cnt, for generating fresh variables, fun
representing the current function, and a difference list of
strings [12]. In Clean, strings are unboxed arrays of char-
acters. Difference lists are used instead of single strings to
have constant time concatenation without having to allocate
intermediate strings.
:: PS = {cnt :: Int, fun :: Int, out :: [String]�[String]}

The printing itself occurs in the PrintMonad data type, a type
synonym for a state monad of PS [39]. The pretty printing
view, Print, is a data type wrapping a PrintMonad. The type
of the term is not used in the data type, it is a phantom
type [7, 19].
:: PrintMonad a :== State PS a

:: Print a = P (PrintMonad ())

To simplify the implementation of the type classes, three
helper functions are introduced. The function print prints the
given string as a Print type, printM has the same functionality
but then as a PrintMonad type. Finally, >>! sequences two print
operations using the monadic sequence operator from the
state monad.
print :: (a � Print b) | toString a

print = P o printM

printM :: a � PrintMonad () | toString a

printM a = modify _s�{s & out = _l�s.out [toString a:l]}

(>>!) infixl 1 :: (Print a) (Print b) � Print b

(>>!) (P a) (P b) = P (a >> | b)

3.4.1 Arithmetic Instructions andPlumbing. With this
tooling, the instances of ordinary instructions become very
simple. We list only the instance of the arithmetic instruc-
tions for brevity, the plumbing instructions just differ in
name.
instance arith Print where

push a = print "push " >>! print a

pop = print "pop"
add = print "add"
sub = print "sub"
mul = print "mul"
equ = print "equ"
neg = print "neg"

3.4.2 Control Structures. The instances for the control
structures are similar. Printing visits each branch of the DSL
construct once and lards the output with the proper key-
words and brackets.
instance control Print where

If c t e = print "If (" >>! c >>! print ") ("
>>! t >>! print ") (" >>! e >>! print ")"

cond t e = print "cond (" >>! t >>! print ") ("

>>! e >>! print ")"
(:.) f g = f >>! print " :. " >>! g >>! print ""
While c b = print "While (" >>! c >>! print ") ("

>>! b >>! print ")"

3.4.3 Function Definition. The function definition imple-
mentation for the printer differs greatly from the evaluator.
Using the same cyclic definition as the evaluator would result
in an infinitely large printer output in the case of recursive
functions. In order to circumvent this, we provide a custom
argument to the def function that does not contain the actual
function, but a printer that prints the name of the function
when called. In this way, we break the cycle and control both
the calls to the function and the definition of the function.

In order to do so, some helper functions and type classes
are needed. The nfresh helper function generates a fresh
number for function names, it reserves n names. Reserving
multiple names is needed when we define multiple functions
at once to allow mutual recursion. The printing machinery
can handle any number of simultaneous definitions. The cnt

field in the print state is used to count the number of fresh
names generated.
nfresh :: Int � PrintMonad Int

nfresh n =

getState >>= _s�put {s & cnt = s.cnt + n} >> | pure s.cnt

The toPrint type class allows us to convert the type of
the function, the a in the def class, to a printer. The toPrint

function is used when we have an a and want to print it,
i.e. the function definition. The fromPrint function is used
when we have the printer but want to produce a value of
the type, i.e. in the function application. Finally, there is the
componentSize function that yields the number of functions
in the component. It is not always trivial to get a value of
the argument type since high-order abstract syntax is used,
instead of a value, this function therefore only requires a
witness of that type in the form of a Proxy value. Usually
this number is one, but in the case of mutual recursion, it is
higher.
:: Proxy a = Proxy

class toPrint a where

toPrint :: a � Print a

fromPrint :: (Print a) � a

componentSize :: (Proxy a) � Int

Instances of toPrint are given for Print a and also for the
Fun∗ data types. In the regular cases, the helper function
printAFun is used to retrieve the current function number
from the state and print the correct function name accord-
ingly.
instance toPrint (Print a) where

toPrint a = a >>! print ""
fromPrint a = printAFun a

componentSize _ = 1
instance toPrint (Fun11 Print a b) where

toPrint (Fun11 a) = print "Fun11 (" >>! a >>! print ")"

PPDP23, October 22–23, 2023, Lisbon, Portugal Pieter Koopman and Mart Lubbers

fromPrint a = Fun11 (print "call11 " >>! printAFun a)
componentSize _ = 1

instance toPrint (Fun10 Print a) where ...
instance toPrint (Fun01 Print b) where ...
instance toPrint (Fun21 Print a b c) where ...

printFun :: Int � PrintMonad ()
printFun n = printM ("f" +++ toString n)

printAFun :: (Print a) � Print b

printAFun a = a >>! P (getState >>= _s�printFun s.fun)

When a strongly connected component of functions is
defined, e.g. in the case of mutual recursion, the fun field
must be adjusted before calling the fromPrint instances of the
children.
instance toPrint (a, b) | toPrint a & toPrint b where

toPrint (a, b) =

print "\n (" >>! toPrint a >>! print "\n ," >>!

toPrint b >>! print ")"
fromPrint a =

(fromPrint (P (dePrint a))
,fromPrint (a >>! P (modify (_s�{s & fun=s.fun+1}))))

componentSize _ = 2

The final helper function is printAFuns. This prints the
names of the function definitions. This means just printing
the function itself when it is the only function in the compo-
nent, and printing the functions as a tuple when there are
more.
printAFuns :: Int Int � PrintMonad ()
printAFuns a 1 = printFun a

printAFuns a csize =

printM "(" >> | sequence (intersperse (printM ", ")
[printFun (a + i) \\ i�[0..csize-1]]) >> | printM ")"

Finally, the implementation of printing def is created. This
printer first generates fresh variables for every function in
the component. The size of the component is determined
with some type trickery using componentSize, see csize and
farity. In Haskell, inline type ascription or visible type ap-
plication can be used to circumvent this trickery.

To prevent a cycle in the def function, we pass it a printer
that sets the fun record field to the correct fresh function
number. The fromPrint function will retrieve it and prints
the correct function name. Once f is called, the definition
(a) is printed using toPrint and the rest of the program (b) is
printed directly.
instance def Print a | toPrint a where

def f = P $

nfresh csize >>= _v�
let (a In b) = f (fromPrint (P (modify _s�{s&fun=v})))
in printM "\ndef \\" >> | printAFuns v csize >> |
printM " = " >> | dePrint (toPrint a) >> |
printM "\n In " >> | dePrint b >> | printM ""

where

csize = componentSize (farity f)
farity :: (a � (In a (Print b))) � Proxy a

farity _ = Proxy

For convenience, we define a function prnt that selects the
Print view of a DSL expression and creates a single string
as output by evaluating the state monad computation and
concatenating the result.

prnt :: (Print a) � String

prnt (P f) =

concat ((execState f {cnt=0,out=id,fun=0}).out ["\n"])

3.5 Example
The function answer is a definition in our DSL that computes
a number. Specifying a type for this function is not required.

answer =

def _(inc,arg) =

(Fun11 (push 1 :. add)
,Fun01 (push 5 :. call11 inc))

In call01 arg :. call11 inc :. call01 arg :. mul

The functions inc and arg are not actually mutually recur-
sive, although their combined definition allows this. Nested
definitions would have been sufficient. We have used the
combined definition to illustrate how the printer view han-
dles this more complex DSL construct.

Using rank-n polymorphismwe can combine various views
of our DSL in a single function [30]. The function views evalu-
ates the given expression e and prints it. The class constraints
ensure that the given expression is limited to our DSL. The
class funs enumerates the allowed instances of definitions.
views :: (∀ v: v (Bot�a) | stack v & funs v) � (a,String)
views e = (eval e, prnt e)

class funs v | funs1 v Int & funs1 v Bool & funs2 v Int Bool

class funs1 v a

| def v (Fun21 v a a a) & def v (Fun11 v a a)
& def v (Fun01 v a) & def v (Fun10 v a)

class funs2 v a b

| def v (Fun21 v a a b) & def v (Fun21 v a b a) & ...

This can be used to evaluate and print answer.

Start = views answer

This produces a correct result.

"def _(f0, f1) =

(Fun11 (push 1 :. add)
,Fun01 (push 5 :. call11 f0))

In call01 f1 :. call11 f0 :. call01 f1 :. mul
",Push 42 Bot)

4 Code Generation
It is perfectly possible to generate code for this DSL by hand.
In many application one generates such code instead of man-
ually writing it. To show that this is perfectly possible, we
introduce a code generator for a class based DSL for ordinary
infix expressions.

Strongly-Typed Multi-View Stack-Based Computations PPDP23, October 22–23, 2023, Lisbon, Portugal

The expression DSL consists of literals, lit, a conditional
expression, IF, an equality operator, ==. as well as instances
of the operators +, -, and *.

class lit v :: a � v a | toString a

class IF v :: (v Bool) (v a) (v a) � v a

class (==.) infix 4 v a :: (v a) (v a) � v Bool

Some exprssions in this DSL are e42 and c42.

e42 :: Code v Int | stack v

e42 = (lit 6 + lit 5 - lit 4) * (lit 3 * lit 2)

c42 :: Code v Int | stack v

c42 = IF (e42 ==. lit 42) (lit 7) (lit -1)

It seems possible to extend this DSL with functions like
the definitions in our stack language. This requires at least
bookkeeping in the code generation about the position of
arguments on the stack and the current stack height. In
order to avoid the problems we have seen here with function
types, it seems attractive to start with a similar solution for
functions in the DSL we want to compile to the stack based
DSL. This requires further research.
The code generation yields an element of the stack class

introduced above. We use a type variable v to prevent that
the view of this class is fixed in the code generation. The
type of that expression is given by the type variable a. We
use again a universally qualified variable s for the rest of the
stack. This s can be anything, but the type guarantees that
the code generation pushes exactly one value of type a and
leaves the rest of the stack untouched.
:: Code v a = Code (∀ s:v (s�Push a s)) & stack v

deCode :: (Code v a) � v (s�Push a s) | stack v

deCode (Code c) = c

The code generation strategy itself is straightforward. The
code for every expression generates code that leaves the
value of that expression on the stack. In correspondence
with the conventions of the stack operations we first push
the first argument of binary operators followed by the second
argument.
In line with the evaluation view of the stack DSL, intro-

ducing a set of monadic operations for Code v is considered
overkill of this simple type. We add and remove the construc-
tor Code explicitly.

instance lit (Code v) | stack v where lit a = Code (push a)
instance IF (Code v) | stack v where

IF (Code c) (Code t) (Code e) = Code (If c t e)
instance ==. (Code v) a | stack v & == a where

(==.) (Code x) (Code y) = Code (x :. y :. equ)
instance + (Code v a) | stack v & + a where

(+) (Code x) (Code y) = Code (x :. y :. add)
instance - (Code v a) | stack v & - a where

(-) (Code x) (Code y) = Code (x :. y :. sub)
instance * (Code v a) | stack v & * a where

(*) (Code x) (Code y) = Code (x :. y :. mul)

The code mixes well with the print and eval of our stack DSL.
Start =

(prnt (deCode e42), eval (deCode e42), eval (deCode c42))

This yields (with a manually added line break):
"push 6 :. push 5 :. add :. push 4 :. sub :. push 3 :.
push 2 :. mul :. mul",(Push 42 Bot),(Push 7 Bot))

5 Related Work
It is recognized long ago that it is desirable to type stack-
based computations. Earlier attempts to make a type-safe
stack language are based on standalone languages with a
tailor-made type system. Some famous examples are [15, 27,
28, 35]. In this paper we use a fairly standard type system to
achieve type safety for an embedded stack-based language
instead of a standalone language for stack manipulations.
There is a long tradition in proving compilers correct [4,

25]. McKinna and Wright used Epigram to construct a prov-
able correct compiler to a stack-based language [24]. Here
there is a separate proof showing the correctness of the stack
manipulations. This work has been generalized by Atkey
and others [2, 3]. In our work we use the type system of the
host language to enforce type correctness of the stack ma-
nipulations. Proof-based approaches are used also in explicit
imperative contexts [20].
Several papers use dependent types to ensure correct-

ness of the stack-based manipulations. These approaches are
closely related to implementations of heterogeneous lists.
The idea of heterogeneous lists has been explored in various
ways in Haskell and Clean. The default implementation to-
day in the HList package in Haskell.5 This is firmly based on
a paper by Kiselyov et al. [16]. Section 10 of this paper gives
a good overview of alternative implementations of heteroge-
neous lists like [9, 23, 29]. Later work extends the research
on functional dependencies, e.g., Jones et al. [14]. Our work
does not require functional dependencies. In contrast to the
HList approach our handling of stacks is not primarily based
on type classes to type the stack manipulations, we employ
simple algebraic data types to ensure type safety.

6 Discussion
Stack-based computations are used in many versions of low-
level code generation. In such a language, functions and
operators expect their arguments on the stack and replace
them by the result. Developing such programs is error-prone
since the usual type systems do not guarantee that the re-
quired arguments are available on the stack. It is very easy
to forget to push an argument at the right time or leave an
element that is no longer needed on the stack. This results
in runtime errors that are in general hard to find.
One can argue that those stack-based programs are typi-

cally generated by a compiler. Once the compiler is correct,
5https://hackage.haskell.org/package/HList

https://hackage.haskell.org/package/HList

PPDP23, October 22–23, 2023, Lisbon, Portugal Pieter Koopman and Mart Lubbers

runtime type errors do not occur. This reasoning puts a high
demands on the compiler and excludes changes of the com-
piler, the runtime system as well as handwritten pieces of
code for optimization purposes [2–4, 24, 25, 36].

In this work we present a way to construct an embedded
stack-based DSL where the type system of the host language
ensures type correctness. The type system guarantees that
each operation finds the required elements on the stack and
leaves the expected results on the stack. This brings the
custom correctness assurances of a strong type system to the
world of stack-based computations. In writing the examples
for this paper and the code generator we experienced that
the type system indeed signals our errors in such programs.
We achieve this by a stack representation that is similar

to heterogeneous lists. The key difference is that we do not
want to handle stacks of finite and known length. The un-
touched part of stack can contain any number of elements of
arbitrary types. The type system just ensures that this is un-
touched. We introduced an approach to allow that functions
in the DSL can be applied to stacks with different untouched
parts by using the universally quantified type variables al-
lowed in algebraic data types. The Hindley-Milner based
type system of will enforce that all instances used for the
type variable indicating the rest of the stack have the same
type, and hence the same number of arguments. This type
system does include extensions like universally quantified
type variables and overlapping class instances. Our approach
avoids the need for a language extension like impredicative
polymorphism. However, we need some data types to pack
functions and boilerplate code to unpack the functions.
As future work we want to check if this scales to a full

compiler. A good candidate is our dynamic translation of
task-oriented programs for to byte code for restricted inter-
net of things devices [21]. It is worthwhile to investigate
whether a type synonyms and other GHC extensions such
as visible type application can make the impredicative types
simple enough for use in our DSL. In combination with the
previous point, this requires an extension of the Clean com-
piler similar to impredicative types in Haskell or porting the
mTask system to Haskell.

References
[1] 2002. Proceedings of the 2nd Java Virtual Machine Research and Tech-

nology Symposium. USENIX Association, USA.
[2] Robert Atkey. 2009. Parameterised Notions of Computation. J.

Funct. Program. 19, 3–4 (jul 2009), 335–376. https://doi.org/10.1017/
S095679680900728X

[3] Casper Bach Poulsen, Arjen Rouvoet, Andrew Tolmach, Robbert Kreb-
bers, and Eelco Visser. 2017. Intrinsically-Typed Definitional Inter-
preters for Imperative Languages. Proc. ACM Program. Lang. 2, POPL,
Article 16 (dec 2017), 34 pages. https://doi.org/10.1145/3158104

[4] Patrick Bahr and Graham Hutton. 2015. Calculating correct compilers.
Journal of Functional Programming 25 (2015), e14. https://doi.org/10.
1017/S0956796815000180

[5] Didier Le Botlan and Didier Rémy. 2009. Recasting MLF. Information
and Computation 207, 6 (2009), 726–785. https://doi.org/10.1016/j.ic.

2008.12.006
[6] Jacques Carette, Oleg Kiselyov, and Chung-chieh Shan. 2009. Finally

Tagless, Partially Evaluated: Tagless Staged Interpreters for Simpler
Typed Languages. J. Funct. Program. 19, 5 (Sept. 2009), 509–543. http:
//dx.doi.org/10.1017/S0956796809007205

[7] James Cheney and Ralf Hinze. 2003. First-class phantom types. Techni-
cal Report CUCIS TR2003-1901. Cornell University. https://hdl.handle.
net/1813/5614

[8] Adam Chlipala. [n. d.]. Parametric Higher-Order Abstract Syntax
for Mechanized Semantics. In Proceedings of the 13th ACM SIGPLAN
International Conference on Functional Programming (New York, NY,
USA, 2008) (ICFP ’08). ACM, 143–156. https://doi.org/10.1145/1411204.
1411226 event-place: Victoria, BC, Canada.

[9] Thomas Hallgren. 2001. Fun with functional dependencies. In Proc
Joint CS/CE Winter Meeting, Chalmers Univerity, Varberg, Sweden.

[10] R. Hindley. 1969. The Principal Type-Scheme of an Object in Com-
binatory Logic. Trans. Amer. Math. Soc. 146 (1969), 29–60. http:
//www.jstor.org/stable/1995158

[11] Douglas R. Hofstadter. 1979. Godel, Escher, Bach: An Eternal Golden
Braid. Basic Books, Inc., USA.

[12] R.John Muir Hughes. 1986. A novel representation of lists and its
application to the function “reverse”. Inform. Process. Lett. 22, 3 (1986),
141–144. https://doi.org/10.1016/0020-0190(86)90059-1

[13] Thomas Johnsson. 2004. Efficient Compilation of Lazy Evaluation.
SIGPLANNot. 39, 4 (apr 2004), 125–138. https://doi.org/10.1145/989393.
989409

[14] Mark P. Jones and Iavor S. Diatchki. 2008. Language and Program
Design for Functional Dependencies. SIGPLAN Not. 44, 2 (sep 2008),
87–98. https://doi.org/10.1145/1543134.1411298

[15] Maarten Keijzer. 2013. Push-Forth: A Light-Weight, Strongly-Typed,
Stack-Based Genetic Programming Language. In Proceedings of the
15th Annual Conference Companion on Genetic and Evolutionary Com-
putation (Amsterdam, The Netherlands) (GECCO ’13 Companion). As-
sociation for Computing Machinery, New York, NY, USA, 1635–1640.
https://doi.org/10.1145/2464576.2482742

[16] Oleg Kiselyov, Ralf Lämmel, and Keean Schupke. 2004. Strongly Typed
Heterogeneous Collections. In Proceedings of the 2004 ACM SIGPLAN
Workshop on Haskell (Snowbird, Utah, USA) (Haskell ’04). Association
for Computing Machinery, New York, NY, USA, 96–107. https://doi.
org/10.1145/1017472.1017488

[17] Pieter Koopman, Marko Van Eekelen, and Rinus Plasmeijer.
1995. Operational machine specification in a functional pro-
gramming language. Software: Practice and Experience 25,
5 (1995), 463–499. https://doi.org/10.1002/spe.4380250502
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.4380250502

[18] Konstantin Läufer and Martin Odersky. 1994. Polymorphic Type In-
ference and Abstract Data Types. ACM Trans. Program. Lang. Syst. 16,
5 (sep 1994), 1411–1430. https://doi.org/10.1145/186025.186031

[19] Daan Leijen and Erik Meijer. 2000. Domain Specific Embedded Compil-
ers. In Proceedings of the 2nd Conference on Domain-Specific Languages
(Austin, Texas, USA) (DSL ’99). Association for Computing Machinery,
New York, NY, USA, 109–122. https://doi.org/10.1145/331960.331977

[20] Xavier Leroy. 2009. A Formally Verified Compiler Back-End. J. Autom.
Reason. 43, 4 (dec 2009), 363–446. https://doi.org/10.1007/s10817-009-
9155-4

[21] Mart Lubbers, Pieter Koopman, and Rinus Plasmeijer. 2019. Inter-
preting Task Oriented Programs on Tiny Computers. In Proceedings
of the 31st Symposium on Implementation and Application of Func-
tional Languages (IFL ’19), Jurriën Stutterheim and Wei Ngan Chin
(Eds.). Association for Computing Machinery, New York, NY, USA.
https://doi.org/10.1145/3412932.3412936 event-place: Singapore, Sin-
gapore.

[22] Simon Marlow et al. 2010. Haskell 2010 language report. Available
online http://www. haskell. org/(May 2011) (2010).

https://doi.org/10.1017/S095679680900728X
https://doi.org/10.1017/S095679680900728X
https://doi.org/10.1145/3158104
https://doi.org/10.1017/S0956796815000180
https://doi.org/10.1017/S0956796815000180
https://doi.org/10.1016/j.ic.2008.12.006
https://doi.org/10.1016/j.ic.2008.12.006
http://dx.doi.org/10.1017/S0956796809007205
http://dx.doi.org/10.1017/S0956796809007205
https://hdl.handle.net/1813/5614
https://hdl.handle.net/1813/5614
https://doi.org/10.1145/1411204.1411226
https://doi.org/10.1145/1411204.1411226
http://www.jstor.org/stable/1995158
http://www.jstor.org/stable/1995158
https://doi.org/10.1016/0020-0190(86)90059-1
https://doi.org/10.1145/989393.989409
https://doi.org/10.1145/989393.989409
https://doi.org/10.1145/1543134.1411298
https://doi.org/10.1145/2464576.2482742
https://doi.org/10.1145/1017472.1017488
https://doi.org/10.1145/1017472.1017488
https://doi.org/10.1002/spe.4380250502
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.4380250502
https://doi.org/10.1145/186025.186031
https://doi.org/10.1145/331960.331977
https://doi.org/10.1007/s10817-009-9155-4
https://doi.org/10.1007/s10817-009-9155-4
https://doi.org/10.1145/3412932.3412936

Strongly-Typed Multi-View Stack-Based Computations PPDP23, October 22–23, 2023, Lisbon, Portugal

[23] Conor McBride. 2002. Faking it: Simulating dependent types in Haskell.
J. Funct. Program. 12, 4&5 (2002), 375–392. https://doi.org/10.1017/
S0956796802004355

[24] James McKinna and Joel Wright. 2006. A type-correct, stack-safe,
provably correct, expression compiler in Epigram. J. Funct. Program.
Submitted (2006).

[25] Henricus Johannes Maria Meijer. 1992. Calculating compilers. PhD
Thesis.

[26] RobinMilner. 1978. A theory of type polymorphism in programming. J.
Comput. System Sci. 17, 3 (1978), 348–375. https://doi.org/10.1016/0022-
0000(78)90014-4

[27] Greg Morrisett, Karl Crary, Neal Glew, and David Walker. 2002. Stack-
Based Typed Assembly Language. J. Funct. Program. 12, 1 (jan 2002),
43–88. https://doi.org/10.1017/S0956796801004178

[28] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. 1999. From
System F to Typed Assembly Language. ACM Trans. Program. Lang.
Syst. 21, 3 (may 1999), 527–568. https://doi.org/10.1145/319301.319345

[29] Matthias Neubauer, Peter Thiemann, Martin Gasbichler, and Michael
Sperber. 2001. A functional notation for functional dependencies. In
Proceedings of 2001 Haskell Workshop. 101–120.

[30] Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and
Mark Shields. 2007. Practical Type Inference for Arbitrary-Rank Types.
J. Funct. Program. 17, 1 (jan 2007), 1–82. https://doi.org/10.1017/
S0956796806006034

[31] F. Pfenning and C. Elliott. [n. d.]. Higher-Order Abstract Syntax. In
Proceedings of the ACM SIGPLAN 1988 Conference on Programming
Language Design and Implementation (New York, NY, USA, 1988) (PLDI
’88). ACM, 199–208. https://doi.org/10.1145/53990.54010 event-place:
Atlanta, Georgia, USA.

[32] Rinus Plasmeijer, Marko van Eekelen, and John van Groningen. 2012.
Clean Language Report. https://wiki.clean.cs.ru.nl/download/html_

report/CleanRep.2.2_1.htm [Online; accessed 5-December-2022].
[33] Alejandro Serrano, Jurriaan Hage, Simon Peyton Jones, and Dimitrios

Vytiniotis. 2020. A Quick Look at Impredicativity. Proc. ACM Program.
Lang. 4, ICFP, Article 89 (aug 2020), 29 pages. https://doi.org/10.1145/
3408971

[34] Slone. 2023. The female of a pair of recurrences. https://oeis.org/
A005378. [Online; accessed 23-May-2023].

[35] Christopher A. Stone, David Tarditi, Greg Morrisett, Perry Cheng,
Peter Lee, and Robert Harper. 1996. The TIL/ML Compiler: Perfor-
mance and Safety through Types. In ACM SIGPLAN’96 Conference on
Programming Language Design and Implementation (PLDI’96).

[36] Wouter Swierstra. 2010. More Dependent Types for Distributed Arrays.
Higher Order Symbol. Comput. 23, 4 (nov 2010), 489–506. https://doi.
org/10.1007/s10990-011-9075-y

[37] Bill Venners. 2000. Inside the Java 2 Virtual Machine (2 ed.). McGraw-
Hill Companies.

[38] Dimitrios Vytiniotis, Stephanie Weirich, and Simon Peyton Jones.
2006. Simple unification-based type inference for GADTs. In In-
ternational Conference on Functional Programming (ICFP’06). ACM
SIGPLAN. https://www.microsoft.com/en-us/research/publication/
simple-unification-based-type-inference-for-gadts/ 2016 ACM SIG-
PLAN Most Influential ICFP Paper Award.

[39] Philip Wadler. [n. d.]. Comprehending monads. In Proceedings of the
1990 ACM conference on LISP and functional programming (1990). ACM,
61–78.

[40] Wikipedia contributors. 2022. Hofstadter sequence — Wikipedia,
The Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=
Hofstadter_sequence&oldid=1115357514. [Online; accessed 23-May-
2023].

https://doi.org/10.1017/S0956796802004355
https://doi.org/10.1017/S0956796802004355
https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.1017/S0956796801004178
https://doi.org/10.1145/319301.319345
https://doi.org/10.1017/S0956796806006034
https://doi.org/10.1017/S0956796806006034
https://doi.org/10.1145/53990.54010
https://wiki.clean.cs.ru.nl/download/html_report/CleanRep.2.2_1.htm
https://wiki.clean.cs.ru.nl/download/html_report/CleanRep.2.2_1.htm
https://doi.org/10.1145/3408971
https://doi.org/10.1145/3408971
https://oeis.org/A005378
https://oeis.org/A005378
https://doi.org/10.1007/s10990-011-9075-y
https://doi.org/10.1007/s10990-011-9075-y
https://www.microsoft.com/en-us/research/publication/simple-unification-based-type-inference-for-gadts/
https://www.microsoft.com/en-us/research/publication/simple-unification-based-type-inference-for-gadts/
https://en.wikipedia.org/w/index.php?title=Hofstadter_sequence&oldid=1115357514
https://en.wikipedia.org/w/index.php?title=Hofstadter_sequence&oldid=1115357514

	Abstract
	1 Introduction
	2 Strongly-Typed Stack Manipulations
	2.1 The Stack
	2.2 Arithmetic Instructions
	2.3 Moving Stack Elements
	2.4 Composition of Stack Manipulations
	2.5 Conditional and Repetition
	2.6 Function Calls
	2.7 First-Class Functions in the DSL
	2.8 Mutual Recursive Functions
	2.9 Calling Functions in Different Contexts

	3 A Multi-View Strongly-Typed Stack DSL
	3.1 DSL definition
	3.2 Evaluation View
	3.3 Evaluation of Plumbing Operations
	3.4 Print View
	3.5 Example

	4 Code Generation
	5 Related Work
	6 Discussion
	References

