—

Hewlett Packard
Enterprise

HPE Security Fortify Audit Workbench

Developer Workbook

testcms-final-anon

lEQRTIFY”

Table of Contents

Executive Summary
Project Description

Issue Breakdown by Fortify Categories
Results Outline

FORTIFY’ Nov 9, 2016, 1:29 PM

© Copyright 2016 Hewlett Packard Enterprise Development LP

Executive Summary

This workbook is intended to provide all necessary details and information for a developer to understand and
remediate the different issues discovered during the testcms-final-anon project audit. The information
contained in this workbook is targeted at project managers and developers.

This section provides an overview of the issues uncovered during analysis.

Project Name: testcms-final-anon Issues by Priority
Project Version:
SCA: Results Present
Weblnspect: Results Not Present

Impact
SecurityScope: Results Not Present o o
Other: Results Not Present Lo Medium

Likelihood

Top Ten Critical Categories

86.21% (50)

Cross-Site Scripting: Reflected
SQL Injection
Password Management: Password in HT...

—1.72% (1)
N—1.72% (1)

OEEN

Privacy Violation
\—10.34% (6)

.E’DRTIFW Nov 9, 2016, 1:29 PM

© Copyright 2016 Hewlett Packard Enterprise Development LP

Project Description

This section provides an overview of the HPE Security Fortify scan engines used for this project, as well as
the project meta-information.

SCA

Date of Last Analysis: Nov 9, 2016, 1:19 PM Engine Version: 16.10.0095

Host Name: mrl-PC Certification: VALID

Number of Files: 92 Lines of Code: 3,731
FDRTIFY‘" Nov 9, 2016, 1:29 PM

© Copyright 2016 Hewlett Packard Enterprise Development LP

Issue Breakdown by Fortify Categories

The following table depicts a summary of all issues grouped vertically by Fortify Category. For each category,
the total number of issues is shown by Fortify Priority Order, including information about the number of
audited issues.

(0£:1{-To [o]3% Fortify Priority (audited/total) Total
Medium Low [LEEllE

Cookie Security: HTTPOnly not Set 0 0/1 0 0 0/1
Cross-Site Scripting: Reflected 0/50 0 0 0 0/50
Key Management: Empty Encryption Key 0 0/1 0 0 0/1
Password Management: Empty Password 0 0/1 0 0 0/1
Password Management: Password in HTML Form 0/1 0 0 0 0/1
Privacy Violation 0/1 0 0 0 0/1
Privacy Violation: Autocomplete 0 0/2 0 0 0/2
SQL Injection 0/6 0 0 0 0/6
Weak Encryption 0 0/5 0 0 0/5
FDRT'FY® Nov 9, 2016, 1:29 PM 5
| S © Copyright 2016 Hewlett Packard Enterprise Development LP

Results Outline

Cookie Security: HTTPOnly not Set (1 issue)

Abstract

The program creates a cookie, but fails to set the Ht t pOnl y flag to t r ue.

Explanation

All major browsers support the Ht t pOnl y cookie property that prevents client-side scripts from accessing
the cookie. Cross-site scripting attacks often access cookies in an attempt to steal session identifiers or
authentication tokens. When Ht t pOnl y is not enabled, attackers may more easily access user cookies.

Example 1: The code in the example below creates a cookie without setting the Ht t pOnl y property.

set cooki e(" emni | Cooki e", $emmil, 0, "/", "www exanple.coni, TRUE); //M ssing
7th paraneter to set HtpOnly

Recommendation

Enable the Ht t pOnl y property when creating cookies. This can be done by setting the Ht t pOnl y
parameter in the set cooki e() calltotrue.

Example 2: The code in the example below creates the same cookie as the code in Example 1, but this
time sets the Ht t pOnl y parametertot r ue.

set cooki e(" emni | Cooki e", $emmil, 0, "/", "www exanple.conl, TRUE, TRUE);

Do not be lulled into a false sense of security by Ht t pOnl y. As several mechanisms for bypassing it have
been developed, it is not completely effective.

Issue Summary

Exploitable
g Suspicious
% Bad Practice
é Reliability Issue
Not an Issue ’
<None> |
0 1 2
Issues
@ ciitical | EPHigh | EIVedium | FLow
FDRT'FY Nov 9, 2016, 1:29 PM

© Copyright 2016 Hewlett Packard Enterprise Development LP

Engine Breakdown

SCA Weblinspect SecurityScope Total
Cookie Security: HTTPOnly not Set 1 0 0 1
Total 1 0 0 1

Cookie Security: HTTPOnly not Set
Package: system.classes

Kingdom: Security Features
Scan Engine: SCA (Structural)

Sink: FunctionCall: setcookie
Enclosing Method: write()
File: system/classes/cookie.php:19

Taint Flags:
16
17 public static function write ($name, $data, S$expire, $path, $domain) {
18 if (headers _sent() === false) {
19 return setcookie ($Sname, $data, Sexpire, S$path, S$domain, false);
20 }
21

22 return false;

~

EJRTIFY” Nov 9, 2016, 1:29 PM

© Copyright 2016 Hewlett Packard Enterprise Development LP

Cross-Site Scripting: Reflected (50 issues)

Abstract

Sending unvalidated data to a web browser can result in the browser executing malicious code.

Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of Reflected XSS, the untrusted
source is typically a web request, while in the case of Persisted (also known as Stored) XSS it is typically a
database or other back-end datastore.

2. The data is included in dynamic content that is sent to a web user without being validated.

The malicious content sent to the web browser often takes the form of a segment of JavaScript, but may
also include HTML, Flash or any other type of code that the browser may execute. The variety of attacks
based on XSS is almost limitless, but they commonly include transmitting private data like cookies or other
session information to the attacker, redirecting the victim to web content controlled by the attacker, or
performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 1: The following PHP code segment reads an employee ID, ei d, from an HTTP request and
displays it to the user.

The code in this example operates correctly if ei d contains only standard alphanumeric text. If ei d has a
value that includes meta-characters or source code, then the code will be executed by the web browser as
it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that
causes malicious code to run on their own computer? The real danger is that an attacker will create the
malicious URL, then use e-mail or social engineering tricks to lure victims into visiting a link to the URL.
When victims click the link, they unwittingly reflect the malicious content through the vulnerable web
application back to their own computers. This mechanism of exploiting vulnerable web applications is
known as Reflected XSS.

Example 2: The following PHP code segment queries a database for an employee with a given ID and
prints the corresponding employee's name.

As in Example 1, this code functions correctly when the values of nane are well-behaved, but it does
nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value
of nane is read from a database, whose contents are apparently managed by the application. However, if
the value of namne originates from user-supplied data, then the database can be a conduit for malicious
content. Without proper input validation on all data stored in the database, an attacker may execute

FDRT'FY Nov 9, 2016, 1:29 PM

© Copyright 2016 Hewlett Packard Enterprise Development LP

malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS,
is particularly insidious because the indirection caused by the data store makes it more difficult to identify
the threat and increases the possibility that the attack will affect multiple users. XSS got its start in this form
with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook
entries, and all subsequent visitors to the guestbook page would execute the malicious code.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an
HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1, data is read directly from the HTTP request and reflected back in the HTTP response.
Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable
web application, which is then reflected back to the user and executed by the web browser. The most
common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted
publicly or e-mailed directly to victims. URLs constructed in this manner constitute the core of many
phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site.
After the site reflects the attacker's content back to the user, the content is executed and proceeds to
transfer private information, such as cookies that may include session information, from the user's machine
to the attacker or perform other nefarious activities.

- As in Example 2, the application stores dangerous data in a database or other trusted data store. The
dangerous data is subsequently read back into the application and included in dynamic content. Persistent
XSS exploits occur when an attacker injects dangerous content into a data store that is later read and
included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is
in an area that is displayed to either many users or particularly interesting users. Interesting users typically
have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If
one of these users executes malicious content, the attacker may be able to perform privileged operations
on behalf of the user or gain access to sensitive data belonging to the user.

- A source outside the application stores dangerous data in a database or other data store, and the
dangerous data is subsequently read back into the application as trusted data and included in dynamic
content.

Recommendation

The solution to XSS is to ensure that validation occurs in the correct places and checks for the correct
properties.

Since XSS vulnerabilities occur when an application includes malicious data in its output, one logical
approach is to validate data immediately before it leaves the application. However, because web
applications often have complex and intricate code for generating dynamic content, this method is prone to
errors of omission (missing validation). An effective way to mitigate this risk is to also perform input
validation for XSS.

Web applications must validate their input to prevent other vulnerabilities, such as SQL injection, so
augmenting an application's existing input validation mechanism to include checks for XSS is generally
relatively easy. Despite its value, input validation for XSS does not take the place of rigorous output
validation. An application may accept input through a shared data store or other trusted source, and that
data store may accept input from a source that does not perform adequate input validation. Therefore, the
application cannot implicitly rely on the safety of this or any other data. This means the best way to prevent
XSS vulnerabilities is to validate everything that enters the application and leaves the application destined
for the user.

The most secure approach to validation for XSS is to create a whitelist of safe characters that are allowed
to appear in HTTP content and accept input composed exclusively of characters in the approved set. For
example, a valid username might only include alpha-numeric characters or a phone number might only

include digits 0-9. However, this solution is often infeasible in web applications because many characters

FORTIFY

that have special meaning to the browser should still be considered valid input once they are encoded,
such as a web design bulletin board that must accept HTML fragments from its users.

A more flexible, but less secure approach is known as blacklisting, which selectively rejects or escapes
potentially dangerous characters before using the input. In order to form such a list, you first need to
understand the set of characters that hold special meaning for web browsers. Although the HTML standard
defines what characters have special meaning, many web browsers try to correct common mistakes in
HTML and may treat other characters as special in certain contexts, which is why we do not encourage the
use of blacklists as a means to prevent XSS. The CERT(R) Coordination Center at the Software
Engineering Institute at Carnegie Mellon University provides the following details about special characters
in various contexts [1]:

In the content of a block-level element (in the middle of a paragraph of text):

- "<" is special because it introduces a tag.

- "&" is special because it introduces a character entity.

- ">" is special because some browsers treat it as special, on the assumption that the author of the page
intended to include an opening "<", but omitted it in error.

The following principles apply to attribute values:

- In attribute values enclosed with double quotes, the double quotes are special because they mark the end
of the attribute value.

- In attribute values enclosed with single quote, the single quotes are special because they mark the end of
the attribute value.

- In attribute values without any quotes, white-space characters, such as space and tab, are special.

- "&" is special when used with certain attributes, because it introduces a character entity.

In URLSs, for example, a search engine might provide a link within the results page that the user can click to
re-run the search. This can be implemented by encoding the search query inside the URL, which
introduces additional special characters:

- Space, tab, and new line are special because they mark the end of the URL.

- "&" is special because it either introduces a character entity or separates CGI parameters.

- Non-ASCII characters (that is, everything above 128 in the ISO-8859-1 encoding) are not allowed in
URLs, so they are considered to be special in this context.

- The "%" symbol must be filtered from input anywhere parameters encoded with HTTP escape sequences
are decoded by server-side code. For example, "%" must be filtered if input such as "%68%65%6C%6C
%6F" becomes "hello" when it appears on the web page in question.

Within the body of a :

- Semicolons, parentheses, curly braces, and new line characters should be filtered out in situations where
text could be inserted directly into a pre-existing script tag.

Server-side scripts:

FDRT'FY Nov 9, 2016, 1:29 PM

© Copyright 2016 Hewlett Packard Enterprise Development LP

- Server-side scripts that convert any exclamation characters (!) in input to double-quote characters (") on
output might require additional filtering.

Other possibilities:

- If an attacker submits a request in UTF-7, the special character '<' appears as '+ADw-' and may bypass
filtering. If the output is included in a page that does not explicitly specify an encoding format, then some
browsers try to intelligently identify the encoding based on the content (in this case, UTF-7).

Once you identify the correct points in an application to perform validation for XSS attacks and what special
characters the validation should consider, the next challenge is to identify how your validation handles
special characters. If special characters are not considered valid input to the application, then you can
reject any input that contains special characters as invalid. A second option in this situation is to remove
special characters with filtering. However, filtering has the side effect of changing any visual representation
of the filtered content and may be unacceptable in circumstances where the integrity of the input must be
preserved for display.

If input containing special characters must be accepted and displayed accurately, validation must encode
any special characters to remove their significance. A complete list of ISO 8859-1 encoded values for
special characters is provided as part of the official HTML specification [2].

Many application servers attempt to limit an application's exposure to cross-site scripting vulnerabilities by
providing implementations for the functions responsible for setting certain specific HTTP response content
that perform validation for the characters essential to a cross-site scripting attack. Do not rely on the server
running your application to make it secure. When an application is developed there are no guarantees
about what application servers it will run on during its lifetime. As standards and known exploits evolve,
there are no guarantees that application servers will also stay in sync.

Issue Summary

Exploitable
Suspicious
Bad Practice
Reliability Issue

Analysis

Not an Issue

<None>

0 4 8 12 16 20 24 28 32 36 40 44 48 52
Issues

@ critical |ﬁHigh |I:’Medium |I:’Low

Engine Breakdown

SCA Weblnspect SecurityScope Total
Cross-Site Scripting: Reflected 50 0 0 50
Total 50 0 0 50
FDRTIFY Nov 9, 2016, 1:29 PM

© Copyright 2016 Hewlett Packard Enterprise Development LP

Cross-Site Scripting: Reflected

Package: system.admin.theme

system/admin/theme/error_php.php, line 67 (Cross-Site Scripting: Reflected)
Issue Details

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Source Details
Source: Read $ SERVER['REQUEST_URI']
File: system/admin/theme/error_php.php:67
64 Operating System: <?php echo php uname(); ?>
65 Server Software: <?php echo $ SERVER['SERVER SOFTWARE']; ?></1i>
66 User Agent: <?php echo $ SERVER['HTTP USER AGENT']; ?2></1i>
67 Request Uri: <?php echo $_SERVER['REQUEST_URI']; ?>< /11>
68
69 </div>
70 </body>

Sink Details

Sink: builtin_echo()
File: system/admin/theme/error_php.php:67
Taint Flags: WEB, XSS

64 Operating System: <?php echo php uname(); ?></1li>

65 Server Software: <?php echo $ SERVER['SERVER SOFTWARE']; ?></1i>
66 User Agent: <?php echo $ SERVER['HTTP USER AGENT']; ?2>

67 Request Uri: <?php echo $ SERVER['REQUEST URI']; ?></1i>

68

69 </div>

70 </body>

system/admin/theme/error_php.php, line 66 (Cross-Site Scripting: Reflected)
Issue Details

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Source Details
Source: Read $ SERVER['HTTP_USER_AGENT]
File: system/admin/theme/error_php.php:66
63 <1i>PHP Version: <?php echo phpversion(); ?></1i>
64 Operating System: <?php echo php uname(); ?></1li>
65 Server Software: <?php echo $ SERVER['SERVER SOFTWARE']; ?></1i>
66 User Agent: <?php echo $ SERVER['HTTP USER AGENT']; ?2></1li>
67 Request Uri: <?php echo $_SERVER['REQUEST_URI']; ?>< /11>

FORTIFY Nov 9, 2016, 1:29 PM 1

© Copyright 2016 Hewlett Packard Enterprise Development LP

Cross-Site Scripting: Reflected

Package: system.admin.theme
Critical

68
69 </div>

Sink: builtin_echo()
File: system/admin/theme/error_php.php:66
Taint Flags: WEB, XSS

63 <1i>PHP Version: <?php echo phpversion(); ?></1i>

64 Operating System: <?php echo php uname (); ?></1i>

65 Server Software: <?php echo $ SERVER['SERVER SOFTWARE']; ?></1i>
66 User Agent: <?php echo $ SERVER['HTTP_USER AGENT']; °?></1i>

67 Request Uri: <?php echo $ SERVER['REQUEST URI']; ?></1i>

68

69 </div>

Package: system.admin.theme.metadata

Critical

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Source: Read $ POST
From: input.post
File: system/classes/input.php:35

32

33

34 public static function post($key, $default = false) {
35 return static::fetch array($ POST, S$key, $default);
36 }

37

38 public static function get (Skey, Sdefault = false) {

Sink: builtin_echo()
File: system/admin/theme/metadata/index.php:53
Taint Flags: WEB, XSS

50
51 <p>
EJRTIFY° Nov 9, 2016, 1:29 PM 13
© Copyright 2016 Hewlett Packard Enterprise Development LP

Cross-Site Scripting: Reflected

Package: system.admin.theme.metadata

Critical

52 <label for="posts per page">Posts per page:</label>

53 <input id="posts per page" name="posts per page" value="<?php echo
Input::post ('posts per page', Smetadata->posts per page); ?2>">

54
55 The number of posts to display per page.
56 </p>

Critical

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Source: Read $ POST
From: input.post
File: system/classes/input.php:35
32
33
34 public static function post (Skey, S$default = false) {
35 return static::fetch array($ POST, Skey, $default);
36 }
37
38 public static function get (key, Sdefault = false) {

Sink: builtin_echo()
File: system/admin/theme/metadata/index.php:11
Taint Flags: WEB, XSS

8 <fieldset>
9 <p>
10 <label for="sitename">Site name:</label>

11 <input id="sitename" name="sitename" value="<?php echo Input::post('name', Smetadata-
>sitename); ?>">

12
13 Your site’s name.
14 </p>

Critical

-
~

EJRTIFY° Nov 9, 2016, 1:29 PM

© Copyright 2016 Hewlett Packard Enterprise Development LP

Cross-Site Scripting: Reflected

Package: system.admin.theme.metadata

Critical

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Source: Read $ POST
From: input.post
File: system/classes/input.php:35

32

33

34 public static function post($key, $default = false) {
35 return static::fetch array($ POST, Skey, S$default);
36 }

37

38 public static function get (key, Sdefault = false) {

Sink: builtin_echo()
File: system/admin/theme/metadata/index.php:18
Taint Flags: WEB, XSS

15
16 <p>
17 <label for="description">Site description:</label>

18 <textarea id="description" name="description"><?php echo Input::post('description’,
Smetadata->description); ?></textarea>

19
20 A short paragraph to describe your site.
21 </p>

Critical

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Source: Read $ POST

From: input.post
File: system/classes/input.php:35
32
33
IFDRT":Y Nov 9, 2016, 1:29 PM 15
© Copyright 2016 Hewlett Packard Enterprise Development LP

Cross-Site Scripting: Reflected

Package: system.admin.theme.metadata

Critical

34 public static function post ($key, Sdefault = false) {
35 return static::fetch array($ POST, Skey, S$default);
36 }

37

38 public static function get (Skey, S$default = false) {

Sink: builtin_echo()
File: system/admin/theme/metadata/index.php:80
Taint Flags: WEB, XSS

78 <p>
79 <label for="twitter">Twitter:</label>

80 <input id="twitter" name="twitter" value="<?php echo Input::post('twitter', S$metadata-
>twitter); 2>">

81

82 Your twitter account. Displayed as @<?php echo S$metadata->twitter; ?
>.

83 </p>

Package: system.admin.theme.pages

Critical

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Source: Read $ POST
From: input.post
File: system/classes/input.php:35

32

33

34 public static function post($key, $default = false) {
35 return static::fetch array($ POST, Skey, S$default);
36 }

37

38 public static function get (key, Sdefault = false) {

Sink: builtin_echo()

-
(o2}

EJRTIFY” Nov 9, 2016, 1:29 PM

© Copyright 2016 Hewlett Packard Enterprise Development LP

Cross-Site Scripting: Reflected

Package: system.admin.theme.pages
Critical

File: system/admin/theme/pages/add.php:33
Taint Flags: WEB, XSS

31 <p>
32 <label for="content">Content:</label>
33 <textarea id="content" name="content"><?php echo Input::post ('content'); ?></textarea>

35 Your page's content. Accepts valid HTML.
36 </p>

Critical

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Source: Read $ POST
From: input.post
File: system/classes/input.php:35
32}
33
34 public static function post (Skey, S$default = false) {
35 return static::fetch array($ POST, S$key, $default);
36 }
37
38 public static function get (key, Sdefault = false) {

Sink: builtin_echo()
File: system/admin/theme/pages/add.php:12
Taint Flags: WEB, XSS

9 <fieldset>

10 <p>

11 <label for="name">Name:</label>

12 <input id="name" name="name" value="<?php echo Input::post('name'); ?2>">
13

14 The name of your page. This gets shown in the navigation.

15 </p>

Critical

-
\l

EJRTIFY” Nov 9, 2016, 1:29 PM

© Copyright 2016 Hewlett Packard Enterprise Development LP

Cross-Site Scripting: Reflected

Package: system.admin.theme.pages
Critical

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Source: Read $ POST
From: input.post
File: system/classes/input.php:35
32}
33
34 public static function post($key, $default = false) {
35 return static::fetch array($ POST, S$key, $default);
36 }
37
38 public static function get (Skey, S$default = false) {

Sink: builtin_echo()
File: system/admin/theme/pages/add.php:19
Taint Flags: WEB, XSS

16

17 <p>

18 <label>Title:</label>

19 <input id="title" name="title" value="<?php echo Input::post('title'); ?2>">

20

21 The title of your page, which gets shown in the <code><title></code>.
22 </p>

Critical

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Source: Read $_ POST
From: input.post
File: system/classes/input.php:35

32

33

34 public static function post (Skey, S$default = false) {
35 return static::fetch array($ POST, S$key, $default);

36 }
EJRTIFY° Nov 9, 2016, 1:29 PM 18
© Copyright 2016 Hewlett Packard Enterprise Development LP

Cross-Site Scripting: Reflected

Package: system.admin.theme.pages

system/admin/theme/pages/edit.php, line 18 (Cross-Site Scripting: Reflected)

37
38 public static function get (Skey, S$default = false) {

Sink Details

Sink: builtin_echo()
File: system/admin/theme/pages/edit.php:18
Taint Flags: WEB, XSS

16 <p>
17 <label>Title:</label>
18 <input id="title" name="title" value="<?php echo Input::post('title', Spage->title); 2>">

20 The title of your page, which gets shown in the <code>g<title></code>.
21 </p>

system/admin/theme/pages/add.php, line 28 (Cross-Site Scripting: Reflected)
Issue Details

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Source Details
Source: Read $ SERVER['HTTP_HOST']
File: system/admin/theme/pages/add.php:28

25 <label for="slug">Slug:</label>

26 <input id="slug" autocomplete="off" name="slug" value="<?php echo
Input::post('slug'); ?2>">

27

28 The slug for your post (<code><?php echo $ SERVER['HTTP HOST']; 2>/
slug</code>) .

29 </p>
30

31 <p>
Sink Details

Sink: builtin_echo()
File: system/admin/theme/pages/add.php:28
Taint Flags: WEB, XSS

25 <label for="slug">Slug:</label>

26 <input id="slug" autocomplete="off" name="slug" value="<?php echo Input::post('slug'); ?>">
27
28 The slug for your post (<code><?php echo $ SERVER['HTTP HOST']; ?>/<span
FDRT'FY® Nov 9, 2016, 1:29 PM 19
| — 4 © Copyright 2016 Hewlett Packard Enterprise Development LP

Cross-Site Scripting: Reflected Critical

Package: system.admin.theme.pages
Critical

id="output">slug</code>) .

29 </p>
30
31 <p>

Critical

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Source: Read $ POST
From: input.post
File: system/classes/input.php:35

32

33

34 public static function post($key, $default = false) {
35 return static::fetch array($ POST, S$key, $default);
36 }

37

38 public static function get (Skey, S$default = false) {

Sink: builtin_echo()
File: system/admin/theme/pages/add.php:26
Taint Flags: WEB, XSS

23
24 <p>
25 <label for="slug">Slug:</label>

26 <input id="slug" autocomplete="off" name="slug" value="<?php echo Input::post('slug'); 2>">
27

28 The slug for your post (<code><?php echo $ SERVER['HTTP HOST']; ?>/slug</code>) .
29 </p>

Critical

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

N
o

EJRTIFY” Nov 9, 2016, 1:29 PM

© Copyright 2016 Hewlett Packard Enterprise Development LP

Cross-Site Scripting: Reflected

Package: system.admin.theme.pages

system/admin/theme/pages/edit.php, line 25 (Cross-Site Scripting: Reflected)

Source: Read $ POST
From: input.post
File: system/classes/input.php:35
32}
33
34 public static function post (Skey, S$default = false) {
35 return static::fetch array($ POST, Skey, S$default);
36 }
37
38 public static function get (key, Sdefault = false) {

Sink Details

Sink: builtin_echo()
File: system/admin/theme/pages/edit.php:25
Taint Flags: WEB, XSS

23 <p>

24 <label for="slug">Slug:</label>

25 <input id="slug" autocomplete="off" name="slug" value="<?php echo Input::post('slug',
$page->slug); ?>">

26

27 The slug for your page (<code id="output">slug</code>).

28 </p>

system/admin/theme/pages/edit.php, line 11 (Cross-Site Scripting: Reflected)
Issue Details

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Source Details

Source: Read $ POST
From: input.post
File: system/classes/input.php:35
32)}
33
34 public static function post (Skey, S$default = false) {
35 return static::fetch array($ POST, Skey, $default);
36 }
37
38 public static function get (Skey, S$default = false) {

'E'DRTIFW Nov 9, 2016, 1:29 PM 21

© Copyright 2016 Hewlett Packard Enterprise Development LP

Cross-Site Scripting: Reflected

Package: system.admin.theme.pages

Critical

Sink: builtin_echo()
File: system/admin/theme/pages/edit.php:11
Taint Flags: WEB, XSS
8 <fieldset>
9 <p>
10 <label for="name">Name:</label>
11 <input id="name" name="name" value="<?php echo Input::post('name', S$page->name); ?>">
12
13 The name of your page. This gets shown in the navigation.
14 </p>

Critical

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Source: Read $ POST
From: input.post
File: system/classes/input.php:35
32
33
34 public static function post (Skey, S$default = false) {
35 return static::fetch array($ POST, Skey, S$default);
36 }
37
38 public static function get (key, Sdefault = false) {

Sink: builtin_echo()
File: system/admin/theme/pages/edit.php:32
Taint Flags: WEB, XSS

29

30 <p>

31 <label for="content">Content:</label>

32 <textarea id="content" name="content"><?php echo Input::post ('content', $page->content); ?
></textarea>

33
34 Your page's content. Accepts valid HTML.
35 </p>
[FD: RTIFY@ Nov 9, 2016, 1:29 PM 22
© Copyright 2016 Hewlett Packard Enterprise Development LP

Cross-Site Scripting: Reflected

Package: system.admin.theme.posts

Critical

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Source: Read $ POST
From: input.post
File: system/classes/input.php:35

32

33

34 public static function post (Skey, S$default = false) {
35 return static::fetch array($ POST, Skey, $default);
36 }

37

38 public static function get (key, Sdefault = false) {

Sink: builtin_echo()
File: system/admin/theme/posts/add.php:77
Taint Flags: WEB, XSS

75 <p>
76 <label for="css">Custom CSS:</label>
77 <textarea id="css" name="css"><?php echo Input::post('css'); ?></textarea>

79 Custom CSS. Will be wrapped in a <code><style></code> block.
80 </p>

Critical

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Source: Read $ POST
From: input.post
File: system/classes/input.php:35
32}
33
34 public static function post($key, $default = false) {
35 return static::fetch array($ POST, Skey, S$default);

N
w

EJRTIFY” Nov 9, 2016, 1:29 PM

© Copyright 2016 Hewlett Packard Enterprise Development LP

Cross-Site Scripting: Reflected

Package: system.admin.theme.posts
Critical

36 }
37
38 public static function get (key, Sdefault = false) {

Sink: builtin_echo()
File: system/admin/theme/posts/add.php:84
Taint Flags: WEB, XSS

81

82 <p>

83 <label for="js">Custom JS:</label>

84 <textarea id="js" name="js"><?php echo Input::post('js'); ?></textarea>
85

86 Custom Javascript. Will be wrapped in a <code><scripté></code> block.
87 </p>

Critical

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Source: Read $ POST
From: input.post
File: system/classes/input.php:35
32
33
34 public static function post (Skey, S$default = false) {
35 return static::fetch array($ POST, S$key, $default);
36 }
37
38 public static function get (key, Sdefault = false) {

Sink: builtin_echo()
File: system/admin/theme/posts/add.php:21
Taint Flags: WEB, XSS

18 <fieldset>

19 <p>

20 <label for="title">Title:</label>

21 <input id="title" name="title" value="<?php echo Input::post('title'); ?2>">

N
=

EJRTIFY” Nov 9, 2016, 1:29 PM

© Copyright 2016 Hewlett Packard Enterprise Development LP

Cross-Site Scripting: Reflected Critical

Package: system.admin.theme.posts
Critical

23 Your posté’s title.
24 </p>

Critical

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Source: Read $ POST
From: input.post
File: system/classes/input.php:35
32}
33
34 public static function post($key, $default = false) {
35 return static::fetch array($ POST, S$key, $default);
36 }
37
38 public static function get (Skey, S$default = false) {

Sink: builtin_echo()
File: system/admin/theme/posts/edit.php:117
Taint Flags: WEB, XSS

114 <?php foreach (Input::post('field', array()) as $data => $value): 2>
115 <?php list($key, $label) = explode(':', S$data); 2>
116 <p>

117 <label><?php echo $label; ?></label>

118 <input name="field[<?php echo $key; ?>:<?php echo $label; ?>]" value="<?php echo $value; ?
>">

119 </p>
120 <?php endforeach; ?>

Critical

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Source: Read $ POST

N
[é]

EJRTIFY” Nov 9, 2016, 1:29 PM

© Copyright 2016 Hewlett Packard Enterprise Development LP

Cross-Site Scripting: Reflected

Package: system.admin.theme.posts
Critical

From: input.post
File: system/classes/input.php:35
32
33
34 public static function post (Skey, S$default = false) {
35 return static::fetch array($ POST, S$key, $default);
36 }
37
38 public static function get (key, Sdefault = false) {

Sink: builtin_echo()
File: system/admin/theme/posts/edit.php:49
Taint Flags: WEB, XSS

46

47 <p>

48 <label for="html">Content:</label>

49 <textarea id="html" name="html"><?php echo Input::post('html', S$article->html); ?2></
textarea>

50
51 Your post's main content. Enjoys a healthy dose of valid HTML.
52 </p>

Critical

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Source: Read $_POST
From: input.post
File: system/classes/input.php:35

32

33

34 public static function post (Skey, S$default = false) {
35 return static::fetch array($ POST, Skey, $default);
36 }

37

38 public static function get (key, Sdefault = false) {

N
(o>}

EJRTIFY” Nov 9, 2016, 1:29 PM

© Copyright 2016 Hewlett Packard Enterprise Development LP

Cross-Site Scripting: Reflected

Package: system.admin.theme.posts

system/admin/theme/posts/edit.php, line 28 (Cross-Site Scripting: Reflected)

Sink: builtin_echo()
File: system/admin/theme/posts/edit.php:28
Taint Flags: WEB, XSS
25 <fieldset>
26 <p>
27 <label for="title">Title:</label>
28 <input id="title" name="title" value="<?php echo Input::post('title', S$article->title); °?

29
30 Your post’s title.
31 </p>

system/admin/theme/posts/edit.php, line 42 (Cross-Site Scripting: Reflected)
Issue Details

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Source Details

Source: Read $ POST
From: input.post
File: system/classes/input.php:35
32}
33
34 public static function post($key, $default = false) {
35 return static::fetch array($ POST, Skey, S$default);
36 }
37
38 public static function get (Skey, S$default = false) {

Sink Details

Sink: builtin_echo()
File: system/admin/theme/posts/edit.php:42
Taint Flags: WEB, XSS

40 <p>
41 <label for="description">Description:</label>

42 <textarea id="description" name="description"><?php echo Input::post('description',
Sarticle->description); ?></textarea>

43

44 A brief outline of what your post is about. Used in the post introduction, RSS feed,
and <code><meta name="description" /></code>.

45 </p>

.E’DRTIFW Nov 9, 2016, 1:29 PM 27

© Copyright 2016 Hewlett Packard Enterprise Development LP

Cross-Site Scripting: Reflected

Package: system.admin.theme.posts

Critical

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Source: Read $ POST
From: input.post
File: system/classes/input.php:35

32

33

34 public static function post (Skey, S$default = false) {
35 return static::fetch array($ POST, Skey, $default);
36 }

37

38 public static function get (key, Sdefault = false) {

Sink: builtin_echo()
File: system/admin/theme/posts/edit.php:35
Taint Flags: WEB, XSS

32

33 <p>

34 <label for="slug">Slug:</label>

35 <input type="url" id="slug" autocomplete="off" name="slug" value="<?php echo
Input::post('slug', $article->slug); ?>">

36
37 The slug for your post (<code id="output">slug</code>).
38 </p>

Critical

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Source: Read $ POST
From: input.post
File: system/classes/input.php:35
32
33
34 public static function post ($key, $default = false) {

N
©

EJRTIFY” Nov 9, 2016, 1:29 PM

© Copyright 2016 Hewlett Packard Enterprise Development LP

Cross-Site Scripting: Reflected

Package: system.admin.theme.posts
Critical

35 return static::fetch array($ POST, S$key, $default);
36 }

37

38 public static function get (key, Sdefault = false) {

Sink: builtin_echo()
File: system/admin/theme/posts/add.php:35
Taint Flags: WEB, XSS

32
33 <p>
34 <label for="description">Description:</label>

35 <textarea id="description" name="description"><?php echo Input::post ('description'); ?></
textarea>

36

37 A brief outline of what your post is about. Used in the post introduction, RSS feed,
and <code><meta name="description" /></code>.

38 </p>

Critical

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Source: Read $ POST
From: input.post
File: system/classes/input.php:35
32}
33
34 public static function post($key, $default = false) {
35 return static::fetch array($ POST, Skey, S$default);
36 }
37
38 public static function get (Skey, S$default = false) {

Sink: builtin_echo()
File: system/admin/theme/posts/add.php:28
Taint Flags: WEB, XSS

25

N
©

EJRTIFY” Nov 9, 2016, 1:29 PM

© Copyright 2016 Hewlett Packard Enterprise Development LP

Cross-Site Scripting: Reflected

Package: system.admin.theme.posts
Critical

26 <p>
27 <label for="slug">Slug:</label>
28 <input id="slug" autocomplete="off" name="slug" value="<?php echo Input::post('slug'); °?>">

30 The slug for your post (<code id="output">slug</code>).
31 </p>

Critical

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Source: Read $ POST
From: input.post
File: system/classes/input.php:35

32

33

34 public static function post($key, $default = false) {
35 return static::fetch array($ POST, S$key, $default);
36 }

37

38 public static function get (Skey, S$default = false) {

Sink: builtin_echo()
File: system/admin/theme/posts/edit.php:84
Taint Flags: WEB, XSS

82 <p>
83 <label for="css">Custom CSS:</label>
84 <textarea id="css" name="css"><?php echo Input::post('css', Sarticle->css); ?></textarea>

86 Custom CSS. Will be wrapped in a <code><style></code> block.
87 </p>

Critical

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

w
o

EJRTIFY” Nov 9, 2016, 1:29 PM

© Copyright 2016 Hewlett Packard Enterprise Development LP

Cross-Site Scripting: Reflected

Package: system.admin.theme.posts

Critical

Source: Read $ POST
From: input.post
File: system/classes/input.php:35
32
33
34 public static function post($key, $default = false) {
35 return static::fetch array($ POST, Skey, S$default);
36 }
37
38 public static function get (key, Sdefault = false) {

Sink: builtin_echo()
File: system/admin/theme/posts/add.php:103
Taint Flags: WEB, XSS
100 <?php list ($key, $label) = explode(':', S$data); 2>
101 <p>
102 <label><?php echo $label; ?></label>
103 <input name="field[<?php echo $key; ?>:<?php echo $label; ?>]" value="<?php echo $value; 2

104 </p>
105 <?php endforeach; 2>
106 </div>

Critical

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Source: Read $ POST
From: input.post
File: system/classes/input.php:35

32

33

34 public static function post (Skey, S$default = false) {
35 return static::fetch array($ POST, Skey, S$default);
36 }

37

38 public static function get (key, Sdefault = false) {

w
=

EJRTIFY” Nov 9, 2016, 1:29 PM

© Copyright 2016 Hewlett Packard Enterprise Development LP

Cross-Site Scripting: Reflected

Package: system.admin.theme.posts

Critical

Sink: builtin_echo()
File: system/admin/theme/posts/edit.php:91
Taint Flags: WEB, XSS
88
89 <p>
90 <label for="js">Custom JS:</label>
91 <textarea id="js" name="7js"><?php echo Input::post('js', S$article->js); ?></textarea>
92
93 Custom Javascript. Will be wrapped in a <code><scripté></code> block.
94 </p>

Critical

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Source: Read $ POST
From: input.post
File: system/classes/input.php:35

32

33

34 public static function post($key, $default = false) {
35 return static::fetch array($ POST, Skey, S$default);
36 }

37

38 public static function get (key, Sdefault = false) {

Sink: builtin_echo()
File: system/admin/theme/posts/edit.php:118
Taint Flags: WEB, XSS
115 <?php list ($key, $label) = explode(':', S$data); 2>
116 <p>
117 <label><?php echo $label; ?></label>
118 <input name="field[<?php echo $key; ?>:<?php echo $label; ?>]" value="<?php echo $value; 2

>">
119 </p>
120 <?php endforeach; ?>
121 </div>
EJRTIFY° Nov 9, 2016, 1:29 PM 32
© Copyright 2016 Hewlett Packard Enterprise Development LP

Cross-Site Scripting: Reflected Critical

Package: system.admin.theme.posts
Critical

Critical

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Source: Read $ POST
From: input.post
File: system/classes/input.php:35
32}
33
34 public static function post (Skey, S$default = false) {
35 return static::fetch array($ POST, Skey, $default);
36 }
37
38 public static function get (key, Sdefault = false) {

Sink: builtin_echo()
File: system/admin/theme/posts/add.php:102
Taint Flags: WEB, XSS

99 <?php foreach (Input::post('field', array()) as $data => S$value): 2>
100 <?php list(Skey, $label) = explode(':', $data); 2>
101 <p>

102 <label><?php echo $label; ?></label>

103 <input name="field[<?php echo $key; ?>:<?php echo $label; ?>]" value="<?php echo $value; °?
ST

104 </p>

105 <?php endforeach; ?>

Critical

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Source: Read $ POST

From: input.post
File: system/classes/input.php:35
32}
IFGRTIFY@ Nov 9, 2016, 1:29 PM 33
© Copyright 2016 Hewlett Packard Enterprise Development LP

Cross-Site Scripting: Reflected
Package: system.admin.theme.posts

34 public static function post($key, $default = false) {
35 return static::fetch array($ POST, Skey, S$default);
36 }

38 public static function get (key, Sdefault = false) {

Sink: builtin_echo()
File: system/admin/theme/posts/add.php:42
Taint Flags: WEB, XSS

39

40 <p>

41 <label for="html">Content:</label>

42 <textarea id="html" name="html"><?php echo Input::post('html'); ?></textarea>
43

44 Your post's main content. Enjoys a healthy dose of valid HTML.
45 </p>

Package: system.admin.theme.users

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Source: Read $ POST
From: input.post
File: system/classes/input.php:35

32 }

34 public static function post (Skey, S$default = false) {
35 return static::fetch array($ POST, Skey, S$default);
36 }

38 public static function get (key, Sdefault = false) {

Sink: builtin_echo()
File: system/admin/theme/users/amnesia.php:12

EJRTIFY” Nov 9, 2016, 1:29 PM 34

© Copyright 2016 Hewlett Packard Enterprise Development LP

Cross-Site Scripting: Reflected

Package: system.admin.theme.users
Critical

Taint Flags: WEB, XSS

9

10 <p>

11 <label for="email">Email:</label>

12 <input autocapitalize="off" name="email" id="email" wvalue="<?php echo
Input::post('email'); ?2>">

13 </p>

14

15 <p class="buttons">

Critical

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Source: Read $ POST
From: input.post
File: system/classes/input.php:35
32}
33
34 public static function post($key, $default = false) {
35 return static::fetch array($ POST, S$key, $default);
36 }
37
38 public static function get (Skey, S$default = false) {

Sink: builtin_echo()
File: system/admin/theme/users/edit.php:59
Taint Flags: WEB, XSS

57 <p>
58 <label for="username">Username:</label>

59 <input id="username" name="username" value="<?php echo Input::post ('username', Suser-
>username) ; ?2>">

60
61 The desired username. Can be changed later.
62 </p>

Critical

w
(93}

EJRTIFY” Nov 9, 2016, 1:29 PM

© Copyright 2016 Hewlett Packard Enterprise Development LP

Cross-Site Scripting: Reflected

Package: system.admin.theme.users
Critical

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Source: Read $ POST
From: input.post
File: system/classes/input.php:35
32}
33
34 public static function post($key, $default = false) {
35 return static::fetch array($ POST, S$key, $default);
36 }
37
38 public static function get (Skey, S$default = false) {

Sink: builtin_echo()
File: system/admin/theme/users/add.php:11
Taint Flags: WEB, XSS

8 <fieldset>

9 <p>

10 <label for="real name">Real name:</label>

11 <input id="real name" name="real name" value="<?php echo Input::post('real name'); ?2>">
12

13 The useré’s real name. Used in author bylines (visible to public) .

14 </p>

Critical

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Source: Read $_ POST
From: input.post
File: system/classes/input.php:35

32

33

34 public static function post (Skey, S$default = false) {
35 return static::fetch array($ POST, S$key, $default);

36 }
IFDRT'FY Nov 9, 2016, 1:29 PM 36
© Copyright 2016 Hewlett Packard Enterprise Development LP

Cross-Site Scripting: Reflected

Package: system.admin.theme.users
Critical

37
38 public static function get (key, Sdefault = false) {

Sink: builtin_echo()
File: system/admin/theme/users/add.php:18
Taint Flags: WEB, XSS

15

16 <p>

17 <label for="bio">Biography:</label>

18 <textarea id="bio" name="bio"><?php echo Input::post('bio'); ?></textarea>
19

20 A short biography for your user. Accepts valid HTML.

21 </p>

Critical

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Source: Read $ POST
From: input.post
File: system/classes/input.php:35

32}

33

34 public static function post ($key, $default = false) {
35 return static::fetch array($ POST, Skey, S$default);
36 }

37

38 public static function get (key, Sdefault = false) {

Sink: builtin_echo()
File: system/admin/theme/users/edit.php:11
Taint Flags: WEB, XSS

8 <fieldset>
9 <p>
10 <label for="real name">Real name:</label>

11 <input id="real name" name="real name" value="<?php echo Input::post('real name', Suser-
>real name); ?>">

w
J

EJRTIFY” Nov 9, 2016, 1:29 PM

© Copyright 2016 Hewlett Packard Enterprise Development LP

Cross-Site Scripting: Reflected Critical

Package: system.admin.theme.users
Critical

13 The useré’s real name. Used in author bylines (visible to public) .
14 </p>

Critical

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Source: Read $ POST
From: input.post
File: system/classes/input.php:35
32}
33
34 public static function post($key, $default = false) {
35 return static::fetch array($ POST, S$key, $default);
36 }
37
38 public static function get (Skey, S$default = false) {

Sink: builtin_echo()
File: system/admin/theme/users/add.php:59
Taint Flags: WEB, XSS

56

57 <p>

58 <label for="username">Username:</label>

59 <input id="username" name="username" value="<?php echo Input::post ('username'); ?>">
60

61 The desired username. Can be changed later.

62 </p>

Critical

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Source: Read $ POST
From: input.post

w
©

EJRTIFY” Nov 9, 2016, 1:29 PM

© Copyright 2016 Hewlett Packard Enterprise Development LP

Cross-Site Scripting: Reflected

Package: system.admin.theme.users

32
33
34
35
36
37
38

Critical

File: system/classes/input.php:35
}

public static function post ($key, $default = false) {
return static::fetch array($ POST, Skey, Sdefault);
}

public static function get (key, Sdefault = false) {

70
71
72
73
74
75
76

Sink: builtin_echo()
File: system/admin/theme/users/add.php:73
Taint Flags: WEB, XSS

<p>
<label for="email">Email:</label>

<input id="email" name="email" value="<?php echo Input::post('email'); 2>">

The useré’s email address. Needed if the user forgets their password.
</p>

Critical

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

32
33
34
35
36
37
38

Source: Read $ POST
From: input.post
File: system/classes/input.php:35

}

public static function post ($key, $default = false) {
return static::fetch array($ POST, Skey, S$default);

}

public static function get (Skey, S$default = false) {

EJRTIFY” Nov 9, 2016, 1:29 PM

Sink: builtin_echo()

w
©

© Copyright 2016 Hewlett Packard Enterprise Development LP

Cross-Site Scripting: Reflected

Package: system.admin.theme.users
Critical

File: system/admin/theme/users/edit.php:18
Taint Flags: WEB, XSS

16 <p>
17 <label for="bio">Biography:</label>
18 <textarea id="bio" name="bio"><?php echo Input::post('bio', Suser->bio); ?></textarea>

20 A short biography for your user. Accepts valid HTML.
21 </p>

Critical

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Source: Read $ POST
From: input.post
File: system/classes/input.php:35
32}
33
34 public static function post (Skey, S$default = false) {
35 return static::fetch array($ POST, S$key, $default);
36 }
37
38 public static function get (key, Sdefault = false) {

Sink: builtin_echo()
File: system/admin/theme/userg/edit.php:73
Taint Flags: WEB, XSS

71 <p>
72 <label for="email">Email:</label>

73 <input id="email" name="email" value="<?php echo Input::post('email', Suser->email); 2>">

75 The useré’s email address. Needed if the user forgets their password.
76 </p>

Critical

N
o

EJRTIFY” Nov 9, 2016, 1:29 PM

© Copyright 2016 Hewlett Packard Enterprise Development LP

Cross-Site Scripting: Reflected

Package: system.admin.theme.users
Critical

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Source: Read $ POST
From: input.post
File: system/classes/input.php:35
32}
33
34 public static function post($key, $default = false) {
35 return static::fetch array($ POST, S$key, $default);
36 }
37
38 public static function get (Skey, S$default = false) {

Sink: builtin_echo()
File: system/admin/theme/users/login.php:12
Taint Flags: WEB, XSS

10 <p>

11 <label for="user">Username:</label>

12 <input autocapitalize="off" name="user" id="user" value="<?php echo Input::post('user'); ?
>">

13 </p>

14

15 <p>

Critical

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Source: Read $ POST
From: input.post
File: system/classes/input.php:35
32
33
34 public static function post (key, Sdefault = false) {
35 return static::fetch array($ POST, Skey, S$default);

IN
=

EJRTIFY” Nov 9, 2016, 1:29 PM

© Copyright 2016 Hewlett Packard Enterprise Development LP

Cross-Site Scripting: Reflected

Package: system.admin.theme.users
Critical

36 }
37
38 public static function get (key, Sdefault = false) {

Sink: builtin_echo()
File: system/admin/theme/users/reset.php:14
Taint Flags: WEB, XSS

12 <p>
13 <label for="password">Password:</label>

14 <input name="password" id="password" type="password" value="<?php echo
Input::post ('password'); 2>">

15 </p>
16
17 <p class="buttons">

Package: themes.default

Critical

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Source: Read $ SERVER['REQUEST_URI']
From: request.uri
File: system/classes/request.php:18

15 // try request uri
16 elseif(isset($_SERVER['REQUEST_URI'])) {
17 // make sure we can parse URI

18 if((Suri = parse_url($_SERVER['REQUEST_URI'], PHP URL PATH)) === false) {
19 throw new Exception('Malformed request URI');

20 }

21 }

Sink: builtin_echo()
File: themes/default/posts.php:15
Taint Flags: WEB, XSS

12 <?php endwhile; ?>

N
)

EJRTIFY” Nov 9, 2016, 1:29 PM

© Copyright 2016 Hewlett Packard Enterprise Development LP

Cross-Site Scripting: Reflected

Package: themes.default

Critical
13
14
15 <p><?php echo posts prev(); ?> <?php echo posts next(); ?2></p>
16

17 <?php else: ?>
18 <p>Looks like you have some writing to do!</p>

Critical

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Source: Read $ SERVER['REQUEST_URI']
From: request.uri
File: system/classes/request.php:18

15 // try request uri
16 elseif(isset($_SERVER['REQUEST_URI'])) {
17 // make sure we can parse URI

18 if(($Suri = parse url($ SERVER['REQUEST URI'], PHP URL PATH)) === false) {
19 throw new Exception('Malformed request URI');

20 }

21 |}

Sink: builtin_echo()
File: themes/default/search.php:3
Taint Flags: WEB, XSS

1 <section class="content">

2

3 <hl>You searched for “<?php echo search term(); ?>”.</hl>
4

5

<?php if (has_ search results()): 2>

6 <p>We found <?php echo total search results(); ?> <?php echo
pluralise(total search results(), 'result'); ?> for “<?php echo search term(); ?
>” </p>

7 <ul class="items wrap">

Critical

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

N
@

EJRTIFY” Nov 9, 2016, 1:29 PM

© Copyright 2016 Hewlett Packard Enterprise Development LP

Cross-Site Scripting: Reflected

Package: themes.default

themes/default/search.php, line 6 (Cross-Site Scripting: Reflected)

Source Details

Source: Read $ SERVER['REQUEST_URI']

From: request.uri

File: system/classes/request.php:18
15 // try request uri
16 elseif(isset($_SERVER['REQUEST_URI'])) {
17 // make sure we can parse URI

18 if((Suri = parse url($ SERVER['REQUEST URI'], PHP URL PATH)) === false) {
19 throw new Exception('Malformed request URI');

20 }

21)}

Sink Details

Sink: builtin_echo()
File: themes/default/search.php:6
Taint Flags: WEB, XSS

3 <hl>You searched for “<?php echo search term(); ?>”.</hl>

4

5 <?php if (has search results()): ?>

6 <p>We found <?php echo total search results(); ?> <?php echo
pluralise (total search results(), 'result'); ?> for “<?php echo search term(); ?

>” </p>

7 <ul class="items wrap">

8 <?php while(search results()): ?>
9

themes/default/search.php, line 21 (Cross-Site Scripting: Reflected)
Issue Details

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Source Details

Source: Read $ SERVER['REQUEST_URI']

From: request.uri

File: system/classes/request.php:18
15 // try request uri
16 elseif(isset ($_SERVER['REQUEST URI'])) {
17 // make sure we can parse URI

18 if((Suri = parse url($ SERVER['REQUEST URI'], PHP URL PATH)) === false) {

19 throw new Exception('Malformed request URI');

20 }

FDRT'FY® Nov 9, 2016, 1:29 PM 44
| — 4 © Copyright 2016 Hewlett Packard Enterprise Development LP

Cross-Site Scripting: Reflected

Package: themes.default
Critical

21 }

Sink: builtin_echo()
File: themes/default/search.php:21
Taint Flags: WEB, XSS

18 <p><?php echo search prev(); ?> <?php echo search next(); ?></p>
19
20 <?php else: ?>

21 <p>Unfortunately, there's no results for “<?php echo search term(); ?>”. Did
you spell everything correctly?</p>

22 <?php endif; 2>
23
24 </section>

Critical

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Source: Read $ SERVER['REQUEST_URI']
From: request.uri
File: system/classes/request.php:18

15 // try request uri
16 elseif(isset($_SERVER['REQUEST_URI'])) {
17 // make sure we can parse URI

18 if((Suri = parse_url($_SERVER['REQUEST_URI'], PHP URL PATH)) === false) {
19 throw new Exception('Malformed request URI');

20 }

21 }

Sink: builtin_echo()
File: themes/default/search.php:18
Taint Flags: WEB, XSS

15 <?php endwhile; 2>

16
17
18 <p><?php echo search prev(); ?> <?php echo search next(); ?></p>
19
EﬂRTlFY@ Nov 9, 2016, 1:29 PM 45
© Copyright 2016 Hewlett Packard Enterprise Development LP

Cross-Site Scripting: Reflected Critical

Package: themes.default
Critical

20 <?php else: ?>

21 <p>Unfortunately, there's no results for “<?php echo search term(); ?>”. Did
you spell everything correctly?</p>

Critical

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Source: Read $ SERVER['REQUEST_URI']

From: request.uri

File: system/classes/request.php:18
15 // try request uri
16 elseif(isset($_SERVER['REQUEST_URI'])) {
17 // make sure we can parse URI

18 if((Suri = parse_url($_SERVER['REQUEST_URI'], PHP URL PATH)) === false) {
19 throw new Exception('Malformed request URI');

20 }

21 }

Sink: builtin_echo()
File: themes/default/404.php:5
Taint Flags: WEB, XSS

<section class="content">
<h1>0Oh no, this page cané’t be found.</hl>

<p>Unfortunately, the page at <code><?php echo current url(); ?></code>
can't be found, but don't give up hope yet! You can always try going back to
the homepage, or searching.</p>

0 JdJ o O d WD

</section>

Package: themes.default.includes

Critical

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

N
[

EJRTIFY” Nov 9, 2016, 1:29 PM

© Copyright 2016 Hewlett Packard Enterprise Development LP

Cross-Site Scripting: Reflected

Package: themes.default.includes

themes/default/includes/comment_form.php, line 21 (Cross-Site Scripting: Critical
Reflected)

Source: Read $ SERVER['REQUEST_URI']
From: request.uri
File: system/classes/request.php:18

15 // try request uri

16 elseif(isset($_SERVER['REQUEST_URI'])) {

17 // make sure we can parse URI

18 if((Suri = parse url($ SERVER['REQUEST URI'], PHP URL PATH)) === false) {
19 throw new Exception('Malformed request URI');

20 }

21 |}

Sink Details

Sink: builtin_echo()
File: themes/default/includes/comment_form.php:21
Taint Flags: WEB, XSS

18

19 <?php endif; 2>

20

21 <form id="comment" class="commentform" method="post" action="<?php echo current url(); ?

>#comment">
22 <legend>Add your comments</legend>
23

24 <?php echo comment form notifications(); 2>

themes/default/includes/header.php, line 35 (Cross-Site Scripting: Reflected)
Issue Details

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Source Details

Source: Read $ SERVER['REQUEST_URI']
From: request.uri
File: system/classes/request.php:18

15 // try request uri

16 elseif(isset($_SERVER['REQUEST_URI'])) {

17 // make sure we can parse URI

18 if((Suri = parse_url($_SERVER['REQUEST_URI'], PHP URL PATH)) === false) {

19 throw new Exception('Malformed request URI');

20 }

21 |}

FDRT'FY® Nov 9, 2016, 1:29 PM 47
| = © Copyright 2016 Hewlett Packard Enterprise Development LP

Cross-Site Scripting: Reflected

Package: themes.default.includes

Critical

Sink: builtin_echo()
File: themes/default/includes/header.php:35
Taint Flags: WEB, XSS

32 <body>
33
34 <form id="search" action="<?php echo search url(); ?>" method="post">

35 <input type="search" name="term" placeholder="To search, type and hit enter…"
value="<?php echo search term(); 2>">

36 </form>
37
38 <header id="top">

EJRTIFY” Nov 9, 2016, 1:29 PM 48

© Copyright 2016 Hewlett Packard Enterprise Development LP

Key Management: Empty Encryption Key (1 issue)

Abstract

Empty encryption keys may compromise system security in a way that cannot be easily remedied.

Explanation

It is never a good idea to use an empty encryption key. Not only does using an empty encryption key
significantly reduce the protection afforded by a good encryption algorithm, but it also makes fixing the
problem extremely difficult. Once the offending code is in production, the empty encryption key cannot be
changed without patching the software. If an account protected by the empty encryption key is
compromised, the owners of the system will be forced to choose between security and availability.

Example: The code below initializes an encryption key variable to an empty string.

(I}

$éhcrypti on_key = ;
$filter = new Zend_Filter_Encrypt ($encryption_key);
$filter->setVector(' mylV);

$encrypted = $filter->filter(' text_to_be_encrypted);
print $encrypted;

Not only will anyone who has access to the code be able to determine that it uses an empty encryption key,
but anyone employing even basic cracking techniques is much more likely to successfully decrypt any
encrypted data. Once the program has shipped, there is no way to change the empty encryption key unless
the program is patched. An employee with access to this information could use it to break into the system.
Even if attackers only had access to the application's executable, they could extract evidence of the use of
an empty encryption key.

Recommendation

Encryption keys should never be empty and should generally be obfuscated and managed in an external
source. Storing encryption keys in plaintext, empty or otherwise, anywhere on the system allows anyone
with sufficient permissions to read and potentially misuse the encryption key.

Starting with Microsoft(R) Windows(R) 2000, Microsoft(R) provides Windows Data Protection Application
Programming Interface (DPAPI), which is an OS-level service that protects sensitive application data, such
as passwords and private keys [1].

Issue Summary

FDRT'FY Nov 9, 2016, 1:29 PM

© Copyright 2016 Hewlett Packard Enterprise Development LP

49

Exploitable |-
Suspicious |
Bad Practice |
Reliability Issue |
Not an Issue |
<None>_1.

Analysis

0 1 2
Issues

@ citical | @Prigh | EFIMediom | = FLow

Engine Breakdown

SCA Weblinspect SecurityScope Total
Key Management: Empty Encryption Key 1 0 0 1
Total 1 0 0 1

Key Management: Empty Encryption Key

Package: <none>

Kingdom: Security Features
Scan Engine: SCA (Structural)

Sink: ArrayAccess
File: config.default.php:28
Taint Flags:

25 ‘'admin folder' => 'admin',

26

27 // your unique application key used for signing passwords
28 'key' => "'

29),

30

31 // Session details

EJRTIFY” Nov 9, 2016, 1:29 PM 50

© Copyright 2016 Hewlett Packard Enterprise Development LP

Password Management: Empty Password (1 issue)

Abstract

Empty passwords may compromise system security in a way that cannot be easily remedied.

Explanation

It is never a good idea to assign an empty string to a password variable. If the empty password is used to
successfully authenticate against another system, then the corresponding account's security is likely
compromised because it accepts an empty password. If the empty password is merely a placeholder until a
legitimate value can be assigned to the variable, then it can confuse anyone unfamiliar with the code and
potentially cause problems on unexpected control flow paths.

Example: The code below attempts to connect to a database with an empty password.

If the code in the Example succeeds, it indicates that the database user account "scott" is configured with
an empty password, which can be easily guessed by an attacker. Even worse, once the program has
shipped, updating the account to use a non-empty password will require a code change.

Recommendation

Always read stored password values from encrypted, external resources and assign password variables
meaningful values. Ensure that sensitive resources are never protected with empty or null passwords.

Starting with Microsoft(R) Windows(R) 2000, Microsoft(R) provides Windows Data Protection Application

Programming Interface (DPAPI), which is an OS-level service that protects sensitive application data, such
as passwords and private keys [1].

Issue Summary

Exploitable
g Suspicious
% Bad Practice
51 Reliability Issue

Not an Issue ‘

<None> |
0 1 2
Issues

@ critical |5High ||:’Medium |I:’Low

Engine Breakdown

SCA Weblnspect SecurityScope Total
Password Management: Empty Password 1 0 0 1
Total 1 0 0 1
FDRT'FY Nov 9, 2016, 1:29 PM 51

© Copyright 2016 Hewlett Packard Enterprise Development LP

Password Management: Empty Password

Package: <none>

Kingdom: Security Features
Scan Engine: SCA (Structural)

Sink: ArrayAccess
File: config.default.php:11
Taint Flags:

8 ‘'database' => array(
9 ‘'host' => '127.0.0.1"',
10 'username' => 'root',
11 'password' => '',

12 'name' => 'testcms'

13),
14
EJRTIFY° Nov 9, 2016, 1:29 PM 52
© Copyright 2016 Hewlett Packard Enterprise Development LP

Password Management: Password in HTML Form (1 issue)

Abstract

Populating password fields in an HTML form could result in a system compromise.

Explanation

Populating password fields in an HTML form allows anyone to see their values in the HTML source.
Furthermore, sensitive information stored in password fields may be cached by proxies or browsers.

Recommendation

Do not populate password-type form fields.

Example: In HTML forms, do not set the val ue attribute of sensitive inputs.

Issue Summary

Exploitable
Suspicious
Bad Practice
Reliability Issue
Not an Issue

Analysis

<None>

0 1 2
Issues

@ ciitical | @PHigh | EFIMedium | EFLow

Engine Breakdown

SCA Weblinspect SecurityScope Total
Password Management: Password in HTML Form 1 0 0 1
Total 1 0 0 1

Password Management: Password in HTML Form

Package: system.admin.theme.users

system/admin/theme/users/reset.php, line 14 (Password Management: Password Critical
in HTML Form)

Issue Details

Kingdom: Security Features
Scan Engine: SCA (Content)

Sink Details
FDRTIFY@ Nov 9, 2016, 1:29 PM 53
| 4 © Copyright 2016 Hewlett Packard Enterprise Development LP

Password Management: Password in HTML Form

Package: system.admin.theme.users

File: system/admin/theme/users/reset.php:14
Taint Flags:

11
12 <p>
13 <label for="password">Password:</label>

14 <input name="password" id="password" type="password" value="<?php echo
Input::post ('password'); 2>">

15 </p>
16
17 <p class="buttons">

EDRTIFY° Nov 9, 2016, 1:29 PM 54

© Copyright 2016 Hewlett Packard Enterprise Development LP

Privacy Violation (1 issue)

Abstract

Mishandling private information, such as customer passwords or social security numbers, can compromise
user privacy and is often illegal.

Explanation
Privacy violations occur when:

1. Private user information enters the program.

2. The data is written to an external location, such as the console, file system, or network.

Example: The following code contains a logging statement that tracks the contents of records added to a
database by storing them in a log file. Among other values that are stored is the return value from the
get Passwor d() function that returns user-supplied plaintext password associated with the account.

The code in the example above logs a plaintext password to the application eventlog. Although many
developers trust the eventlog as a safe storage location for data, it should not be trusted implicitly,
particularly when privacy is a concern.

Private data can enter a program in a variety of ways:

- Directly from the user in the form of a password or personal information
- Accessed from a database or other data store by the application

- Indirectly from a partner or other third party

Sometimes data that is not labeled as private can have a privacy implication in a different context. For
example, student identification numbers are usually not considered private because there is no explicit and
publicly-available mapping to an individual student's personal information. However, if a school generates
identification numbers based on student social security numbers, then the identification numbers should be
considered private.

Security and privacy concerns often seem to compete with each other. From a security perspective, you
should record all important operations so that any anomalous activity can later be identified. However,
when private data is involved, this practice can create risk.

Although there are many ways in which private data can be handled unsafely, a common risk stems from
misplaced trust. Programmers often trust the operating environment in which a program runs, and therefore
believe that it is acceptable to store private information on the file system, in the registry, or in other locally-
controlled resources. However, even if access to certain resources is restricted, this does not guarantee
that the individuals who do have access can be trusted. For example, in 2004, an unscrupulous employee
at AOL sold approximately 92 million private customer e-mail addresses to a spammer marketing an
offshore gambling web site [1].

FDRT'FY Nov 9, 2016, 1:29 PM

© Copyright 2016 Hewlett Packard Enterprise Development LP

In response to such high-profile exploits, the collection and management of private data is becoming
increasingly regulated. Depending on its location, the type of business it conducts, and the nature of any
private data it handles, an organization may be required to comply with one or more of the following federal
and state regulations:

- Safe Harbor Privacy Framework [3]

- Gramm-Leach Bliley Act (GLBA) [4]

- Health Insurance Portability and Accountability Act (HIPAA) [5]

- California SB-1386 [6]

Despite these regulations, privacy violations continue to occur with alarming frequency.

Recommendation

When security and privacy demands clash, privacy should usually be given the higher priority. To
accomplish this and still maintain required security information, cleanse any private information before it
exits the program.

To enforce good privacy management, develop and strictly adhere to internal privacy guidelines. The
guidelines should specifically describe how an application should handle private data. If your organization
is regulated by federal or state law, ensure that your privacy guidelines are sufficiently strenuous to meet
the legal requirements. Even if your organization is not regulated, you must protect private information or
risk losing customer confidence.

The best policy with respect to private data is to minimize its exposure. Applications, processes, and
employees should not be granted access to any private data unless the access is required for the tasks
that they are to perform. Just as the principle of least privilege dictates that no operation should be
performed with more than the necessary privileges, access to private data should be restricted to the
smallest possible group.

Issue Summary

Exploitable
Suspicious
Bad Practice
Reliability Issue

<None>
0 1 2
Issues

@ critical | @PHigh | = IMedium | EFLow

Analysis

Engine Breakdown

SCA Weblnspect SecurityScope Total
Privacy Violation 1 0 0 1
Total 1 0 0 1
FDRTIFY‘" Nov 9, 2016, 1:29 PM 56

© Copyright 2016 Hewlett Packard Enterprise Development LP

Privacy Violation

Package: install

Critical

Kingdom: Security Features
Scan Engine: SCA (Data Flow)

Sour ce: Read $password
File: install/installer.php: 150

147 if (empty(Serrors)) {
148 //no errors we're all gooood

149 Sresponse['installed'] = true;
150 S$response['password'] = S$password;
151 Sresponse['warnings'] = Swarnings;

152 } else {
153 S$Sresponse['installed'] = false;

Sink: builtin_echo()
File: install/installer.php:159
Taint Flags: PRIVATE

156 }

157

158 // output json formatted string
159 echo json_encode (Sresponse);
160

161 undefined

162 undefined

EJRTIFY” Nov 9, 2016, 1:29 PM 57

© Copyright 2016 Hewlett Packard Enterprise Development LP

Privacy Violation: Autocomplete (2 issues)

Abstract

Autocompletion of forms allows some browsers to retain sensitive information in their history.

Explanation

With autocompletion enabled, some browsers retain user input across sessions, which could allow
someone using the computer after the initial user to see information previously submitted.

Recommendation

Explicitly disable autocompletion on forms or sensitive inputs. By disabling autocompletion, information
previously entered will not be presented back to the user as they type. It will also disable the "remember
my password" functionality of most major browsers.

Example 1: In an HTML form, disable autocompletion for all input fields by explicitly setting the value of the
aut oconpl et e attribute to of f on the f or mtag.

Address:
Password:

Example 2: Alternatively, disable autocompletion for specific input fields by explicitly setting the value of
the aut oconpl et e attribute to of f on the corresponding tags.

Address:
Password:

Note that the default value of the aut oconpl et e attributed is on. Therefore do not omit the attribute when
dealing with sensitive inputs.

Issue Summary

FORTIFY' Nov 9, 2016, 1:29 PM 58

© Copyright 2016 Hewlett Packard Enterprise Development LP

Exploitable |-
Suspicious |
Bad Practice |
Reliability Issue |
Not an Issue |
<None>_1.

Analysis

Issues

@ citical | @Prigh | EFIMediom | = FLow

Engine Breakdown

SCA Weblinspect SecurityScope Total
Privacy Violation: Autocomplete 2 0 0 2
Total 2 0 0 2

Privacy Violation: Autocomplete

Package: system.admin.theme.users

Kingdom: Security Features
Scan Engine: SCA (Content)

File: system/admin/theme/users/login.php:17
Taint Flags:

14

15 <p>

16 <label for="pass">Password:</label>

17 <input type="password" name="pass" id="pass">

18
19 <a href="<?php echo admin url ('users/amnesia'); ?>">Forgotten your password?
20 </p>

Kingdom: Security Features
Scan Engine: SCA (Content)

File: system/admin/theme/users/reset.php: 14
Taint Flags:
11
12 <p>
13 <label for="password">Password:</label>

a
©

EJRTIFY” Nov 9, 2016, 1:29 PM

© Copyright 2016 Hewlett Packard Enterprise Development LP

Privacy Violation: Autocomplete _

Package: system.admin.theme.users

14 <input name="password" id="password" type="password" value="<?php echo
Input::post ('password'); ?2>">

15 </p>

16

17 <p class="buttons">

EJRTIFY” Nov 9, 2016, 1:29 PM 60

© Copyright 2016 Hewlett Packard Enterprise Development LP

SQL Injection (6 issues)

Abstract

Constructing a dynamic SQL statement with input coming from an untrusted source might allow an attacker
to modify the statement's meaning or to execute arbitrary SQL commands.

Explanation
SQL injection errors occur when:

1. Data enters a program from an untrusted source.

2. The data is used to dynamically construct a SQL query.

Example 1: The following code dynamically constructs and executes a SQL query that searches for items
matching a specified name. The query restricts the items displayed to those where the owner matches the
user name of the currently-authenticated user.

$ﬁéer Name = $ SESSI ON[' user Nane'];

$itenName = $_POST['itenmNane'];
$query = "SELECT * FROM itens WHERE owner = '3$userNanme' AND itemane =
"$itenNane' ;";

$result = nysqgl _query($query);

The query that this code intends to execute follows:

SELECT * FROM it ens
VHERE owner =
AND i temane = ;

However, because the query is constructed dynamically by concatenating a constant query string and a
user input string, the query only behaves correctly if i t emNane does not contain a single-quote character.
If an attacker with the user name wi | ey enters the string "nane’ OR ' a' =' a" fori t enNane, then the
query becomes the following:

SELECT * FROM i t ens
VWHERE owner = "wil ey’
AND itemmane = 'nane' OR 'a'='a';

The addition of the OR " a' =' a' condition causes the where clause to always evaluate to true, so the
query becomes logically equivalent to the much simpler query:

FDRT'FY Nov 9, 2016, 1:29 PM

© Copyright 2016 Hewlett Packard Enterprise Development LP

SELECT * FROM it ens;

This simplification of the query allows the attacker to bypass the requirement that the query only return
items owned by the authenticated user; the query now returns all entries stored in the i t ens table,
regardless of their specified owner.

Example 2: This example examines the effects of a different malicious value passed to the query
constructed and executed in Example 1. If an attacker with the user name wi | ey enters the string "
nane'; DELETE FROM itens; --"foritenNane, then the query becomes the following two queries:

SELECT * FROM it ens
VWHERE owner = 'wil ey’
AND i temmane = 'nane';

DELETE FROM i t ens;

Many database servers, including Microsoft(R) SQL Server 2000, allow multiple SQL statements separated
by semicolons to be executed at once. While this attack string results in an error on Oracle and other
database servers that do not allow the batch-execution of statements separated by semicolons, on
databases that do allow batch execution, this type of attack allows the attacker to execute arbitrary
commands against the database.

Notice the trailing pair of hyphens (--), which specifies to most database servers that the remainder of the
statement is to be treated as a comment and not executed [4]. In this case the comment character serves
to remove the trailing single-quote left over from the modified query. On a database where comments are
not allowed to be used in this way, the general attack could still be made effective using a trick similar to
the one shown in Example 1. If an attacker enters the string "nane'); DELETE FROM i tens; SELECT
* FROMitens WHERE ' a' =' a", the following three valid statements will be created:

SELECT * FROM i t ens
WHERE owner = '"wil ey’
AND i temmane = 'nane';

DELETE FROM i t ens;

SELECT * FROMitens WHERE 'a' =' a';

One traditional approach to preventing SQL injection attacks is to handle them as an input validation
problem and either accept only characters from a whitelist of safe values or identify and escape a blacklist
of potentially malicious values. Whitelisting can be a very effective means of enforcing strict input validation
rules, but parameterized SQL statements require less maintenance and can offer more guarantees with
respect to security. As is almost always the case, blacklisting is riddled with loopholes that make it
ineffective at preventing SQL injection attacks. For example, attackers may:

- Target fields that are not quoted
- Find ways to bypass the need for certain escaped meta-characters
- Use stored procedures to hide the injected meta-characters

FDRT'FY Nov 9, 2016, 1:29 PM

© Copyright 2016 Hewlett Packard Enterprise Development LP

Manually escaping characters in input to SQL queries can help, but it will not make your application secure
from SQL injection attacks.

Another solution commonly proposed for dealing with SQL injection attacks is to use stored procedures.
Although stored procedures prevent some types of SQL injection attacks, they fail to protect against many
others. Stored procedures typically help prevent SQL injection attacks by limiting the types of statements
that can be passed to their parameters. However, there are many ways around the limitations and many
interesting statements that can still be passed to stored procedures. Again, stored procedures can prevent
some exploits, but they will not make your application secure against SQL injection attacks.

Recommendation

The root cause of a SQL injection vulnerability is the ability of an attacker to change context in the SQL
query, causing a value that the programmer intended to be interpreted as data to be interpreted as a
command instead. When a SQL query is constructed, the programmer knows what should be interpreted
as part of the command and what should be interpreted as data. Parameterized SQL statements can
enforce this behavior by disallowing data-directed context changes and preventing nearly all SQL injection
attacks. Parameterized SQL statements are constructed using strings of regular SQL, but where user-
supplied data needs to be included, they include bind parameters, which are placeholders for data that is
subsequently inserted. In other words, bind parameters allow the programmer to explicitly specify to the
database what should be treated as a command and what should be treated as data. When the program is
ready to execute a statement, it specifies to the database the runtime values to use for each of the bind
parameters without the risk that the data will be interpreted as a modification to the command.

When connecting to MySQL, the previous example can be rewritten to use parameterized SQL statements
(instead of concatenating user supplied strings) as follows:

$nysqgli = new nysgli ($host, $dbuser, $dbpass, $db);
$user Nane = $_SESSI O\ ' user Nane' | ;
$itemNanme = $ POST['itenNane'];
$query = "SELECT * FROM itens WHERE owner = ? AND itemmane = ?";

$stmt = $nysqli->prepare($query);
$st nt - >bi nd_paran(' ss', $user nane, $i t enNane) ;
$st mt - >execut e() ;

The MySQL Improved extension (mysqli) is available for PHPS users of MySQL. Code that relies on a
different database should check for similar extensions.

More complicated scenarios, often found in report generation code, require that user input affect the
structure of the SQL statement, for instance by adding a dynamic constraint in the WHERE clause. Do not
use this requirement to justify concatenating user input to create a query string. Prevent SQL injection
attacks where user input must affect command structure with a level of indirection: create a set of legitimate
strings that correspond to different elements you might include in a SQL statement. When constructing a
statement, use input from the user to select from this set of application-controlled values.

Issue Summary

FORTIFY' Nov 9, 2016, 1:29 PM 63

© Copyright 2016 Hewlett Packard Enterprise Development LP

Exploitable
Suspicious
Bad Practice
Reliability Issue
Not an Issue
<None>

Analysis

0 1 2 3 4 5 6 7
Issues

@ citical | @Prigh | EFIMediom | = FLow

Engine Breakdown

SCA Weblinspect SecurityScope Total
SQL Injection 6 0 0 6
Total 6 0 0 6

SQL Injection

Package: install

Critical

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Source: Read $ POST['?]
File: install/installer.php:27

24 Serrors = array();

25

26 foreach ($fields as S$field) {

27 Spost[Sfield] = isset($ POST[S$field]) 2 S POST[S$field] : false;
28 }

29

30 if (empty (Spost['db'])) {

Sink: PDO.exec()
File: install/installer.php:127
Taint Flags: WEB, XSS
124
125 try {
126 $dbh->beginTransaction();
127 s$dbh->exec(S$sql) ;
128

129 $sgl= "INSERT INTO ‘meta’ (‘key', ‘value') VALUES ('sitename', ?), ('description', ?),
("theme', ?2);";

EJRTIFY” Nov 9, 2016, 1:29 PM 64

© Copyright 2016 Hewlett Packard Enterprise Development LP

SQL Injection
Package: install

130

Package: system.classes

Critical

Critical

$statement = $dbh->prepare ($sql);

Critical

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Source: Read $ POST
From: input.post
File: system/classes/input.php:35

}

public static function post ($key, $default = false) {
return static::fetch array($ POST, Skey, S$default);

}

public static function get (key, Sdefault = false) {

67
68
69
70
71
72
73

EJRTIFY° Nov 9, 2016, 1:29 PM

Sink: PDO.prepare()
Enclosing Method: query()
File: system/classes/db.php: 70
Taint Flags: WEB, XSS

}

// prepare
$sth = static::S$dbh->prepare ($sql);

// bind params
Sreflector = new ReflectionMethod ('PDOStatement', 'bindValue'):;

Critical

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Source: Read $ GET

(o2}
o

© Copyright 2016 Hewlett Packard Enterprise Development LP

SQL Injection

Package: system.classes

36
37
38
39
40
41
42

Critical

From: input.get
File: system/classes/input.php:39

}

public static function get (key, Sdefault = false) {
return static::fetch array($_GET, S$key, $default);
}

public static function put (key, Sdefault = false) {

Critical

67
68
69
70
71
72
73

Sink: PDO.prepare()
Enclosing Method: query()
File: system/classes/db.php:70
Taint Flags: WEB, XSS

}

// prepare
$Ssth = static::S$dbh->prepare ($sql);

// bind params
Sreflector = new ReflectionMethod ('PDOStatement', 'bindValue'):;

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

32
33
34
35
36
37
38

Source: Read $ POST
From: input.post
File: system/classes/input.php:35

}

public static function post ($key, $default = false) {
return static::fetch array($ POST, Skey, S$default);

}

public static function get (key, Sdefault = false) {

EJRTIFY” Nov 9, 2016, 1:29 PM

D
(o2}

© Copyright 2016 Hewlett Packard Enterprise Development LP

SQL Injection

Package: system.classes
Critical

Sink: PDO.prepare()
Enclosing Method: exec()
File: system/classes/db.php:116
Taint Flags: WEB, XSS

113 }

114

115 // prepare

116 S$sth = static::$dbh->prepare ($sql) ;

117

118 // bind params

119 Sreflector = new ReflectionMethod('PDOStatement', 'bindValue') ;

Critical

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Sour ce: PDOStatement.fetchcolumn()
File: upgrade/migrations.php:43
40
41 // make posts_page the home page
42 if (Schema::has('meta', 'key', 'home page') === false) {

43 Sposts page = Db::query("select ‘value' from meta where ‘key =
'show posts'")->fetchColumn () ;

44
45 S$sgl = "insert into ‘meta’ ("key’', ‘value’) values ('home page', '"
Sposts page . "')";

46 Smigration->query($sql);

Sink: PDO.prepare()
Enclosing Method: query()
File: system/classes/db.php:70
Taint Flags: DATABASE, XSS
67 }
68
69 // prepare
70 S$sth = static::$dbh->prepare ($sql) ;
71
72 // bind params
73 Sreflector = new ReflectionMethod ('PDOStatement', 'bindValue');

@RTIFY” Nov 9, 2016, 1:29 PM 67

© Copyright 2016 Hewlett Packard Enterprise Development LP

SQL Injection

Package: system.classes

Critical

Critical

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Sour ce: PDO.prepare()
From: db.query
File: system/classes/db.php: 70
67 }
68
69 // prepare
70 S$sth = static::S$dbh->prepare ($sql) ;
71
72 // bind params
73 Sreflector = new ReflectionMethod ('PDOStatement', 'bindValue');

Sink: PDO.prepare()
Enclosing Method: query()
File: system/classes/db.php:70
Taint Flags: DATABASE, XSS
67 }
68
69 // prepare
70 $sth = static::$dbh->prepare ($sql);
71
72 // bind params
73 Sreflector = new ReflectionMethod ('PDOStatement', 'bindvValue');

EJRTIFY” Nov 9, 2016, 1:29 PM 68

© Copyright 2016 Hewlett Packard Enterprise Development LP

Weak Encryption (5 issues)

Abstract

The identified call uses a weak encryption algorithm that cannot guarantee the confidentiality of sensitive
data.

Explanation

Antiquated encryption algorithms such as DES no longer provide sufficient protection for use with sensitive
data. Encryption algorithms rely on key size as one of the primary mechanisms to ensure cryptographic
strength. Cryptographic strength is often measured by the time and computational power needed to
generate a valid key. Advances in computing power have made it possible to obtain small encryption keys
in a reasonable amount of time. For example, the 56-bit key used in DES posed a significant computational
hurdle in the 1970's when the algorithm was first developed, but today DES can be cracked in less than a
day using commonly available equipment.

Recommendation

Use strong encryption algorithms with large key sizes to protect sensitive data. Examples of strong
alternatives to DES are Rijndael (Advanced Encryption Standard or AES) and Triple DES (3DES). Before
selecting an algorithm, first determine if your organization has standardized on a specific algorithm and
implementation.

Issue Summary

Exploitable
Suspicious
Bad Practice
Reliability Issue
Not an Issue
<None>

Analysis

0 1 2 3 4 5 6
Issues

@ citical | &PHigh | = IMedium | FLow

Engine Breakdown

SCA Weblnspect SecurityScope Total
Weak Encryption 5 0 0 5
Total 5 0 0 5

Weak Encryption ~ High
Package: install
install/installer.php, line 122 (Weak Encryption) _

Issue Details

Kingdom: Security Features
Scan Engine: SCA (Semantic)

.E’DRTIFW Nov 9, 2016, 1:29 PM

© Copyright 2016 Hewlett Packard Enterprise Development LP

Weak Encryption

Package: install

Sink: crypt()
File: install/installer.php:122
Taint Flags:

119 Spassword = random(8) ;

120

121 $sqgl = str replace('[[now]]', time(), file get contents('test.sqgl'));
122 $sqgl = str replace('[[password]]', crypt($password), $sql);

123 $sqgl = str replace('[[email]]', strtolower (trim(Spost['email'])), $sql);
124
125 try {

Package: system.classes

Kingdom: Security Features
Scan Engine: SCA (Semantic)

Sink: crypt()
Enclosing Method: reset_password()
File: system/classes/users.php:142

Taint Flags:
139 return false;
140 }
141
142 S$password = crypt ($Spost['password']):;
143
144 $sgl = "update users set ‘password' = ? where id = ?";

145 Db::query(S$sqgl, array(Spassword, $id)):;

Kingdom: Security Features
Scan Engine: SCA (Semantic)

Sink: crypt()

Enclosing M ethod: login()

File: system/classes/users.php: 73
Taint Flags:

70 // find user

~
o

EJRT":Y@ Nov 9, 2016, 1:29 PM

© Copyright 2016 Hewlett Packard Enterprise Development LP

Weak Encryption

Package: system.classes

71 if (Suser = Users::find(array('username' => S$post['user']))) {

72 // check password

73 if (crypt(Spost['pass'], Suser->password) != Suser->password) {
74 Serrors[] = 'Incorrect details';
75 }

76 } else {

Kingdom: Security Features
Scan Engine: SCA (Semantic)

Sink: crypt()

Enclosing M ethod: update()

File: system/classes/users.php:190
Taint Flags:

188 if(strlen($post['password'])) {

189 // encrypt new password

190 S$post['password'] = crypt (Spost['password']);
191 } else {

192 // remove it and leave it unchanged

193 unset ($Spost['password']) ;

Kingdom: Security Features
Scan Engine: SCA (Semantic)

Sink: crypt()
Enclosing M ethod: add()
File: system/classes/users.php:247

Taint Flags:
244 |}
245
246 // encrypt password
247 S$Spost['password'] = crypt ($post['password']):;
248
249 // format email
250 S$post['email'] = strtolower (trim($post['email']));
EJRTIFY° Nov 9, 2016, 1:29 PM 71
© Copyright 2016 Hewlett Packard Enterprise Development LP

[ForRTIFY

Nov 9, 2016, 1:29 PM
© Copyright 2016 Hewlett Packard Enterprise Development LP

72

	Title Page
	Table of Contents
	Executive Summary
	Executive Summary

	Project Description
	Issue Breakdown by Fortify Categories
	Results Outline
	Results Outline
	Cookie Security: HTTPOnly not Set
	Cookie Security: HTTPOnly not Set (1 issue)
	Abstract
	Explanation
	Recommendation
	Issue Summary
	Engine Breakdown
	Cookie Security: HTTPOnly not Set - High

	Cross-Site Scripting: Reflected
	Cross-Site Scripting: Reflected (50 issues)
	Abstract
	Explanation
	Recommendation
	Issue Summary
	Engine Breakdown
	Cross-Site Scripting: Reflected - Critical

	Key Management: Empty Encryption Key
	Key Management: Empty Encryption Key (1 issue)
	Abstract
	Explanation
	Recommendation
	Issue Summary
	Engine Breakdown
	Key Management: Empty Encryption Key - High

	Password Management: Empty Password
	Password Management: Empty Password (1 issue)
	Abstract
	Explanation
	Recommendation
	Issue Summary
	Engine Breakdown
	Password Management: Empty Password - High

	Password Management: Password in HTML Form
	Password Management: Password in HTML Form (1 issue)
	Abstract
	Explanation
	Recommendation
	Issue Summary
	Engine Breakdown
	Password Management: Password in HTML Form - Critical

	Privacy Violation
	Privacy Violation (1 issue)
	Abstract
	Explanation
	Recommendation
	Issue Summary
	Engine Breakdown
	Privacy Violation - Critical

	Privacy Violation: Autocomplete
	Privacy Violation: Autocomplete (2 issues)
	Abstract
	Explanation
	Recommendation
	Issue Summary
	Engine Breakdown
	Privacy Violation: Autocomplete - High

	SQL Injection
	SQL Injection (6 issues)
	Abstract
	Explanation
	Recommendation
	Issue Summary
	Engine Breakdown
	SQL Injection - Critical

	Weak Encryption
	Weak Encryption (5 issues)
	Abstract
	Explanation
	Recommendation
	Issue Summary
	Engine Breakdown
	Weak Encryption - High

