implementation module sem import qualified Data.Map as Map from Data.Func import $ import Data.Maybe import Data.Either import Data.Functor import Control.Applicative import Control.Monad import Control.Monad.State import Control.Monad.Identity import Math.Random import Control.Monad.Trans import StdMisc from StdFunc import id, const, o import StdString import StdTuple import StdList from Text import class Text(concat), instance Text String import AST from parse import :: ParserOutput, :: Error :: Gamma :== ('Map'.Map String Type, [String]) :: Env a :== StateT Gamma (Either SemError) a //we need to redefine this even though it is in Control.Monad.State instance MonadTrans (StateT Gamma) where liftT m = StateT \s-> m >>= \a-> return (a, s) get = gets id getRandomStream :: Int -> [String] getRandomStream i = genIdents $ filter (isAlpha o toChar) (genRandInt i) where genIdents r = let (ic, r) = splitAt 5 r in [toString ic: genIdents r] freshIdent :: Gamma -> (String, Gamma) freshIdent (st, [ident:rest]) = case 'Map'.get ident st of Nothing = (ident, (st, rest)) _ = freshIdent (st, rest) putIdent :: String Type -> Env Void putIdent i t = gets (\(st, r)->'Map'.get i st) >>= \mt -> case mt of Nothing = modify (\(st, r)->('Map'.put i t st, r)) Just t2 = unify t t2 >>= \t3-> modify (\(st, r)->('Map'.put i t3 st, r)) instance toString SemError where toString (ParseError p e) = concat [ toString p,"SemError: ParseError: ", e] toString (Error e) = "SemError: " +++ e toString (UnifyErrorStub t1 t2) = toString (UnifyError {line=0,col=0} t1 t2) toString (UnifyError p t1 t2) = concat [ toString p, "SemError: Cannot unify types. Expected: ", toString t1, ". Given: ", toString t2] sem :: AST -> SemOutput sem (AST vd fd) = case evalStateT m ('Map'.newMap, getRandomStream 0) of Left e = Left [e] Right (vds, fds) = Right (AST vds fds) where m :: Env (([VarDecl], [FunDecl])) m = (mapM semVarDecl vd) >>= \vds -> mapM semFunDecl fd >>= \fds -> pure (vds, fds) splitEithers :: [Either a b] -> Either [a] [b] splitEithers [] = Right [] splitEithers [Right x:xs] = splitEithers xs >>= \rest->Right [x:rest] splitEithers xs = Left $ [x\\(Left x)<-xs] semFunDecl :: FunDecl -> Env FunDecl semFunDecl f = pure f semVarDecl :: VarDecl -> Env VarDecl semVarDecl (VarDecl pos type ident ex) = unify type ex >>= \t-> putIdent ident t >>| (pure $ VarDecl pos t ident ex) typeExpr :: Expr -> Env Type typeExpr (IntExpr _ _) = pure IntType typeExpr (CharExpr _ _) = pure CharType typeExpr (BoolExpr _ _) = pure BoolType typeExpr (Op1Expr p UnNegation expr) = unify BoolType expr typeExpr (Op1Expr p UnMinus expr) = unify IntType expr typeExpr (TupleExpr p (e1, e2)) = typeExpr e1 >>= \t1-> typeExpr e2 >>= \t2-> pure $ TupleType (t1, t2) //Int typeExpr (Op2Expr p e1 BiPlus e2) = unify IntType e1 >>| unify IntType e2 typeExpr (Op2Expr p e1 BiMinus e2) = unify IntType e1 >>| unify IntType e2 typeExpr (Op2Expr p e1 BiTimes e2) = unify IntType e1 >>| unify IntType e2 typeExpr (Op2Expr p e1 BiDivide e2) = unify IntType e1 >>| unify IntType e2 typeExpr (Op2Expr p e1 BiMod e2) = unify IntType e1 >>| unify IntType e2 //bool, char of int typeExpr (Op2Expr p e1 BiEquals e2) = undef typeExpr (Op2Expr p e1 BiUnEqual e2) = undef //char of int typeExpr (Op2Expr p e1 BiLesser e2) = undef typeExpr (Op2Expr p e1 BiGreater e2) = undef typeExpr (Op2Expr p e1 BiLesserEq e2) = undef typeExpr (Op2Expr p e1 BiGreaterEq e2) = undef //bool typeExpr (Op2Expr p e1 BiAnd e2) = undef typeExpr (Op2Expr p e1 BiOr e2) = undef //a typeExpr (Op2Expr p e1 BiCons e2) = undef //typeExpr (FunExpr Pos FunCall) = undef //typeExpr (EmptyListExpr Pos) = undef //typeExpr (VarExpr Pos VarDef) = undef //when checking var-expr, be sure to //put the infered type //in the context class unify a :: Type a -> Env Type instance unify Expr where unify (_ ->> _) e = liftT $ Left $ ParseError (extrPos e) "Expression cannot be a higher order function. Yet..." unify VoidType e = liftT $ Left $ ParseError (extrPos e) "Expression cannot be a Void type." unify (IdType _) e = liftT $ Left $ ParseError (extrPos e) "Expression cannot be an polymorf type." unify VarType e = typeExpr e //we have to cheat to decorate the error, can be done nicer? unify t e = StateT $ \s0 -> let res = runStateT m s0 in case res of Left err = Left $ decErr e err Right t = Right t //note, t :: (Type, Gamma) where m = typeExpr e >>= \tex-> unify t tex instance unify Type where unify IntType IntType = pure IntType unify BoolType BoolType = pure BoolType unify CharType CharType = pure CharType unify t1 t2 = liftT $ Left $ UnifyError zero t1 t2 instance zero Pos where zero = {line=0,col=0} decErr :: Expr SemError -> SemError decErr e (UnifyError _ t1 t2) = UnifyError (extrPos e) t1 t2 decErr e (ParseError _ s) = ParseError (extrPos e) s decErr e err = err dc2 :: Expr (Either SemError a) -> Either SemError a dc2 e (Right t) = Right t dc2 e (Left err) = Left err extrPos :: Expr -> Pos extrPos (VarExpr p _) = p extrPos (Op2Expr p _ _ _) = p extrPos (Op1Expr p _ _) = p extrPos (IntExpr p _) = p extrPos (CharExpr p _) = p extrPos (BoolExpr p _) = p extrPos (FunExpr p _) = p extrPos (EmptyListExpr p) = p extrPos (TupleExpr p _) = p