add connection diagrams and add todo combinators
[msc-thesis1617.git] / methods.top.tex
index bc94003..3acfb17 100644 (file)
@@ -1,10 +1,9 @@
-\section{\acrlong{TOP}}
-\subsection{\gls{iTasks}}
-\gls{TOP} is a recent programming paradigm implemented as
+\section{iTasks}
+\gls{TOP} is a modern recent programming paradigm implemented as
 \gls{iTasks}\cite{achten_introduction_2015} in the pure lazy functional
 language \gls{Clean}\cite{brus_cleanlanguage_1987}. \gls{iTasks} is a
 \gls{iTasks}\cite{achten_introduction_2015} in the pure lazy functional
 language \gls{Clean}\cite{brus_cleanlanguage_1987}. \gls{iTasks} is a
-\gls{EDSL} to model workflow tasks in the broadest sense. A \CI{Task} is just
-a function that, given some state, returns the observable \CI{TaskValue}. The
+\gls{EDSL} to model workflow tasks in the broadest sense. A \gls{Task} is just
+a function that --- given some state --- returns the observable \CI{TaskValue}. The
 \CI{TaskValue} of a \CI{Task} can have different states. Not all state
 transitions are possible as shown in Figure~\ref{fig:taskvalue}. Once a value
 is stable it can never become unstable again. Stability is often reached
 \CI{TaskValue} of a \CI{Task} can have different states. Not all state
 transitions are possible as shown in Figure~\ref{fig:taskvalue}. Once a value
 is stable it can never become unstable again. Stability is often reached
@@ -20,7 +19,7 @@ image in the \CI{NoValue} state, the second image does not have all the fields
 filled in and therefore the \CI{TaskValue} remains \CI{Unstable}. In the third
 image all fields are entered and the \CI{TaskValue} transitions to the
 \CI{Unstable} state. When the user presses \emph{Continue} the value becomes
 filled in and therefore the \CI{TaskValue} remains \CI{Unstable}. In the third
 image all fields are entered and the \CI{TaskValue} transitions to the
 \CI{Unstable} state. When the user presses \emph{Continue} the value becomes
-\CI{Stable} and can not be changed any further.
+\CI{Stable} and cannot be changed any further.
 
 \begin{figure}[H]
        \centering
 
 \begin{figure}[H]
        \centering
@@ -43,6 +42,7 @@ enterName = enterInformation "Enter your name" []
 \end{lstlisting}
 
 \begin{figure}[H]
 \end{lstlisting}
 
 \begin{figure}[H]
+       \centering
        \begin{subfigure}{.25\textwidth}
                \centering
                \includegraphics[width=.9\linewidth]{taskex1}
        \begin{subfigure}{.25\textwidth}
                \centering
                \includegraphics[width=.9\linewidth]{taskex1}
@@ -61,24 +61,26 @@ enterName = enterInformation "Enter your name" []
        \caption{Example of a generated user interface}
 \end{figure}
 
        \caption{Example of a generated user interface}
 \end{figure}
 
-For a type to be suitable it must have instances for a collection of generic
-functions that are captured in the class \CI{iTask}. Basic types have
+For a type to be suitable, it must have instances for a collection of generic
+functions that is captured in the class \CI{iTask}. Basic types have
 specialization instances for these functions and show an according interface.
 Generated interfaces can be modified with decoration operators.
 
 specialization instances for these functions and show an according interface.
 Generated interfaces can be modified with decoration operators.
 
-\subsection{Combinators}
+\section{Combinators}
+\todo{check and refine}
 \Glspl{Task} can be combined using so called \gls{Task}-combinators.
 Combinators describe relations between \glspl{Task}. \Glspl{Task} can be
 combined in parallel, sequenced and their result values can be converted to
 \Glspl{Task} can be combined using so called \gls{Task}-combinators.
 Combinators describe relations between \glspl{Task}. \Glspl{Task} can be
 combined in parallel, sequenced and their result values can be converted to
-\glspl{SDS}. Moreover, a very important combinator is the step combinator that
-starts a new task according to the \CI{TaskValue}. The type signatures of the
-basic combinators are shown in Listing~\ref{lst:combinators}.
+\glspl{SDS}. Moreover, a very important combinator is the step combinator which
+starts a new task according to specified predicates on the \CI{TaskValue}.
+Type signatures of the basic combinators are shown in
+Listing~\ref{lst:combinators}.
 
 \begin{itemize}
        \item Step:
 
                The step combinator is used to start \glspl{Task} when a predicate on
 
 \begin{itemize}
        \item Step:
 
                The step combinator is used to start \glspl{Task} when a predicate on
-               the \CI{TaskValue} holds or an action has been taken place. The bind
+               the \CI{TaskValue} holds or an action has taken place. The bind
                operator can be written as a step combinator.
                \begin{lstlisting}[language=Clean]
 (>>=) infixl 1 :: (Task a) (a -> (Task b)) -> (Task b) | iTask a & iTask b
                operator can be written as a step combinator.
                \begin{lstlisting}[language=Clean]
 (>>=) infixl 1 :: (Task a) (a -> (Task b)) -> (Task b) | iTask a & iTask b
@@ -117,7 +119,7 @@ basic combinators are shown in Listing~\ref{lst:combinators}.
 (-&&-) infixr 4 :: (Task a) (Task b)              -> Task (a,b) | iTask a & iTask b
 \end{lstlisting}
 
 (-&&-) infixr 4 :: (Task a) (Task b)              -> Task (a,b) | iTask a & iTask b
 \end{lstlisting}
 
-\subsection{\acrlongpl{SDS}}
+\section{Shared Data Sources}
 \Glspl{SDS} are an abstraction over resources that are available in the world
 or in the \gls{iTasks} system. The shared data can be a file on disk, it can be
 the time, a random integer or just some data stored in memory. The actual
 \Glspl{SDS} are an abstraction over resources that are available in the world
 or in the \gls{iTasks} system. The shared data can be a file on disk, it can be
 the time, a random integer or just some data stored in memory. The actual