updates
[phd-thesis.git] / appx / clean_for_haskell_programmers.tex
index 36d2653..aeba2dc 100644 (file)
@@ -1,18 +1,14 @@
 \documentclass[../thesis.tex]{subfiles}
 
-\begin{document}
-
-\ifSubfilesClassLoaded{
-       \pagenumbering{arabic}
-}{
-}
+\include{subfilepreamble}
 
+\begin{document}
 \chapter{\texorpdfstring{\glsentrytext{CLEAN}}{Clean} for \texorpdfstring{\glsentrytext{HASKELL}}{Haskell} Programmers}%
 \label{chp:clean_for_haskell_programmers}
 
-This note is meant to give people who are familiar with the functional programming language \gls{HASKELL} a consise overview of \gls{CLEAN} language elements and how they differ from \gls{HASKELL}.
+This note is meant to give people who are familiar with the \gls{FP} language \gls{HASKELL} a consise overview of \gls{CLEAN} language elements and how they differ from \gls{HASKELL}.
 The goal is to support the reader when reading \gls{CLEAN} code.
-Table~\ref{tbl:syn_clean_haskell} shows frequently occuring \gls{CLEAN} language elements on the left side and their \gls{HASKELL} equivalent on the right side.
+\Cref{tbl:syn_clean_haskell} shows frequently occuring \gls{CLEAN} language elements on the left side and their \gls{HASKELL} equivalent on the right side.
 Obviously, this summary is not exhaustive.
 Some \gls{CLEAN} language elements that are not easily translatable to \gls{HASKELL} and thus do not occur in the summary following below.
 We hope you enjoy these notes and that it aids you in reading \gls{CLEAN} programs.
@@ -21,7 +17,7 @@ While \gls{CLEAN} and \gls{HASKELL} were both conceived around 1987 and have sim
 This section describes some of the history of \gls{CLEAN} and provides a crash course in \gls{CLEAN} pecularities written for \gls{HASKELL} programmers.
 It is based on the 
 
-\Gls{CLEAN}---acronym for Clean \acrlong{LEAN}~\citep{barendregt_towards_1987}---, was originally designed as a \gls{GRS} core language but quickly served as an intermediate language for other functional languages~\citep{brus_clean_1987}.
+\Gls{CLEAN}---acronym for Clean \glsxtrlong{LEAN}~\citep{barendregt_towards_1987}---, was originally designed as a \gls{GRS} core language but quickly served as an intermediate language for other functional languages~\citep{brus_clean_1987}.
 In the early days it has also been called \emph{Concurrent} \gls{CLEAN}~\citep{nocker_concurrent_1991} but these days the language has no support for this anymore.
 Fast forward thirty years, \gls{CLEAN} is now a robust language with state-of-the-art features and is actually used in industry as well as academia---albeit in select areas of the world~\citep{plasmeijer_clean_2021}.
 
@@ -71,7 +67,7 @@ f :: v:a u:b -> u:b, [v<=u]  // f works when a is less unique than b
 %:: T = T (Int -> *(*World -> *World)) // Writing :: T = T (Int *World -> *World) won't work
 
 \subsection{Expressions}
-Patterns in \gls{CLEAN} can be used as predicates as well~\citep[Chp.~3.4.3]{plasmeijer_clean_2021}.
+Patterns in \gls{CLEAN} can be used as predicates as well~\citep[\citesection{3.4.3}]{plasmeijer_clean_2021}.
 Using the \cleaninline{=:} operator, a value can be tested against a pattern.
 Variable names are not allowed but wildcard patterns \cleaninline{\_} are.
 
@@ -87,7 +83,7 @@ ifAB x ifa ifb = if (x =: (A _)) ifa ifb
 
 Due to the nature of uniqueness typing, many functions in \gls{CLEAN} are state transition functions with possibly unique states.
 The \emph{let before} construct allows the programmer to specify sequential actions without having to invent unique names for the different versions of the state.
-\Cref{lst:let_before} shows an example of the usage of the \emph{let before} construct (adapted from~\citep[Chp.~3.5.4]{plasmeijer_clean_2021}).
+\Cref{lst:let_before} shows an example of the usage of the \emph{let before} construct (adapted from~\citep[\citesection{3.5.4}]{plasmeijer_clean_2021}).
 
 \begin{lstClean}[label={lst:let_before},caption={Let before expression example.}]
 readChars :: *File -> ([Char], *File)
@@ -99,23 +95,23 @@ readChars file
 \end{lstClean}
 
 \subsection{Generics}
-Polytypic functions~\citep{jeuring_polytypic_1996}---also known as generic or kind-indexed fuctions---are built into \gls{CLEAN}~\citep[Chp.~7.1]{plasmeijer_clean_2021}\citep{alimarine_generic_2005} whereas in \gls{HASKELL} they are implemented as a library~\citep[Chp.~6.19.1]{ghc_team_ghc_2021}.
+Polytypic functions~\citep{jeuring_polytypic_1996}---also known as generic or kind-indexed fuctions---are built into \gls{CLEAN}~\citep[\citesection{7.1}]{plasmeijer_clean_2021}\citep{alimarine_generic_2005} whereas in \gls{HASKELL} they are implemented as a library~\citep[\citesection{6.19.1}]{ghc_team_ghc_2021}.
 The implementation of generics in \gls{CLEAN} is very similar to that of Generic H$\forall$skell~\citep{hinze_generic_2003}.
 %When calling a generic function, the kind must always be specified and depending on the kind, the function may require more arguments.
 
 For example, defining a generic equality is done as in \cref{lst:generic_eq}.
-\lstinputlisting[language=Clean,firstline=4,label={lst:generic_eq},caption={Generic equality function in \gls{CLEAN}.}.]{lst/generic_eq.icl}
+\cleaninputlisting[firstline=4,label={lst:generic_eq},caption={Generic equality function in \gls{CLEAN}.}.]{lst/generic_eq.icl}
 
 Metadata about the types is available using the \cleaninline{of} syntax that gives the function access to metadata records, as can be seen in \cref{lst:generic_print} showing a generic print function. This abundance of metadata allows for very complex generic functions that near the expression level of template metaprogramming\ifSubfilesClassLoaded{}{ (See \cref{chp:first-class_datatypes})}.
-\lstinputlisting[language=Clean,firstline=4,label={lst:generic_print},caption={Generic print function in \gls{CLEAN}.}]{lst/generic_print.icl}
+\cleaninputlisting[language=Clean,firstline=4,label={lst:generic_print},caption={Generic print function in \gls{CLEAN}.}]{lst/generic_print.icl}
 
 \subsection{\texorpdfstring{\glsentrytext{GADT}}{GADT}s}
 \Glspl{GADT} are enriched data types that allow the type instantiation of the constructor to be explicitly defined~\citep{cheney_first-class_2003,hinze_fun_2003}.
-While \glspl{GADT} are not natively supported in \gls{CLEAN}, they can be simulated using embedding-projection pairs or equivalence types~\citep[Sec.~2.2]{cheney_lightweight_2002}.
+While \glspl{GADT} are not natively supported in \gls{CLEAN}, they can be simulated using embedding-projection pairs or equivalence types~\citep[\citesection{2.2}]{cheney_lightweight_2002}.
 To illustrate this, \cref{lst:gadt_clean} shows an example \gls{GADT} that would be implemented in \gls{HASKELL} as done in \cref{lst:gadt_haskell}\requiresGHCmod{GADTs}.
 
-\lstinputlisting[language=Clean,firstline=4,lastline=24,label={lst:gadt_clean},caption={Expression \gls{GADT} using equivalence types in \gls{CLEAN}.}]{lst/expr_gadt.icl}
-\lstinputlisting[language={[Regular]Haskell},firstline=4,label={lst:gadt_haskell},caption={Expression \gls{GADT} in \gls{HASKELL}.}]{lst/expr_gadt.hs}
+\cleaninputlisting[firstline=4,lastline=24,label={lst:gadt_clean},caption={Expression \gls{GADT} using equivalence types.}]{lst/expr_gadt.icl}
+\haskellinputlisting[firstline=4,label={lst:gadt_haskell},caption={Expression \gls{GADT}.}]{lst/expr_gadt.hs}
 
 \clearpage
 \section{Syntax}