zusammenfassung
[phd-thesis.git] / back / summary.tex
index 1f4a1a3..1345118 100644 (file)
@@ -3,24 +3,35 @@
 \input{subfilepreamble}
 
 \begin{document}
-\input{subfileprefix}
-\chapter{Summary}%
+\input{subfileprefixsmall}
+\chapter*{Summary}%
 \label{chp:summary}
 %\begin{center}
 \noindent%
 The amount of computers around us is growing exponentially.
-With it, the systems in which they operate are becoming more and more complex.
-Many of these computers are so called \emph{edge devices}.
-For a special class of systems, \glsxtrlong{IOT} systems, they perform the interaction with the world.
-Powered by microcontrollers, these specialised computers have little memory, slow processors, and support slow communication methods.
-On the other hand, they are also cheap, tiny, consume little energy, and can easily equipped with various sensors and actuators.
+With it, the systems in which they operate are becoming increasingly complex.
+Many of these computers are so called \emph{edge devices}, operating in \gls{IOT} systems.
+Within these orchestras of computers, they perform the role of interacting with the outside world.
+These specialised computers are often powered by microcontrollers and therefore have little memory, small processors, and slow communication.
+On the other hand, they are designed for embedded systems and hence cheap, tiny, energy efficient, and is easily equipped with various sensors and actuators.
+Not only are \gls{IOT} systems dynamic, interactive, distributed, collaborative, multi-user, and multitasking.
+Also, the orchestra of computers has vastly different hardware and software characteristics, causing semantic friction, making programming such systems classically complex.
 
-There is a great variety within edge devices but also between edge devices and more conventional computers.
-However, they do have to communicate with the conventional computers.
-This results in semantic friction, an impedance mismatch.
-Developing and maintaining such systems is expensive and error prone.
+\Gls{TOP} is a declarative programming paradigm with roots in functional programming that allows high-level interactive collaborative workflows to be specified for the work that needs to be done.
+From this specification, a ready-for-work computer program is generated supporting the user in actually performing the work.
+The main building blocks of \gls{TOP} programs are tasks, an abstract representation of work that needs to be done.
+During execution, the current value of a task is observable and other tasks can act upon it.
+Furthermore, tasks can be combined and transformed to create compound tasks, allowing the modelling of many collaboration patterns.
+Tasks running on edge devices can intuitively be built from the same \gls{TOP} concepts as the interactive collaborative applications \gls{TOP} was originally designed for, albeit with domain-specific primitives such as sensor and actuator access.
 
-This is a summary of 350--400 words.
+This dissertation shows how to orchestrate complete \gls{IOT} systems using \gls{TOP}.
+First I present advanced \gls{DSL} embedding techniques that make the creation of a \gls{DSL} such as \gls{MTASK} possible.
+Then I show \gls{MTASK}, a \gls{TOP} \gls{DSL} for \gls{IOT} edge devices.
+\Gls{MTASK} is embedded in \gls{ITASK}, a general-purpose \gls{TOP} language mostly used to program interactive web applications.
+All aspects of the \gls{MTASK} system are show: the design, implementation, integration with \gls{ITASK}, and a detailed overview of the green computing facilities.
+Using \gls{MTASK} in conjunction with \gls{ITASK}, entire \gls{IOT} systems can be programmed from a single source, in a single paradigm, and using a single high abstraction level.
+Finally, this tierless approach to \gls{IOT} systems is qualitatively and quantitatively compared to traditional tiered approaches.
+
+%This is a summary of 350--400 words.
 %\end{center}
-\input{subfilepostamble}
 \end{document}