strictness, ci
[minfp.git] / check.icl
index e332b59..e56d555 100644 (file)
--- a/check.icl
+++ b/check.icl
@@ -2,204 +2,184 @@ implementation module check
 
 import StdEnv
 
+import Control.Monad => qualified join
+import Control.Monad.State
+import Control.Monad.Trans
+import Control.Monad.Writer
 import Data.Either
+import Data.Func
 import Data.List
-import Control.Monad
+import Data.Tuple
+import Data.Map => qualified put, union, difference, find, updateAt
+import Data.Maybe
+import Text
 
-import ast
+import ast, scc
 
-check :: [Function] -> Either [String] Expression
-check fs
-       # dups = filter (\x->length x > 1) (groupBy (\(Function i _ _) (Function j _ _)->i == j) fs)
+import StdDebug
+
+check :: ![Either TypeDef Function] -> Either [String] (Expression, [([Char], Scheme)])
+check tdfs
+       # dups = filter (\x->length x > 1) (groupBy (\(Function i _ _) (Function j _ _)->i == j) functions)
        | length dups > 0 = Left ["Duplicate functions: ":[toString n\\[(Function n _ _):_]<-dups]]
-       = case partition (\a->a=:(Function ['start'] _ _)) fs of
+       = case partition (\a->a=:(Function ['start'] _ _)) functions of
                ([], _) = Left ["No start function defined"]
-               ([Function _ [] e], fs) = Right (foldr (\(Function i a e)->Let i a e) e fs)
-               ([Function _ _ _], _) = Left ["Start cannot have arguments"]
-
-//import qualified Data.Map as DM
-//from Data.Map import instance Functor (Map k)
-//import qualified Data.Set as DS
-//import Data.Functor
-//import Data.Func
-//import Data.Either
-//import Data.List
-//import Data.Maybe
-//import Control.Applicative
-//import Control.Monad
-//import Control.Monad.Trans
-//import qualified Control.Monad.State as MS
-//import Control.Monad.State => qualified gets, put, modify
-//import Control.Monad.RWST => qualified put
-//
-//import ast
-//
-//check :: AST -> Either [String] (AST, [([Char], Scheme)])
-//check (AST fs) = pure (AST fs, [])/*case inferAST preamble fs of
-//     Left e = Left e
-//     Right s = Right (AST fs, 'DM'.toList s)
-//where
-//     preamble = 'DM'.fromList
-//             [(['if'], Forall [['a']] $ TFun TBool $ TFun (TVar ['a']) $ TFun (TVar ['a']) $ TVar ['a'])
-//             ,(['eq'], Forall [] $ TFun TInt $ TFun TInt TBool)
-//             ,(['mul'], Forall [] $ TFun TInt $ TFun TInt TInt)
-//             ,(['div'], Forall [] $ TFun TInt $ TFun TInt TInt)
-//             ,(['add'], Forall [] $ TFun TInt $ TFun TInt TInt)
-//             ,(['sub'], Forall [] $ TFun TInt $ TFun TInt TInt)
-//             ]
-//*/
-//
-//:: TypeEnv    :== 'DM'.Map [Char] Scheme
-//:: Constraint :== (Type, Type)
-//:: Subst      :== 'DM'.Map [Char] Type
-//:: Unifier    :== (Subst, [Constraint])
-//:: Infer a    :== RWST TypeEnv [Constraint] InferState (Either [String]) a
-//:: InferState =   { count :: Int }
-//:: Scheme     =   Forall [[Char]] Type
-//:: Solve a    :== StateT Unifier (Either [String]) a
-//
-//nullSubst :: Subst
-//nullSubst = 'DM'.newMap
-//
-//uni :: Type Type -> Infer ()
-//uni t1 t2 = tell [(t1, t2)]
-//
-//inEnv :: ([Char], Scheme) (Infer a) -> Infer a
-//inEnv (x, sc) m = local (\e->'DM'.put x sc $ 'DM'.del x e) m
-//
-//letters :: [[Char]]
-//letters = [1..] >>= flip replicateM ['a'..'z']
-//
-//fresh :: Infer Type
-//fresh = get >>= \s=:{count}->'Control.Monad.RWST'.put {s & count=count + 1} >>| pure (TVar $ letters !! count)
-//
-//class Substitutable a
-//where
-//     apply :: Subst a -> a
-//     ftv   :: a -> [[Char]]
-//
-//instance Substitutable Type
-//where
-//     apply s t=:(TVar a) = maybe t id $ 'DM'.get a s
-//     apply s (TFun t1 t2)  = TFun (apply s t1) (apply s t2)
-//     apply _ t = t
-//
-//     ftv (TVar a)     = [a]
-//     ftv (TFun t1 t2) = union (ftv t1) (ftv t2)
-//     ftv t            = []
-//
-//instance Substitutable Scheme
-//where
-//     apply s (Forall as t)   = Forall as $ apply (foldr 'DM'.del s as) t
-//     ftv (Forall as t) = difference (ftv t) as
-//
-//instance Substitutable [a] | Substitutable a
-//where
-//     apply s ls = map (apply s) ls
-//     ftv t = foldr (union o ftv) [] t
-//
-//instance Substitutable TypeEnv where
-//     apply s env = fmap (apply s) env
-//     ftv env = ftv $ 'DM'.elems env
-//
-//instance Substitutable Constraint where
-//     apply s (t1, t2) = (apply s t1, apply s t2)
-//     ftv (t1, t2) = union (ftv t1) (ftv t2)
-//
-//instantiate ::  Scheme -> Infer Type
-//instantiate (Forall as t) = mapM (const fresh) as
-//     >>= \as`->let s = 'DM'.fromList $ zip2 as as` in pure $ apply s t
-//
-//generalize :: TypeEnv Type -> Scheme
-//generalize env t = Forall (difference (ftv t) (ftv env)) t
-//
-////:: Expression
-////   = Lit Value
-////   | Var [Char]
-////   | App Expression Expression
-////   | Lambda [Char] Expression
-////   | Builtin [Char] [Expression]
-//inferExpr :: TypeEnv Expression -> Either [String] Scheme
-//inferExpr env ex = case runRWST (infer ex) env {count=0} of
-//     Left e = Left e
-//     Right (ty, st, cs) = case runStateT solver ('DM'.newMap, cs) of
-//             Left e = Left e
-//             Right (s, _) = Right (closeOver (apply s ty))
-//
-//closeOver :: Type -> Scheme
-//closeOver t = normalize (generalize 'DM'.newMap t)
-//
-//normalize :: Scheme -> Scheme
-//normalize t = t 
-//
-//inferAST :: TypeEnv [Function] -> Either [String] TypeEnv
-//inferAST env [] = Right env
-//inferAST env [Function name args body:rest] = case inferExpr env (foldr Lambda body args) of
-//     Left e = Left e
-//     Right ty = inferAST ('DM'.put name ty env) rest
-//
-//inferFunc :: [Function] -> Infer ()
-//inferFunc [] = pure () 
-//inferFunc [Function name args body:rest]
-//     =      ask
-//     >>= \en->infer (foldr Lambda body args)
-//     >>= \t1->inEnv (name, generalize en t1) (inferFunc rest)
-//     >>= \_->pure ()
-//
-//infer :: Expression -> Infer Type
-//infer (Lit v) = case v of
-//     Int  _ = pure TInt
-//     Bool _ = pure TBool
-//infer (Var s) = asks ('DM'.get s)
-//     >>= maybe (liftT $ Left ["Unbound variable " +++ toString s]) instantiate
-//infer (App e1 e2)
-//     =        infer e1
-//     >>= \t1->infer e2
-//     >>= \t2->fresh
-//     >>= \tv->uni t1 (TFun t2 tv)
-//     >>|      pure tv
-//infer (Lambda s e)
-//     =        fresh
-//     >>= \tv->inEnv (s, Forall [] tv) (infer e)
-//     >>= \t-> pure (TFun tv t)
-////infer (Let x e1 e2)
-////   =        ask
-////   >>= \en->infer e1
-////   >>= \t1->inEnv (x, generalize en t1) (infer e2)
-//
-//unifies :: Type Type -> Solve Unifier
-//unifies TInt TInt = pure ('DM'.newMap, [])
-//unifies TBool TBool = pure ('DM'.newMap, [])
-//unifies (TVar a) (TVar b) 
-//     | a == b = pure ('DM'.newMap, [])
-//unifies (TVar v) t = tbind v t
-//unifies t (TVar v) = tbind v t
-//unifies (TFun t1 t2) (TFun t3 t4) = unifyMany [t1, t2] [t3, t4]
-//unifies t1 t2 = liftT $ Left ["Cannot unify " +++ toString t1 +++ " with " +++ toString t2]
-//
-//unifyMany :: [Type] [Type] -> Solve Unifier
-//unifyMany [] [] = pure ('DM'.newMap, [])
-//unifyMany [t1:ts1] [t2:ts2] = unifies t1 t2
-//     >>= \(su1, cs1)->unifyMany (apply su1 ts1) (apply su1 ts2)
-//     >>= \(su2, cs2)->pure (su2 `compose` su1, cs1 ++ cs2)
-//unifyMany t1 t2 = liftT $ Left ["Length difference in unifyMany"]
-//
-//(`compose`) infix 1 :: Subst Subst -> Subst
-//(`compose`) s1 s2 = 'DM'.union (apply s1 <$> s2) s1
-//
-//tbind ::  [Char] Type -> Solve Unifier
-//tbind a (TVar b)
-//     | a == b = pure ('DM'.newMap, [])
-//tbind a t
-//     | occursCheck a t = liftT $ Left ["Infinite type " +++ toString a +++ toString t]
-//     = pure $ ('DM'.singleton a t, [])
-//
-//occursCheck ::  [Char] a -> Bool | Substitutable a
-//occursCheck a t = isMember a $ ftv t
-//
-//solver :: Solve Subst
-//solver = getState >>= \(su, cs)->case cs of
-//     [] = pure su
-//     [(t1, t2):cs0] = unifies t1 t2
-//             >>= \(su1, cs1)->'MS'.put (su1 `compose` su, cs1 ++ (apply su1 cs0))
-//             >>| solver
+               ([Function _ [] e:_], fs)
+                       # e = makeExpression fs e
+                       = tuple e <$> runInfer (infer (fromList (conses ++ builtin)) e)
+               ([Function _ _ _:_], _) = Left ["Start cannot have arguments"]
+where
+       functions = rights tdfs
+       conses = flatten $ map (\(TypeDef n t cs)->
+               let cons = Forall t o foldr (-->) (foldl TApp (TVar n) (map TVar t))
+               in map (appSnd cons) cs) $ lefts tdfs
+       builtin =
+               [(['_if'],  Forall [['a']] $ TBool --> TVar ['a'] --> TVar ['a'] --> TVar ['a'])
+               ,(['_eq'],  Forall [] $ TInt --> TInt --> TBool)
+               ,(['_mul'], Forall [] $ TInt --> TInt --> TInt)
+               ,(['_add'], Forall [] $ TInt --> TInt --> TInt)
+               ,(['_sub'], Forall [] $ TInt --> TInt --> TInt)
+               ,(['_div'], Forall [] $ TInt --> TInt --> TInt)
+               ]
+
+makeExpression :: [Function] Expression -> Expression
+makeExpression fs start = foldr mkExpr start $ scc $ map (appSnd vars) nicefuns
+where
+       mkExpr :: [[Char]] -> (Expression -> Expression)
+       mkExpr scc = Let [(l, e)\\(l, e)<-nicefuns, s<-scc | s == l]
+
+       nicefuns :: [([Char], Expression)]
+       nicefuns = [(l, foldr ((o) o Lambda) id i e)\\(Function l i e)<-fs]
+
+       vars :: Expression -> [[Char]]
+       vars (Var v) = [v]
+       vars (App l r) = vars l ++ vars r
+       vars (Lambda l e) = flt l e
+       vars (Let ns e) = flatten [[v\\v<-vars e | not (isMember v (map fst ns))]:map (uncurry flt) ns]
+       vars _ = []
+
+       flt i e = [v\\v<-vars e | v <> i]
+
+instance toString Scheme where
+       toString (Forall [] t) = toString t
+       toString (Forall as t) = concat ["A.", join " " (map toString as), ": ", toString t]
+
+:: TypeEnv :== Map [Char] Scheme
+:: Subst :== Map [Char] Type
+
+:: Infer a :== StateT [Int] (WriterT [([Char], Scheme)] (Either [String])) a
+
+runInfer :: (Infer (Subst, Type)) -> Either [String] [([Char], Scheme)]
+runInfer i = case runWriterT (evalStateT i [0..]) of
+       Left e = Left e
+       Right ((s, t), w) = pure [(['start'], generalize newMap (apply s t)):w]
+
+fresh :: Infer Type
+fresh = getState >>= \[s:ss]->put ss >>| pure (TVar (['v':[c\\c<-:toString s]]))
+
+(oo) infixl 9 :: Subst Subst -> Subst
+(oo) s1 s2 = 'Data.Map'.union (apply s1 <$> s2) s1
+
+class Substitutable a where
+       apply :: Subst a -> a
+       ftv :: a -> [[Char]]
+
+instance Substitutable Type where
+       apply s t=:(TVar v) = fromMaybe t (get v s)
+       apply s (t1 --> t2) = apply s t1 --> apply s t2
+       apply s (TApp t1 t2) = TApp (apply s t1) (apply s t2)
+       apply _ x = x
+       
+       ftv (TVar v) = [v]
+       ftv (t1 --> t2) = on union ftv t1 t2
+       ftv (TApp t1 t2) = on union ftv t1 t2
+       ftv _ = []
+
+instance Substitutable Scheme where
+       apply s (Forall as t) = Forall as $ apply (foldr del s as) t
+       ftv (Forall as t) = difference (ftv t) (removeDup as)
+
+instance Substitutable TypeEnv where
+       apply s env = apply s <$> env
+       ftv env = ftv (elems env)
+
+instance Substitutable [a] | Substitutable a where
+       apply s l = apply s <$>  l
+       ftv t = foldr (union o ftv) [] t
+
+occursCheck :: [Char] -> (a -> Bool) | Substitutable a
+occursCheck a = isMember a o ftv
+
+err :: [String] -> Infer a
+err e = liftT (liftT (Left e))
+
+unify :: Type Type -> Infer Subst
+unify (l --> r) (l` --> r`)
+       =        unify l l`
+       >>= \s1->on unify (apply s1) r r`
+       >>= \s2->pure (s1 oo s2)
+unify (TVar a) (TVar t)
+       | a == t = pure newMap
+unify (TVar a) t
+       | occursCheck a t = err ["Infinite type: ", toString a, " to ", toString t]
+       = pure (singleton a t)
+unify t (TVar a) = unify (TVar a) t
+unify TInt TInt = pure newMap
+unify TBool TBool = pure newMap
+unify (TApp l r) (TApp l` r`)
+       = unify l l`
+       >>= \s1->on unify (apply s1) r r`
+       >>= \s2->pure (s1 oo s2)
+unify t1 t2 = err ["Cannot unify: ", toString t1, " with ", toString t2]
+
+unifyl :: [Type] -> Infer Subst
+unifyl [t1,t2:ts] = unify t1 t2 >>= \s->unifyl (map (apply s) [t2:ts])
+unifyl _ = pure newMap
+
+instantiate :: Scheme -> Infer Type
+instantiate (Forall as t)
+       =         sequence [fresh\\_<-as]
+       >>= \as`->pure (apply (fromList $ zip2 as as`) t)
+
+generalize :: TypeEnv Type -> Scheme
+generalize env t = Forall (difference (ftv t) (ftv env)) t
+
+infer :: TypeEnv Expression -> Infer (Subst, Type)
+infer env (Lit (Int _)) = pure (newMap, TInt)
+infer env (Lit (Bool _)) = pure (newMap, TBool)
+infer env (Var x) = maybe (err ["Unbound variable: ", toString x])
+       (\s->tuple newMap <$> instantiate s) $ get x env
+infer env (App e1 e2)
+       =              fresh
+       >>= \tv->      infer env e1
+       >>= \(s1, t1)->infer (apply s1 env) e2
+       >>= \(s2, t2)->unify (apply s2 t1) (t2 --> tv)
+       >>= \s3->      pure (s3 oo s2 oo s1, apply s3 tv)
+infer env (Lambda x b)
+       =              fresh
+       >>= \tv->      infer ('Data.Map'.put x (Forall [] tv) env) b
+       >>= \(s1, t1)->pure (s1, apply s1 tv --> t1)
+//Non recursion
+//infer env (Let [(x, e1)] e2)
+//     =              infer env e1
+//     >>= \(s1, t1)->infer ('Data.Map'.put x (generalize (apply s1 env) t1) env) e2
+//     >>= \(s2, t2)->liftT (tell [(x, Forall [] t1)])
+//     >>|            pure (s1 oo s2, t2)
+//Single recursion
+//infer env (Let [(x, e1)] e2)
+//     =              fresh
+//     >>= \tv->      let env` = 'Data.Map'.put x (Forall [] tv) env
+//                    in infer env` e1
+//     >>= \(s1,t1)-> infer ('Data.Map'.put x (generalize (apply s1 env`) t1) env`) e2
+//     >>= \(s2, t2)->pure (s1 oo s2, t2)
+//Multiple recursion
+infer env (Let xs e2)
+       # (ns, bs) = unzip xs
+       =              sequence [fresh\\_<-ns]
+       >>= \tvs->     let env` = foldr (\(k, v)->'Data.Map'.put k (Forall [] v)) env (zip2 ns tvs)
+                      in  unzip <$> sequence (map (infer env`) bs)
+       >>= \(ss,ts)-> unifyl ts
+       >>= \s->       liftT (tell [(n, generalize (apply s env`) t)\\t<-ts & n<-ns])
+       >>|            let env`` = foldr (\(n, s, t) m->'Data.Map'.put n (generalize (apply s env`) t) m) env` (zip3 ns ss ts)
+                      in infer env`` e2
+       >>= \(s2, t2)->pure (s oo s2, t2)