process rinus' comments
[phd-thesis.git] / intro / intro.tex
index 42313f5..e71c221 100644 (file)
 
 There are at least 13.4 billion devices connected to the internet at the time of writing \citep{transforma_insights_current_2023}.
 Each of these devices sense, act, or otherwise, interact with people, computers, and the environment.
-Despite their immense diversity, they are all computers and they they all require software to operate.
+Despite their immense diversity, they are all computers and they all require software to operate.
 
 An increasing number of these connected devices are so-called edge devices that operate in the \gls{IOT}.
 Edge devices are the leaves of the \gls{IOT} systems.
 They perform the interaction with the physical world.
 It is not uncommon for edge devices to be physically embedded in the fabric itself.
-Typically they reside in hard-to-reach places such as light bulbs, clothing, smart electricity meters, buildings, or even farm animals.
+Typically, they reside in hard-to-reach places such as light bulbs, clothing, smart electricity meters, buildings, or even farm animals.
 The majority of edge devices are powered by microcontrollers.
 Microcontrollers are equipped with a lot of connectivity for integrating peripherals such as sensors and actuators.
 The connectivity makes them very suitable to interact with their surroundings.
@@ -66,7 +66,7 @@ The \citet{wikipedia_contributors_rhapsody_2022} define a musical rhapsody is de
 \end{quote}
 This dissertation consists of three episodes.
 \Cref{prt:dsl} is a paper-based---otherwise known as cumulative---episode containing chapters that provide insight in advanced \gls{DSL} embedding techniques for \gls{FP} languages.
-The chapters can be read independently from each other.
+The chapters can be read independently of each other.
 \Cref{prt:top} is a monograph showing \gls{MTASK}, a \gls{TOP} \gls{DSL} for the \gls{IOT}.
 Hence, the chapters in this episode are best read in order.
 It introduces \gls{IOT} edge device programming, shows the complete \gls{MTASK} language, provides details on how \gls{MTASK} is integrated with \gls{ITASK}, shows how the byte code compiler is implemented, presents a guide for green computing with \gls{MTASK}, and ends with a conclusion and overview of future and related work.
@@ -245,11 +245,13 @@ Some concepts from the \gls{TOSD} model can be mapped upon the \gls{IOT} archite
 Firstly, edge devices can be seen as simple resources, thus accessed through \glspl{SDS}.
 The second view is that edge devices contain miniature \gls{TOP} systems in itself.
 The individual components in the miniature systems, the tasks, the \glspl{SDS}, are, in the eventual execution, connected to the main system.
+\todo{hier plaatje uit 6?: nee}
 
 \subsection{The iTask system}
 The concept of \gls{TOP} originated from the \gls{ITASK} framework, a declarative language and \gls{TOP} engine for defining interactive multi-user distributed web applications.
 The \gls{ITASK} system is implemented as an \gls{EDSL} in the programming language \gls{CLEAN}\footnote{\Cref{chp:clean_for_haskell_programmers} contains a guide for \gls{CLEAN} tailored to \gls{HASKELL} programmers.} \citep{plasmeijer_itasks:_2007,plasmeijer_task-oriented_2012}.
-It has been under development for over fifteen years and has proven itself through use in industry for some time now as well \citep{top_software_viia_2023}.
+It has been under development for over fifteen years and has proven itself through use in industry for some time now as well.
+For example, it is the main language of VIIA, an advanced application for monitoring coasts \citep{top_software_viia_2023}.
 From the structural properties of the data types and the current status of the work to be done, the entire \gls{UI} is automatically generated.
 Browsers are powering \gls{ITASK}'s presentation layer.
 The framework is built on top of standard web techniques such as JavaScript, HTML, and {CSS}.
@@ -318,6 +320,7 @@ Using \cleaninline{enterInformation}, the connection specification of the \gls{T
 The \gls{MTASK} device is connected using \cleaninline{withDevice} at \cref{lst:intro_withdevice}.
 Once connected, the \cleaninline{intBlink} task is sent to the device (\cref{lst:intro_liftmtask}) and, in parallel, a web editor is shown that updates the value of the interval \gls{SDS} (\cref{lst:intro_editor,fig:intro_blink_int}).
 To allow terminating of the task, the \gls{ITASK} task ends with a sequential operation that returns a constant value when the button is pressed, making the task stable.
+\todo{foto device+led?}
 
 \cleaninputlisting[float={!ht},firstline=10,lastline=18,numbers=left,caption={The \gls{ITASK} code for the interactive blinking application.},label={lst:intro_blink}]{lst/blink.icl}
 
@@ -365,6 +368,7 @@ This section provides a thorough overview of the relation between the scientific
 \subsection{\Fullref{prt:dsl}}
 The \gls{MTASK} system is an \gls{EDSL} and during the development of it, several novel basal techniques for embedding \glspl{DSL} in \gls{FP} languages have been found.
 This paper-based episode contains the following papers:
+\todo{papers met bibitem doen? of conferentie noemen.}
 \begin{enumerate}
        \item \emph{Deep Embedding with Class} \citep*{lubbers_deep_2022} is the basis for \cref{chp:classy_deep_embedding}.
                It shows a novel deep embedding technique for \glspl{DSL} where the resulting language is extendible both in constructs and in interpretation just using type classes and existential data types.
@@ -372,7 +376,7 @@ This paper-based episode contains the following papers:
                \Cref{sec:classy_reprise} was added after publication and contains a (yet) unpublished extension of the embedding technique for reducing the required boilerplate at the cost of requiring some advanced type system extensions.
        \item \emph{First-\kern-1ptClass Data Types in Shallow Embedded Domain-Specific Languages} \citep*{lubbers_first-class_2022}\label{enum:first-class} is the basis for \cref{chp:first-class_datatypes}.
                It shows how to inherit data types from the host language in \glspl{EDSL} using metaprogramming by providing a proof-of-concept implementation using \gls{HASKELL}'s metaprogramming system: \glsxtrlong{TH}.
-               The paper also serves as a gentle introduction to, and contains a thorough literature study on \glsxtrlong{TH}.
+               The chapter also serves as a gentle introduction to, and contains a thorough literature study on \glsxtrlong{TH}.
 \end{enumerate}
 
 %\paragraph{In preparation}
@@ -413,11 +417,11 @@ It is compiled from the following publications:
 %              \paragraph{Contribution}
 %              The research in this paper and writing the paper was performed by me, though there were weekly meetings with Pieter Koopman and Rinus Plasmeijer.
        \item \emph{Simulation of a Task-\kern-1.25ptBased Embedded Domain Specific Language for the Internet of Things} \citep*{koopman_simulation_2023}\footnotemark[\value{footnote}]
-               are the revised lecture notes for a course on the \gls{MTASK} simulator provided at the 2018 \gls{CEFP}\slash{}\gls{3COWS} winter school in Ko\v{s}ice, Slovakia, January 22--26, 2018.
+               are the revised lecture notes for a course on the \gls{MTASK} simulator provided at the 2018 \gls{3COWS} winter school in Ko\v{s}ice, Slovakia, January 22--26, 2018.
 %              \paragraph{Contribution}
 %              Pieter Koopman wrote and taught it, I helped with the software and research.
        \item \emph{Writing Internet of Things Applications with Task Oriented Programming} \citep*{lubbers_writing_2023}\footnotemark[\value{footnote}]
-               are the revised lecture notes from a course on programming \gls{IOT} systems using \gls{MTASK} provided at the 2019 \gls{CEFP}\slash{}\gls{3COWS} summer school in Budapest, Hungary, June 17--21, 2019.
+               are the revised lecture notes from a course on programming \gls{IOT} systems using \gls{MTASK} provided at the 2019 \gls{3COWS} summer school in Budapest, Hungary, June 17--21, 2019.
 %              \paragraph{Contribution}
 %              Pieter Koopman prepared and taught half of the lecture and supervised the practical session.
 %              I taught the other half of the lecture, wrote the lecture notes, made the assignments and supervised the practical session.
@@ -446,12 +450,11 @@ The papers of which I am first author are solely written by me, there were weekl
 
 \subsection{\Fullref{prt:tvt}}
 \Cref{prt:tvt} is based on a journal paper that quantitatively and qualitatively compares traditional \gls{IOT} architectures with \gls{TOP} \gls{IOT} architectures.
-This chapter is based on the conference paper and a journal paper extending it:
 \begin{enumerate}[resume]
-       \item \emph{Tiered versus Tierless \glsxtrshort{IOT} Stacks: Comparing Smart Campus Software Architectures} \citep*{lubbers_tiered_2020}\footnote{This work was partly funded by the 2019 Radboud-Glasgow Collaboration Fund.}\label{enum:iot20} compares traditional tiered programming to tierless architectures by comparing two implementations of a smart-campus application.
        \item \emph{Could Tierless Programming Reduce IoT Development Grief?} \citep*{lubbers_could_2022}
                is an extended version of paper~\ref{enum:iot20}.
                It compares programming traditional tiered architectures to tierless architectures by illustrating a qualitative and a quantitative four-way comparison of a smart-campus application.
+       \item \emph{Tiered versus Tierless \glsxtrshort{IOT} Stacks: Comparing Smart Campus Software Architectures} \citep*{lubbers_tiered_2020}\footnote{This work was partly funded by the 2019 Radboud-Glasgow Collaboration Fund.}\label{enum:iot20} compares traditional tiered programming to tierless architectures by comparing two implementations of a smart-campus application.
 \end{enumerate}
 
 \paragraph{Contribution:}