more structure
[phd-thesis.git] / intro / intro.tex
index ab5a90f..f8e463f 100644 (file)
@@ -347,7 +347,7 @@ While \gls{ITASK} conceived \gls{TOP}, it is no longer the only \gls{TOP} system
 Some \gls{TOP} languages were created to fill a gap encountered in practise.
 Toppyt \citep{lijnse_toppyt_2022} is a general purpose \gls{TOP} language written in \gls{PYTHON} used to host frameworks for modelling command \& control systems, and hTask \citep{lubbers_htask_2022}, a vessel for experimenting with asynchronous \glspl{SDS}.
 Furthermore, some \gls{TOP} systems arose from Master's and Bachelor's thesis projects.
-For example, \textmu{}Task \citep{piers_task-oriented_2016}, a \gls{TOP} language for modelling non-interruptible embedded systems in \gls{HASKELL}, and LTasks \citep{van_gemert_task_2022}, a \gls{TOP} language written in the dynamically typed programming language {LUA}.
+For example, \textmu{}Task \citep{piers_task-oriented_2016}, a \gls{TOP} language for modelling non-interruptible embedded systems in \gls{HASKELL}, and LTasks \citep{van_gemert_task_2022}, a \gls{TOP} language written in the dynamically typed programming language Lua.
 Finally, there are \gls{TOP} languages with strong academic foundations.
 \Gls{TOPHAT} is a fully formally specified \gls{TOP} language designed to capture the essence of \gls{TOP} \citep{steenvoorden_tophat_2019}.
 Such a formal specification allows for symbolic execution, hint generation, but also the translation to \gls{ITASK} for actually performing the work \citep{steenvoorden_tophat_2022}.
@@ -363,11 +363,11 @@ This section provides a thorough overview of the relation between the scientific
 The \gls{MTASK} system is an \gls{EDSL} and during the development of it, several novel basal techniques for embedding \glspl{DSL} in \gls{FP} languages have been found.
 This paper-based episode contains the following papers:
 \begin{enumerate}
-       \item \emph{Deep Embedding with Class} \citep{lubbers_deep_2022} is the basis for \cref{chp:classy_deep_embedding}.
+       \item \emph{Deep Embedding with Class} \citep*{lubbers_deep_2022} is the basis for \cref{chp:classy_deep_embedding}.
                It shows a novel deep embedding technique for \glspl{DSL} where the resulting language is extendible both in constructs and in interpretation just using type classes and existential data types.
                The related work section is updated with the research found after publication.
                \Cref{sec:classy_reprise} was added after publication and contains a (yet) unpublished extension of the embedding technique for reducing the required boilerplate at the cost of requiring some advanced type system extensions.
-       \item \emph{First-\kern-1ptClass Data Types in Shallow Embedded Domain-Specific Languages} \citep{lubbers_first-class_2022}\label{enum:first-class} is the basis for \cref{chp:first-class_datatypes}.
+       \item \emph{First-\kern-1ptClass Data Types in Shallow Embedded Domain-Specific Languages} \citep*{lubbers_first-class_2022}\label{enum:first-class} is the basis for \cref{chp:first-class_datatypes}.
                It shows how to inherit data types from the host language in \glspl{EDSL} using metaprogramming by providing a proof-of-concept implementation using \gls{HASKELL}'s metaprogramming system: \glsxtrlong{TH}.
                The paper also serves as a gentle introduction to, and contains a thorough literature study on \glsxtrlong{TH}.
 \end{enumerate}
@@ -389,37 +389,37 @@ This episode is a monograph that shows the design, properties, implementation an
 It is compiled from the following publications:
 
 \begin{enumerate}[resume]
-       \item \emph{A Task-\kern-1.25ptBased \glsxtrshort{DSL} for Microcomputers} \citep{koopman_task-based_2018}
+       \item \emph{A Task-\kern-1.25ptBased \glsxtrshort{DSL} for Microcomputers} \citep*{koopman_task-based_2018}
                is the initial \gls{TOP}\slash{}\gls{MTASK} paper.
                It provides an overview of the initial \gls{TOP} \gls{MTASK} language and shows first versions of some interpretations.
-       \item \emph{Task Oriented Programming for the Internet of Things} \citep{lubbers_task_2018}\footnotetext{This work is an extension of my Master's thesis \citep{lubbers_task_2017}.}
+       \item \emph{Task Oriented Programming for the Internet of Things} \citep*{lubbers_task_2018}\footnote{This work is an extension of my Master's thesis \citep{lubbers_task_2017}.}
                shows how a simple imperative variant of \gls{MTASK} was integrated with \gls{ITASK}.
                While the language differs a lot from the current version, the integration mechanism is still used.
 %              \paragraph{Contribution}
 %              The research in this paper and writing the paper was performed by me, though there were weekly meetings with Pieter Koopman and Rinus Plasmeijer in which we discussed and refined the ideas.
-       \item \emph{Multitasking on Microcontrollers using Task Oriented Programming} \citep{lubbers_multitasking_2019}\footnote{This work acknowledges the support of the \erasmusplus{} project ``Focusing Education on Composability, Comprehensibility and Correctness of Working Software'', no.\ 2017--1--SK01--KA203--035402.}
+       \item \emph{Multitasking on Microcontrollers using Task Oriented Programming} \citep*{lubbers_multitasking_2019}\footnote{This work acknowledges the support of the \erasmusplus{} project ``Focusing Education on Composability, Comprehensibility and Correctness of Working Software'', no.\ 2017--1--SK01--KA203--035402.}
                is a short paper on the multitasking capabilities of \gls{MTASK} comparing it to traditional multitasking methods for \gls{ARDUINO}.
 %              \paragraph{Contribution}
 %              The research in this paper and writing the paper was performed by me, though there were weekly meetings with Pieter Koopman and Rinus Plasmeijer.
-       \item \emph{Simulation of a Task-\kern-1.25ptBased Embedded Domain Specific Language for the Internet of Things} \citep{koopman_simulation_2023}\footnotemark[\value{footnote}]
+       \item \emph{Simulation of a Task-\kern-1.25ptBased Embedded Domain Specific Language for the Internet of Things} \citep*{koopman_simulation_2023}\footnotemark[\value{footnote}]
                are the revised lecture notes for a course on the \gls{MTASK} simulator provided at the 2018 \gls{CEFP}\slash{}\gls{3COWS} winter school in Ko\v{s}ice, Slovakia, January 22--26, 2018.
 %              \paragraph{Contribution}
 %              Pieter Koopman wrote and taught it, I helped with the software and research.
-       \item \emph{Writing Internet of Things Applications with Task Oriented Programming} \citep{lubbers_writing_2023}\footnotemark[\value{footnote}]
+       \item \emph{Writing Internet of Things Applications with Task Oriented Programming} \citep*{lubbers_writing_2023}\footnotemark[\value{footnote}]
                are the revised lecture notes from a course on programming \gls{IOT} systems using \gls{MTASK} provided at the 2019 \gls{CEFP}\slash{}\gls{3COWS} summer school in Budapest, Hungary, June 17--21, 2019.
 %              \paragraph{Contribution}
 %              Pieter Koopman prepared and taught half of the lecture and supervised the practical session.
 %              I taught the other half of the lecture, wrote the lecture notes, made the assignments and supervised the practical session.
-       \item \emph{Interpreting Task Oriented Programs on Tiny Computers} \citep{lubbers_interpreting_2019}
+       \item \emph{Interpreting Task Oriented Programs on Tiny Computers} \citep*{lubbers_interpreting_2019}
                shows an implementation of the byte code compiler and \gls{RTS} of \gls{MTASK}.
 %              \paragraph{Contribution}
 %              The research in this paper and writing the paper was performed by me, though there were weekly meetings with Pieter Koopman and Rinus Plasmeijer.
-       \item \emph{Reducing the Power Consumption of IoT with Task-Oriented Programming} \citep{crooijmans_reducing_2022}
+       \item \emph{Reducing the Power Consumption of IoT with Task-Oriented Programming} \citep*{crooijmans_reducing_2022}
                shows how to create a scheduler so that devices running \gls{MTASK} tasks can go to sleep more automatically and how interrupts are incorporated in the language.
 %              \paragraph{Contribution}
 %              The research was carried out by \citet{crooijmans_reducing_2021} during his Master's thesis.
 %              I did the daily supervision and helped with the research, Pieter Koopman was the formal supervisor and wrote most of the paper.
-       \item \emph{Green Computing for the Internet of Things} \citep{lubbers_green_2022}\footnote{This work acknowledges the support of the \erasmusplus{} project ``SusTrainable---Promoting Sustainability as a Fundamental Driver in Software Development Training and Education'', no.\ 2020--1--PT01--KA203--078646.}
+       \item \emph{Green Computing for the Internet of Things} \citep*{lubbers_green_2022}\footnote{This work acknowledges the support of the \erasmusplus{} project ``SusTrainable---Promoting Sustainability as a Fundamental Driver in Software Development Training and Education'', no.\ 2020--1--PT01--KA203--078646.}
                are the revised lecture notes from a course on sustainable \gls{IOT} programming with \gls{MTASK} provided at the 2022 SusTrainable summer school in Rijeka, Croatia, July 4--8, 2022.
 
 %              \paragraph{Contribution}
@@ -437,8 +437,8 @@ The papers of which I am first author are solely written by me, there were weekl
 \Cref{prt:tvt} is based on a journal paper that quantitatively and qualitatively compares traditional \gls{IOT} architectures with \gls{TOP} \gls{IOT} architectures.
 This chapter is based on the conference paper and a journal paper extending it:
 \begin{enumerate}[resume]
-       \item \emph{Tiered versus Tierless \glsxtrshort{IOT} Stacks: Comparing Smart Campus Software Architectures} \citep{lubbers_tiered_2020}\footnote{This work was partly funded by the 2019 Radboud-Glasgow Collaboration Fund.}\label{enum:iot20} compares traditional tiered programming to tierless architectures by comparing two implementations of a smart-campus application.
-       \item \emph{Could Tierless Programming Reduce IoT Development Grief?} \citep{lubbers_could_2022}
+       \item \emph{Tiered versus Tierless \glsxtrshort{IOT} Stacks: Comparing Smart Campus Software Architectures} \citep*{lubbers_tiered_2020}\footnote{This work was partly funded by the 2019 Radboud-Glasgow Collaboration Fund.}\label{enum:iot20} compares traditional tiered programming to tierless architectures by comparing two implementations of a smart-campus application.
+       \item \emph{Could Tierless Programming Reduce IoT Development Grief?} \citep*{lubbers_could_2022}
                is an extended version of paper~\ref{enum:iot20}.
                It compares programming traditional tiered architectures to tierless architectures by illustrating a qualitative and a quantitative four-way comparison of a smart-campus application.
 \end{enumerate}