dot
[msc-thesis1617.git] / methods.top.tex
index aefa35d..811e12a 100644 (file)
@@ -1,13 +1,13 @@
 \section{iTasks}
-\gls{TOP} is a modern recent programming paradigm implemented as
+\gls{TOP} is a novel programming paradigm implemented as
 \gls{iTasks}~\cite{achten_introduction_2015} in the pure lazy functional
-language \gls{Clean}~\cite{brus_cleanlanguage_1987}. \gls{iTasks} is a
+language \gls{Clean}~\cite{brus_cleanlanguage_1987}. \gls{iTasks} is an
 \gls{EDSL} to model workflow tasks in the broadest sense. A \gls{Task} is just
-a function that --- given some state --- returns the observable \CI{TaskValue}. The
-\CI{TaskValue} of a \CI{Task} can have different states. Not all state
+a function that --- given some state --- returns the observable \CI{TaskValue}.
+The \CI{TaskValue} of a \CI{Task} can have different states. Not all state
 transitions are possible as shown in Figure~\ref{fig:taskvalue}. Once a value
-is stable it can never become unstable again. Stability is often reached
-by pressing a confirmation button. \glspl{Task} yielding a constant value are
+is stable it can never become unstable again. Stability is often reached by
+pressing a confirmation button. \glspl{Task} yielding a constant value are
 immediately stable.
 
 A simple \gls{iTasks} example illustrating the route to stability of a
@@ -63,47 +63,23 @@ enterName = enterInformation "Enter your name" []
 
 For a type to be suitable, it must have instances for a collection of generic
 functions that is captured in the class \CI{iTask}. Basic types have
-specialization instances for these functions and show an according interface.
-Generated interfaces can be modified with decoration operators.
+specialization instances for these functions and show an interface accordingly.
+Derived interfaces can be modified with decoration operators or specializations
+can be created.
 
 \section{Combinators}
 \Glspl{Task} can be combined using so called \gls{Task}-combinators.
-Combinators describe relations between \glspl{Task}. \Glspl{Task} can be
-combined in parallel, sequenced and their result values can be converted to
-\glspl{SDS}. Moreover, a very important combinator is the step combinator which
-starts a new \gls{Task} according to specified predicates on the
-\CI{TaskValue}.  Type signatures of the basic combinators are shown in
-Listing~\ref{lst:combinators}.
-
-\begin{itemize}
-       \item Step:
-
-               The step combinator is used to start \glspl{Task} when a predicate on
-               the \CI{TaskValue} holds or an action has taken place. The bind
-               operator can be written as a step combinator.
-               \begin{lstlisting}[language=Clean]
-(>>=) infixl 1 :: (Task a) (a -> (Task b)) -> (Task b) | iTask a & iTask b
-(>>=) ta f = ta >>* [OnAction "Continue" onValue, OnValue onStable]
-    where
-        onValue (Value a _)     = Just (f a)
-        onValue _               = Nothing
-
-        onStable (Value a True) = Just (f a)
-        onStable _              = Nothing
-               \end{lstlisting}
-       \item Parallel:
-
-               The parallel combinator allows for concurrent \glspl{Task}. The
-               \glspl{Task} combined with these operators will appear at the same time
-               in the web browser of the user and the results are combined as the type
-               dictates.
-\end{itemize}
+Combinators describe relations between \glspl{Task}. There are only two basic
+types of combinators; namely parallel and sequence. All other combinators are
+derived from the basic combinators. Type signatures of simplified versions of
+the basic combinators and their derivations are given in
+Listing~\ref{lst:combinators}
 
 \begin{lstlisting}[%
        caption={\Gls{Task}-combinators},label={lst:combinators}]
 //Step combinator
-(>>*)  infixl 1 :: (Task a) [TaskCont a (Task b)] -> Task b     | iTask a & iTask b
 (>>=)  infixl 1 :: (Task a) (a -> Task b)         -> Task b   | iTask a & iTask b
+(>>*)  infixl 1 :: (Task a) [TaskCont a (Task b)] -> Task b     | iTask a & iTask b
 :: TaskCont a b
        =     OnValue             ((TaskValue a)  -> Maybe b)
        |     OnAction    Action  ((TaskValue a)  -> Maybe b)
@@ -118,14 +94,43 @@ Listing~\ref{lst:combinators}.
 (-&&-) infixr 4 :: (Task a) (Task b)              -> Task (a,b) | iTask a & iTask b
 \end{lstlisting}
 
+\paragraph{Sequence:}
+The implementation for the sequence combinator is called the
+\CI{step} (\CI{>>*}). This combinator runs the left-hand \gls{Task} and
+starts the right-hand side when a certain predicate holds. Predicates
+can be propositions about the \CI{TaskValue}, user actions from within
+the web browser or a thrown exception. The familiar
+bind-combinator is an example of a sequence combinator. This combinator
+runs the left-hand side and continues to the right-hand \gls{Task} if
+there is an \CI{UnStable} value and the user presses continue or when
+the value is \CI{Stable}. The combinator could have been implemented
+as follows:
+\begin{lstlisting}[language=Clean]
+(>>=) infixl 1 :: (Task a) (a -> (Task b)) -> (Task b) | iTask a & iTask b
+(>>=) ta f = ta >>* [OnAction "Continue" onValue, OnValue onStable]
+    where
+        onValue (Value a _)     = Just (f a)
+        onValue _               = Nothing
+
+        onStable (Value a True) = Just (f a)
+        onStable _              = Nothing
+\end{lstlisting}
+
+\paragraph{Parallel:}
+The parallel combinator allows for concurrent \glspl{Task}. The
+\glspl{Task} combined with these operators will appear at the same time
+in the web browser of the user and the results are combined as the type
+dictates. All parallel combinators used are derived from the basic parallel
+combinator that is very complex and only used internally.
+
 \section{Shared Data Sources}
 \Glspl{SDS} are an abstraction over resources that are available in the world
 or in the \gls{iTasks} system. The shared data can be a file on disk, the
 system time, a random integer or just some data stored in memory. The actual
 \gls{SDS} is just a record containing functions on how to read and write the
 source. In these functions the \CI{*IWorld} --- which in turn contains the real
-program \CI{*World} --- is available. Accessing the outside world is required
-for interacting with it and thus the functions can access files on disk, raw
+\CI{*World} --- is available. Accessing the outside world is required for
+interacting with it and thus the functions can access files on disk, raw
 memory, other \glspl{SDS} and hardware.
 
 The basic operations for \glspl{SDS} are get, set and update. The signatures