process george's comments in chapter 1-4
[msc-thesis1617.git] / results.mtask.tex
index a702432..1b46df1 100644 (file)
@@ -1,36 +1,72 @@
-Some functionality of the original \gls{mTask}-\gls{EDSL} will not be used in
-this extension \gls{EDSL}. Conversely, some functionality needed was not
-available in the existing \gls{EDSL}. Due to the nature of class based shallow
-embedding this obstacle is very easy to solve. A type housing the \gls{EDSL}
-does not have to implement all the available classes. Moreover, classes can be
-added at will without interfering with the existing views.
+The \glspl{Task} suitable for a client are called \glspl{mTask} and are written
+in the aforementioned \gls{mTask}-\gls{EDSL}. Some functionality of the
+original \gls{mTask}-\gls{EDSL} will not be used in this extension \gls{EDSL}.
+Conversely, some functionality needed was not available in the existing
+\gls{EDSL}. Due to the nature of class based shallow embedding this obstacle is
+very easy to solve. A type --- housing the \gls{EDSL} --- does not have to
+implement all the available classes. Moreover, classes can be added at will
+without interfering with the existing views.
 
 \section{Semantics}
-\subsection{\glspl{mTask}}
 The current \gls{mTask} engine for devices does not support \glspl{Task} in the
-sense that the \gls{C}-view it does. \glspl{Task} in the new system are are
-\CI{Main} objects with a program inside. A \gls{Task} runs periodically, on
-interrupt or one-shot. 
-\todo{elaborate}
+sense that the \gls{C}-view it does. \Glspl{Task} used with the \gls{C}-view
+are a main program that runs some \gls{Task}. \glspl{Task} in the new system
+are \CI{Main} objects with a program inside that does not contain \glspl{Task}
+but are a \gls{Task} as a whole. Sending a \gls{Task} always goes together with
+choosing a scheduling strategy. This strategy can be one of the following three
+strategies as reflected in the \CI{MTTask}.
+
+\begin{itemize}
+       \item\CI{OneShot}
+
+               \CI{OneShot} takes no parameters and means that the \gls{Task} will run
+               once and will then be removed automatically. This type of scheduling
+               could be usefull to for example retrieving sensor information on
+               request of a user.
+       \item\CI{OnInterval}
+
+               \CI{OnInterval} has as a parameter the number of milliseconds to wait
+               in between executions. \Glspl{Task} running with this scheduling method
+               are executed every fixed interval.
+       \item\CI{OnInterrupt}
+
+               The last scheduling method is running \glspl{Task} on a specific
+               interrupt. None of the current implementation implement this. However,
+               registering interrupts on for example the \gls{Arduino} is very
+               straightforward. Interrupt scheduling is usefull for \glspl{Task} that
+               have to react on a certain type of hardware event such as the press of
+               a button.
+\end{itemize}
 
 \subsection{\glspl{SDS}}
-\glspl{SDS} behave a little bit differently on an \gls{mTask} device than in
-the \gls{iTasks} system. In an \gls{iTasks} system, when the \gls{SDS} is
-updated, a broadcast to everyone in the system watching is made to notify them
-of an update. \glspl{SDS} on the device can update very often and the update
-might not be the final value it will get. Therefore a device must publish the
-\gls{SDS} explicitly to save bandwidth. This means that an extra function is
-added to the \CI{sds} class that adds the \CI{pub} function.
-\todo{elaborate}
-
-\section{Bytecode compilation}
+\Glspl{SDS} on a client are available on the server as well. However, the same
+freedom is not given on the \glspl{SDS} that reside on the client. Not all
+types are suitable to be located on a client. Moreover, \glspl{SDS} behave a
+little bit differently on an \gls{mTask} device than in the \gls{iTasks}
+system. In an \gls{iTasks} system, when the \gls{SDS} is updated, a broadcast
+to everyone in the system watching is made to notify them of an update.
+\glspl{SDS} on the device can update very often and the update might not be the
+final value it will get. Therefore a device must publish the \gls{SDS}
+explicitly to save bandwidth.
+
+To add this functionality, the \CI{sds} class could be extended. However, this
+would result in having to update all existing views that use the \CI{sds}
+class. Therefore, an extra class is added that contains the extra
+functionality. The existing views can choose to implement it in the future but
+are not obliged to. The publication function has the following signature:
+\begin{lstlisting}[caption={The \texttt{sdspub} class}]
+class sdspub v where
+  pub :: (v t Upd) -> v t Expr | type t
+\end{lstlisting}
+
+\section{Bytecode compilation}\label{sec:compiler}
 The \glspl{mTask} are sent to the device in bytecode and are saved in the
 memory of the device. To compile the \gls{EDSL} code to bytecode, a view is
-added to the \gls{mTask}-system called \CI{ByteCode}. As shown in
-Listing~\ref{lst:bcview}, the \CI{ByteCode} view is a boxed \gls{RWST} that
-writes bytecode instructions (\CI{BC}) while carrying around a \CI{BCState}.
-The state is kept between devices and contains fresh variable names and a
-register of shares used.
+added to the \gls{mTask}-system encapsulated in the type \CI{ByteCode}. As
+shown in Listing~\ref{lst:bcview}, the \CI{ByteCode} view is a boxed \gls{RWST}
+that writes bytecode instructions (\CI{BC}) while carrying around a
+\CI{BCState}. The state is kept between compilations and is unique to a device.
+The state contains fresh variable names and a register of shares used.
 
 Types implementing the \gls{mTask} classes must have two free type variables.
 Therefore the \gls{RWST} is wrapped with a constructor and two phantom type
@@ -58,8 +94,8 @@ accordingly.
        , sdsval :: BCValue
        }
 :: BCState = 
-       { freshl :: [Int]
-       , freshs :: [Int]
+       { freshl :: Int
+       , freshs :: Int
        , sdss :: [BCShare]
        }
 
@@ -173,7 +209,7 @@ since the labels are resolved to real addresses later on anyways.
 
 \begin{lstlisting}[label={lst:controlflow},%
        caption={Bytecode view for \texttt{arith}}]
-freshlabel = get >>= \st=:{freshl=[fr:frs]}->put {st & freshl=frs} >>| pure fr
+freshlabel = get >>= \st=:{freshl}->put {st & freshl=freshl+1} >>| pure freshl
 
 instance If ByteCode Stmt Stmt Stmt where If b t e = BCIfStmt b t e
 instance If ByteCode e Stmt Stmt    where If b t e = BCIfStmt b t e
@@ -202,7 +238,7 @@ implementation is shown in Listing~\ref{lst:shareview}.
 
 \begin{lstlisting}[label={lst:shareview},%
        caption={Bytecode view for \texttt{arith}}]
-freshshare = get >>= \st=:{freshl=[fr:frs]}->put {st & freshl=frs} >>| pure fr
+freshshare = get >>= \st=:{freshs}->put {st & freshs=freshs+1} >>| pure freshs
 
 instance sds ByteCode where
        sds f = {main = BC (freshshare
@@ -211,6 +247,7 @@ instance sds ByteCode where
                        >>= \(v In bdy)->modify (addSDS sds v)
                        >>| unBC (unMain bdy))
                }
+instance sdspub ByteCode where
        pub (BC x) = BC (censor (\[BCSdsFetch s]->[BCSdsPublish s]) x)
 
 addSDS sds v s = {s & sdss=[{sds & sdsval=BCValue v}:s.sdss]}
@@ -287,4 +324,50 @@ position in the program memory.
 20   : BCDigitalWrite (Digital D0)
 \end{lstlisting}
 
-\todo{add more elaborate example?}
+\section{Interpreter}
+The client contains an interpreter to execute a \gls{Task}'s bytecode.
+
+First some preparatory work is done. The stack will be initialized and the
+program counter and stack pointer are set to zero and the bottom respectively.
+Then the interpreter executes one step at the time while the program counter is
+smaller than the program length. The code for this is listed in
+Listing~\ref{lst:interpr}. One execution step is basically a big switch
+statement going over all possible bytecode instructions. Some instructions are
+detailed upon in the listing. The \CI{BCPush} instruction is a little more
+complicated in real life because some decoding will take place as not all
+\CI{BCValue}'s are of the same length.
+
+\begin{lstlisting}[language=C,label={lst:interpr},%
+       caption={Rough code outline for interpretation}]
+#define f16(p) program[pc]*265+program[pc+1]
+
+void run_task(struct task *t){
+       uint8_t *program = t->bc;
+       int plen = t->tasklength;
+       int pc = 0;
+       int sp = 0;
+       while(pc < plen){
+               switch(program[pc++]){
+               case BCNOP:
+                       break;
+               case BCPUSH:
+                       stack[sp++] = pc++ //Simplified
+                       break;
+               case BCPOP:
+                       sp--;
+                       break;
+               case BCSDSSTORE:
+                       sds_store(f16(pc), stack[--sp]);
+                       pc+=2;
+                       break;
+               // ...
+               case BCADD: trace("add");
+                       stack[sp-2] = stack[sp-2] + stack[sp-1];
+                       sp -= 1;
+                       break;
+               // ...
+               case BCJMPT: trace("jmpt to %d", program[pc]);
+                       pc = stack[--sp] ? program[pc]-1 : pc+1;
+                       break;
+}
+\end{lstlisting}