updates
[phd-thesis.git] / top / top.tex
index 25200c4..913dfc7 100644 (file)
@@ -1,34 +1,69 @@
 \documentclass[../thesis.tex]{subfiles}
 
+\input{subfilepreamble}
+
 \begin{document}
-\ifSubfilesClassLoaded{
-       \pagenumbering{arabic}
-}{}
+\input{subfileprefix}
 
-\chapter{Introduction to \texorpdfstring{\gls{IOT}}{IoT} programming}%
+\chapter{Edge device programming}%
 \label{chp:top4iot}
-\todo{betere chapter naam}
 \begin{chapterabstract}
-       This chapter introduces \gls{MTASK} and puts it into perspective compared to traditional microprocessor programming.
+       This chapter:
+       \begin{itemize}
+               \item shows how to create the \emph{Hello World!} application for microcontrollers using \gls{ARDUINO};
+               \item extends this idea with multithreading, demonstrating the difficulty programming multi-tasking applications;
+               \item describes a comparative variant in \gls{MTASK} and shows that upgrading to a multi-tasking variant is straightforward
+               \item demonstrates that the complexity of running multiple tasks;
+               \item and concludes with the history of \gls{MTASK}'s development.
+       \end{itemize}
 \end{chapterabstract}
 
+The edge layer of \gls{IOT} system mostly consists of microcontrollers.
+Microcontrollers are tiny computers designed specifically for embedded applications.
+They therefore only have a soup\c{c}on of memory, have a slow processor, come with many energy efficient sleep modes and have a lot of peripheral support such as \gls{GPIO} pins.
+Usually, programming microcontrollers requires an elaborate multi-step toolchain of compilation, linkage, binary image creation, and burning this image onto the flash memory of the microcontroller in order to compile and run a program.
+The programs are usually cyclic executives instead of tasks running in an operating system, i.e.\ there is only a single task that continuously runs on the bare metal.
+\Cref{tbl:mcu_laptop} compares the hardware properties of a typical laptop with two very popular microcontrollers.
+
+\begin{table}
+       \caption{Hardware characteristics of typical microcontrollers and laptops.}%
+       \label{tbl:mcu_laptop}
+       \begin{tabular}{llll}
+               \toprule
+                       & Laptop & Atmega328P & ESP8266\\
+               \midrule
+               CPU speed & \qtyrange{2}{4}{\giga\hertz} & \qty{16}{\mega\hertz} & \qty{80}{\mega\hertz} or \qty{160}{\mega\hertz}\\
+               \textnumero{} cores & \numrange{4}{8} & 1 & 1\\
+               Storage & \qty{1}{\tebi\byte} & \qty{32}{\kibi\byte} & \qtyrange{0.5}{4}{\mebi\byte}\\
+               \gls{RAM} & \qtyrange{4}{16}{\gibi\byte} & \qty{2}{\kibi\byte} & \qty{160}{\kibi\byte}\\
+               Power & \qtyrange{50}{100}{\watt} & \qtyrange{0.13}{250}{\milli\watt} & \qtyrange{0.1}{350}{\milli\watt}\\
+               Price & \euro{1500} & \euro{3} & \euro{4}\\
+               \bottomrule
+       \end{tabular}
+\end{table}
+
+Each type of microcontrollers comes with vendor-provided drivers, compilers and \glspl{RTS} but there are many platform that abstract away from this such as \gls{MBED} and \gls{ARDUINO} of which \gls{ARDUINO} is specifically designed for education and prototyping and hence used here.
+The popular \gls{ARDUINO} \gls{C}\slash\gls{CPP} dialect and accompanying libraries provide an abstraction layer for common microcontroller behaviour allowing the programmer to program multiple types of microcontrollers using a single language.
+Originally it was designed for the in-house developed open-source hardware with the same name but the setup allows porting to many architectures.
+It provides an \gls{IDE} and toolchain automation to perform all steps of the toolchain with a single command.
+
+\section{Hello world!}
 Traditionally, the first program that one writes when trying a new language is the so called \emph{Hello World!} program.
 This program has the single task of printing the text \emph{Hello World!} to the screen and exiting again, useful to become familiarised with the syntax and verify that the toolchain and runtime environment is working.
-On microprocessors, there often is no screen for displaying text.
-Nevertheless, almost always there is a monochrome $1\times1$ pixel screen, namely an---often builtin---\gls{LED}.
-The \emph{Hello World!} equivalent on microprocessors blinks this \gls{LED}.
+On microcontrollers, there usually is no screen for displaying text.
+Nevertheless, almost always there is a built-in monochrome $1\times1$ pixel screen, namely \pgls{LED}.
+The \emph{Hello World!} equivalent on microcontrollers blinks this \gls{LED}.
 
-\Cref{lst:arduinoBlink} shows how the logic of a blink program might look when using \gls{ARDUINO}'s \gls{CPP} dialect.
+\Cref{lst:arduinoBlink} shows how the logic of a blink program might look when using \gls{ARDUINO}'s \gls{C}\slash\gls{CPP} dialect.
 Every \gls{ARDUINO} program contains a \arduinoinline{setup} and a \arduinoinline{loop} function.
 The \arduinoinline{setup} function is executed only once on boot, the \arduinoinline{loop} function is continuously called afterwards and contains the event loop.
 After setting the \gls{GPIO} pin to the correct mode, blink's \arduinoinline{loop} function alternates the state of the pin representing the \gls{LED} between \arduinoinline{HIGH} and \arduinoinline{LOW}, turning the \gls{LED} off and on respectively.
-In between it waits for 500 milliseconds so that the blinking is actually visible for the human eye.
-Compiling this results in a binary firmware that needs to be flashed onto the program memory.
+In between it waits for \qty{500}{\ms} so that the blinking is actually visible for the human eye.
 
 Translating the traditional blink program to \gls{MTASK} can almost be done by simply substituting some syntax as seen in \cref{lst:blinkImp}.
 E.g.\ \arduinoinline{digitalWrite} becomes \cleaninline{writeD}, literals are prefixed with \cleaninline{lit} and the pin to blink is changed to represent the actual pin for the builtin \gls{LED} of the device used in the exercises.
 In contrast to the imperative \gls{CPP} dialect, \gls{MTASK} is a \gls{TOP} language and therefore there is no such thing as a loop, only task combinators to combine tasks.
-To simulate a loop, the \cleaninline{rpeat} task can be used, this task executes the argument task and, when stable, reinstates it.
+To simulate a loop, the \cleaninline{rpeat} task combinator can be used as this task combinator executes the argument task and, when stable, reinstates it.
 The body of the \cleaninline{rpeat} contains similarly named tasks to write to the pins and to wait in between.
 The tasks are connected using the sequential \cleaninline{>>|.} combinator that for all current intents and purposes executes the tasks after each other.
 
@@ -44,7 +79,8 @@ void loop() {
        delay(500);
        digitalWrite(D2, LOW);
        delay(500);
-}\end{lstArduino}
+}
+               \end{lstArduino}
        \end{subfigure}%
        \begin{subfigure}[b]{.5\linewidth}
                \begin{lstClean}[caption={Blink program.},label={lst:blinkImp}]
@@ -57,13 +93,14 @@ blink =
                >>|. writeD d2 false
                >>|. delay (lit 500)
        )
-}\end{lstClean}
+}
+               \end{lstClean}
        \end{subfigure}
 \end{figure}
 
 \section{Threaded blinking}
 Now say that we want to blink multiple blinking patterns on different \glspl{LED} concurrently.
-For example, blink three \glspl{LED} connected to \gls{GPIO} pins $1,2$ and $3$ at intervals of $500,300$ and $800$ milliseconds.
+For example, blink three \glspl{LED} connected to \gls{GPIO} pins $1,2$ and $3$ at intervals of \qtylist{500;300;800}{\ms}.
 Intuitively you want to lift the blinking behaviour to a function and call this function three times with different parameters as done in \cref{lst:blinkthreadno}
 
 \begin{lstArduino}[caption={Naive approach to multiple blinking patterns.},label={lst:blinkthreadno}]
@@ -84,11 +121,11 @@ void loop() {
 
 Unfortunately, this does not work because the \arduinoinline{delay} function blocks all further execution.
 The resulting program will blink the \glspl{LED} after each other instead of at the same time.
-To overcome this, it is necessary to slice up the blinking behaviour in very small fragments so it can be manually interleaved~\citep{feijs_multi-tasking_2013}.
+To overcome this, it is necessary to slice up the blinking behaviour in very small fragments so it can be manually interleaved \citep{feijs_multi-tasking_2013}.
 Listing~\ref{lst:blinkthread} shows how three different blinking patterns might be achieved in \gls{ARDUINO} using the slicing method.
 If we want the blink function to be a separate parametrizable function we need to explicitly provide all references to the required state.
 Furthermore, the \arduinoinline{delay} function can not be used and polling \arduinoinline{millis} is required.
-The \arduinoinline{millis} function returns the number of milliseconds that have passed since the boot of the microprocessor.
+The \arduinoinline{millis} function returns the number of milliseconds that have passed since the boot of the microcontroller.
 Some devices use very little energy when in \arduinoinline{delay} or sleep state.
 Resulting in \arduinoinline{millis} potentially affects power consumption since the processor is basically busy looping all the time.
 In the simple case of blinking three \glspl{LED} on fixed intervals, it might be possible to calculate the delays in advance using static analysis and generate the appropriate \arduinoinline{delay} code.
@@ -140,40 +177,90 @@ blinktask =
        }\end{lstClean}
 % VimTeX: SynIgnore off
 
-\chapter{The \texorpdfstring{\gls{MTASK}}{mTask} \texorpdfstring{\gls{DSL}}{DSL}}%
+\section{\texorpdfstring{\Gls{MTASK}}{MTask} history}
+\subsection{Generating \texorpdfstring{\gls{C}/\gls{CPP}}{C/C++} code}
+A first throw at a class-based shallowly \gls{EDSL} for microcontrollers was made by \citet{plasmeijer_shallow_2016}.
+The language was called \gls{ARDSL} and offered a type safe interface to \gls{ARDUINO} \gls{CPP} dialect.
+A \gls{CPP} code generation backend was available together with an \gls{ITASK} simulation backend.
+There was no support for tasks or even functions.
+Some time later in the 2015 \gls{CEFP} summer school, an extended version was created that allowed the creation of imperative tasks, \glspl{SDS} and the usage of functions \citep{koopman_type-safe_2019}.
+The name then changed from \gls{ARDSL} to \gls{MTASK}.
+
+\subsection{Integration with \texorpdfstring{\gls{ITASK}}{iTask}}
+\Citet{lubbers_task_2017} extended this in his Master's Thesis by adding integration with \gls{ITASK} and a bytecode compiler to the language.
+\Gls{SDS} in \gls{MTASK} could be accessed on the \gls{ITASK} server.
+In this way, entire \gls{IOT} systems could be programmed from a single source.
+However, this version used a simplified version of \gls{MTASK} without functions.
+This was later improved upon by creating a simplified interface where \glspl{SDS} from \gls{ITASK} could be used in \gls{MTASK} and the other way around \citep{lubbers_task_2018}.
+It was shown by \citet{amazonas_cabral_de_andrade_developing_2018} that it was possible to build real-life \gls{IOT} systems with this integration.
+Moreover, a course on the \gls{MTASK} simulator was provided at the 2018 \gls{CEFP}/\gls{3COWS} winter school in Ko\v{s}ice, Slovakia \citep{koopman_simulation_2018}.
+
+\section{Transition to \texorpdfstring{\gls{TOP}}{TOP}}
+The \gls{MTASK} language as it is now was introduced in 2018 \citep{koopman_task-based_2018}.
+This paper updated the language to support functions, tasks and \glspl{SDS} but still compiled to \gls{CPP} \gls{ARDUINO} code.
+Later the bytecode compiler and \gls{ITASK} integration was added to the language \citep{lubbers_interpreting_2019}.
+Moreover, it was shown that it is very intuitive to write microcontroller applications in a \gls{TOP} language \citep{lubbers_multitasking_2019}.
+One reason for this is that a lot of design patterns that are difficult using standard means are for free in \gls{TOP} (e.g.\ multithreading).
+In 2019, the \gls{CEFP} summer school in Budapest, Hungary hosted a course on developing \gls{IOT} applications with \gls{MTASK} as well \citep{lubbers_writing_2019}.
+
+\subsection{\texorpdfstring{\Glsxtrshort{TOP}}{TOP}}
+In 2022, the SusTrainable summer school in Rijeka, Croatia hosted a course on developing greener \gls{IOT} applications using \gls{MTASK} as well (the lecture notes are to be written).
+Several students worked on extending \gls{MTASK} with many useful features:
+\Citet{veen_van_der_mutable_2020} did preliminary work on a green computer analysis, built a simulator and explored the possibilities for adding bounded datatypes; \citet{boer_de_secure_2020} investigated the possibilities for secure communication channels; and \citet{crooijmans_reducing_2021} added abstractions for low-power operation to \gls{MTASK} such as hardware interrupts and power efficient scheduling (resulting in a paper as well \citet{crooijmans_reducing_2022}).
+\Citet{antonova_mtask_2022} defined a preliminary formal semantics for a subset of \gls{MTASK}.
+Moreover, plans for student projects and improvements include exploring integrating \gls{TINYML} into \gls{MTASK}; and adding intermittent computing support to \gls{MTASK}.
+
+In 2023, the SusTrainable summer school in Coimbra, Portugal will host a course on \gls{MTASK} as well.
+
+\subsection{\texorpdfstring{\gls{MTASK}}{mTask} in practise}
+Funded by the Radboud-Glasgow Collaboration Fund, collaborative work was executed with Phil Trinder, Jeremy Singer, and Adrian Ravi Kishore Ramsingh.
+An existing smart campus application was developed using \gls{MTASK} and quantitively and qualitatively compared to the original application that was developed using a traditional \gls{IOT} stack \citep{lubbers_tiered_2020}.
+This research was later extended to include a four-way comparison: \gls{PYTHON}, \gls{MICROPYTHON}, \gls{ITASK} and \gls{MTASK} \citep{lubbers_could_2022}.
+Currently, power efficiency behaviour of traditional versus \gls{TOP} \gls{IOT} stacks is being compared as well adding a \gls{FREERTOS} implementation to the mix as well.
+
+\chapter{The \texorpdfstring{\gls{MTASK}}{mTask} \texorpdfstring{\glsxtrshort{DSL}}{DSL}}%
 \label{chp:mtask_dsl}
 \begin{chapterabstract}
-This chapter serves as a complete guide to the \gls{MTASK} language, from an \gls{MTASK} programmer's perspective.
+This chapter introduces the \gls{MTASK} language more technically by:
+       \begin{itemize}
+               \item introducing the setup of the \gls{EDSL};
+               \item and showing the language interface and examples for:
+                       \begin{itemize}
+                               \item data types
+                               \item expression
+                               \item task and their combinators.
+                       \end{itemize}
+       \end{itemize}
 \end{chapterabstract}
 
-The \gls{MTASK} system is a \gls{TOP} programming environment for programming microprocessors.
-It is implemented as an\gls{EDSL} in \gls{CLEAN} using class-based---or tagless-final---embedding (See \cref{ssec:tagless}).
-Due to the nature of the embedding technique, it is possible to have multiple interpretations of---or views on---programs written in the \gls{MTASK} language.
+The \gls{MTASK} system is a complete \gls{TOP} programming environment for programming microcontrollers.
+It is implemented as an \gls{EDSL} in \gls{CLEAN} using class-based---or tagless-final---embedding (see \cref{sec:tagless-final_embedding}).
+
+Due to the nature of the embedding technique, it is possible to have multiple views on-programs written in the \gls{MTASK} language.
 The following interpretations are available for \gls{MTASK}.
 
-\begin{itemize}
-       \item Pretty printer
+\begin{description}
+       \item[Pretty printer]
 
                This interpretation converts the expression to a string representation.
-       \item Simulator
+       \item[Simulator]
 
                The simulator converts the expression to a ready-for-work \gls{ITASK} simulation in which the user can inspect and control the simulated peripherals and see the internal state of the tasks.
-       \item Compiler
+       \item[Byte code compiler]
 
-               The compiler compiles the \gls{MTASK} program at runtime to a specialised bytecode.
-               Using a handful of integration functions and tasks, \gls{MTASK} tasks can be executed on microprocessors and integrated in \gls{ITASK} as if they were regular \gls{ITASK} tasks.
+               The compiler compiles the \gls{MTASK} program at runtime to a specialised byte code.
+               Using a handful of integration functions and tasks, \gls{MTASK} tasks can be executed on microcontrollers and integrated in \gls{ITASK} as if they were regular \gls{ITASK} tasks.
                Furthermore, with special language constructs, \glspl{SDS} can be shared between \gls{MTASK} and \gls{ITASK} programs.
-\end{itemize}
+\end{description}
 
 When using the compiler interpretation in conjunction with the \gls{ITASK} integration, \gls{MTASK} is a heterogeneous \gls{DSL}.
-I.e.\ some components---e.g.\ the \gls{RTS} on the microprocessor---is largely unaware of the other components in the system.
-Furthermore, it is executed on a completely different architecture.
-The \gls{MTASK} language consists of a host language---a simply-typed $\lambda$-calculua with support for some basic types, function definition and data types (see \cref{sec:expressions})---enriched with a task language (see \cref{sec:top}).
+I.e.\ some components---e.g.\ the \gls{RTS} on the microcontroller---is largely unaware of the other components in the system, and it is executed on a completely different architecture.
+The \gls{MTASK} language is an enriched simply-typed $\lambda$-calculus with support for some basic types, arithmetic operations, and function definition; and a task language (see \cref{sec:top}).
 
 \section{Types}
 To leverage the type checker of the host language, types in the \gls{MTASK} language are expressed as types in the host language, to make the language type safe.
-However, not all types in the host language are suitable for microprocessors that may only have \qty{2}{\kibi\byte} of \gls{RAM} so class constraints are therefore added to the \gls{DSL} functions.
-The most used class constraint is the \cleaninline{type} class collection containing functions for serialization, printing, \gls{ITASK} constraints \etc.
+However, not all types in the host language are suitable for microcontrollers that may only have \qty{2}{\kibi\byte} of \gls{RAM} so class constraints are therefore added to the \gls{DSL} functions.
+The most used class constraint is the \cleaninline{type} class collection containing functions for serialization, printing, \gls{ITASK} constraints, \etc.
 Many of these functions can be derived using generic programming.
 An even stronger restriction on types is defined for types that have a stack representation.
 This \cleaninline{basicType} class has instances for many \gls{CLEAN} basic types such as \cleaninline{Int}, \cleaninline{Real} and \cleaninline{Bool}.
@@ -181,6 +268,8 @@ The class constraints for values in \gls{MTASK} are omnipresent in all functions
 
 \begin{table}[ht]
        \centering
+       \caption{Mapping from \gls{CLEAN}/\gls{MTASK} data types to \gls{CPP} datatypes.}%
+       \label{tbl:mtask-c-datatypes}
        \begin{tabular}{lll}
                \toprule
                \gls{CLEAN}/\gls{MTASK} & \gls{CPP} type & \textnumero{}bits\\
@@ -193,41 +282,43 @@ The class constraints for values in \gls{MTASK} are omnipresent in all functions
                \cleaninline{:: T = A \| B \| C} & \cinline{enum}    & 16\\
                \bottomrule
        \end{tabular}
-       \caption{Mapping from \gls{CLEAN}/\gls{MTASK} data types to \gls{CPP} datatypes.}%
-       \label{tbl:mtask-c-datatypes}
 \end{table}
 
-The \gls{MTASK} language consists of a core collection of type classes bundled in the type class \cleaninline{class mtask}.
+\Cref{lst:constraints} contains the definitions for the auxiliary types and type constraints (such as \cleaninline{type} an \cleaninline{basicType}) that are used to construct \gls{MTASK} expressions.
+The \gls{MTASK} language interface consists of a core collection of type classes bundled in the type class \cleaninline{class mtask}.
 Every interpretation implements the type classes in the \cleaninline{mtask} class
-There are also \gls{MTASK} extensions that not every interpretation implements such as peripherals and integration with \gls{ITASK}.
-
-\Cref{lst:constraints} contains the definitions for the type constraints and shows some example type signatures for typical \gls{MTASK} expressions and tasks.
-\todo{uitleggen}
-
+There are also \gls{MTASK} extensions that not every interpretation implements such as peripherals and \gls{ITASK} integration.
 \begin{lstClean}[caption={Classes and class collections for the \gls{MTASK} language.},label={lst:constraints}]
-:: Main a = { main :: a }
-:: In a b = (In) infix 0 a b
-
 class type t | iTask, ... ,fromByteCode, toByteCode t
 class basicType t | type t where ...
 
 class mtask v | expr, ..., int, real, long v
 
-someExpr :: v Int | mtask v
-someExpr = ...
+\end{lstClean}
+
+Sensors, \glspl{SDS}, functions, \etc{} may only be defined at the top level.
+The \cleaninline{Main} type is used that is used to distinguish the top level from the main expression.
+Some top level definitions, such as functions, are defined using \gls{HOAS}.
+To make their syntax friendlier, the \cleaninline{In} type---an infix tuple---is used to combine these top level definitions as can be seen in \cleaninline{someTask} (\cref{lst:mtask_types}).
+
+\begin{lstClean}[caption={Example task and auxiliary types in the \gls{MTASK} language.},label={lst:mtask_types}]
+:: Main a = { main :: a }
+:: In a b = (In) infix 0 a b
 
-someTask :: MTask v Int | mtask v
+someTask :: MTask v Int | mtask v & liftsds v & sensor1 v & ...
 someTask =
        sensor1 config1 \sns1->
        sensor2 config2 \sns2->
-          fun \fun1= ( ... )
+          sds \s1=initial
+       In liftsds \s2=someiTaskSDS
+       In fun \fun1= ( ... )
        In fun \fun2= ( ... )
-       In {main=mainexpr}
+       In { main = mainexpr }
 \end{lstClean}
 
 \section{Expressions}\label{sec:expressions}
 \Cref{lst:expressions} shows the \cleaninline{expr} class containing the functionality to lift values from the host language to the \gls{MTASK} language (\cleaninline{lit}); perform number and boolean arithmetics; do comparisons; and conditional execution.
-For every common arithmetic operator in the host language, an \gls{MTASK} variant is present, suffixed by a period to not clash with \gls{CLEAN}'s builtin operators.
+For every common boolean and arithmetic operator in the host language, an \gls{MTASK} variant is present, suffixed by a period to not clash with \gls{CLEAN}'s builtin operators.
 
 \begin{lstClean}[caption={The \gls{MTASK} class for expressions},label={lst:expressions}]
 class expr v where
@@ -242,7 +333,7 @@ class expr v where
        If :: (v Bool) (v t) (v t) -> v t | type t
 \end{lstClean}
 
-Conversion to-and-fro data types is available through the overloaded functions \cleaninline{int}, \cleaninline{long} and \cleaninline{real}.
+Conversion to-and-fro data types is available through the overloaded functions \cleaninline{int}, \cleaninline{long} and \cleaninline{real} that will convert the argument to the respective type similar to casting in \gls{C}.
 
 \begin{lstClean}[caption={Type conversion functions in \gls{MTASK}.}]
 class int  v a :: (v a) -> v Int
@@ -250,15 +341,13 @@ class real v a :: (v a) -> v Real
 class long v a :: (v a) -> v Long
 \end{lstClean}
 
-Finally, values from the host language must be explicitly lifted to the \gls{MTASK} language using the \cleaninline{lit} function.
+Values from the host language must be explicitly lifted to the \gls{MTASK} language using the \cleaninline{lit} function.
 For convenience, there are many lower-cased macro definitions for often used constants such as \cleaninline{true :== lit True}, \cleaninline{false :== lit False}, \etc.
 
 \Cref{lst:example_exprs} shows some examples of these expressions.
+Since they are only expressions, there is no need for a \cleaninline{Main}.
 \cleaninline{e0} defines the literal $42$, \cleaninline{e1} calculates the literal $42.0$ using real numbers.
 \cleaninline{e2} compares \cleaninline{e0} and \cleaninline{e1} as integers and if they are equal it returns the \cleaninline{e2}$/2$ and \cleaninline{e0} otherwise.
-\cleaninline{approxEqual} performs an approximate equality---albeit not taking into account all floating point pecularities---and demonstrates that \gls{CLEAN} can be used as a macro language, i.e.\ maximise linguistic reuse~\cite{krishnamurthi_linguistic_2001}.
-\todo{uitzoeken waar dit handig is}
-When calling \cleaninline{approxEqual} in an \gls{MTASK} function, the resulting code is inlined.
 
 \begin{lstClean}[label={lst:example_exprs},caption={Example \gls{MTASK} expressions.}]
 e0 :: v Int | expr v
@@ -270,23 +359,31 @@ e1 = lit 38.0 + real (lit 4)
 e2 :: v Int | expr v
 e2 = if' (e0 ==. int e1)
        (int e1 /. lit 2) e0
+\end{lstClean}
+
+\Gls{MTASK} is shallowly embedded in \gls{CLEAN} and the terms are constructed at runtime.
+This means that \gls{MTASK} programs can also be tailor-made at runtime or constructed using \gls{CLEAN} functions maximising the linguistic reuse \citep{krishnamurthi_linguistic_2001}
+\cleaninline{approxEqual} in \cref{lst:example_macro} performs an approximate equality---albeit not taking into account all floating point pecularities---.
+When calling \cleaninline{approxEqual} in an \gls{MTASK} function, the resulting code is inlined.
 
+\begin{lstClean}[label={lst:example_macro},caption={Example linguistic reuse in the \gls{MTASK} language.}]
 approxEqual :: (v Real) (v Real) (v Real) -> v Real | expr v
-approxEqual x y eps = if' (x == y) true
-       ( if' (x > y)
+approxEqual x y eps = if' (x ==. y) true
+       ( if' (x >. y)
                (y -. x < eps)
                (x -. y < eps)
        )
 \end{lstClean}
 
-\subsection{Data Types}
+\subsection{Data types}
 Most of \gls{CLEAN}'s basic types have been mapped on \gls{MTASK} types.
 However, it can be useful to have access to compound types as well.
 All types in \gls{MTASK} must have a fixed size representation on the stack so sum types are not (yet) supported.
 While it is possible to lift types using the \cleaninline{lit} function, you cannot do anything with the types besides passing them around but they are being produced by some parallel task combinators (see \cref{sssec:combinators_parallel}).
-To be able to use types as first class citizens, constructors and field selectors are required.
+To be able to use types as first class citizens, constructors and field selectors are required (see \cref{chp:first-class_datatypes}).
 \Cref{lst:tuple_exprs} shows the scaffolding for supporting tuples in \gls{MTASK}.
 Besides the constructors and field selectors, there is also a helper function available that transforms a function from a tuple of \gls{MTASK} expressions to an \gls{MTASK} expression of a tuple.
+Examples for using tuple can be found in \cref{sec:mtask_functions}.
 
 \begin{lstClean}[label={lst:tuple_exprs},caption={Tuple constructor and field selectors in \gls{MTASK}.}]
 class tupl v where
@@ -297,15 +394,14 @@ class tupl v where
        tupopen f :== \v->f (first v, second v)
 \end{lstClean}
 
-\subsection{Functions}
-Adding functions to the language is achieved by one multi-parameter class to the \gls{DSL}.
-By using \gls{HOAS}, both the function definition and the calls to the function can be controlled by the \gls{DSL}~\citep{pfenning_higher-order_1988,chlipala_parametric_2008}.
-As \gls{MTASK} only supports first-order functions and does not allow partial function application.
-Using a type class of this form, this restriction can be enforced on the type level.
-Instead of providing one instance for all functions, a single instance per function arity is defined.
+\subsection{Functions}\label{sec:mtask_functions}
+Adding functions to the language is achieved by type class to the \gls{DSL}.
+By using \gls{HOAS}, both the function definition and the calls to the function can be controlled by the \gls{DSL} \citep{pfenning_higher-order_1988,chlipala_parametric_2008}.
+The \gls{MTASK} only allows first-order functions and does not allow partial function application.
+This is restricted by using a multi-parameter type class where the first parameter represents the arguments and the second parameter the view.
+By providing a single instance per function arity instead of providing one instance for all functions and using tuples for the arguments this constraint can be enforced.
 Also, \gls{MTASK} only supports top-level functions which is enforced by the \cleaninline{Main} box.
-The definition of the type class and the instances for an example interpretation are as follows:
-\todo{uitbreiden}
+The definition of the type class and the instances for an example interpretation (\cleaninline{:: Inter}) are as follows:
 
 \begin{lstClean}[caption={Functions in \gls{MTASK}.}]
 class fun a v :: ((a -> v s) -> In (a -> v s) (Main (MTask v u)))
@@ -313,8 +409,8 @@ class fun a v :: ((a -> v s) -> In (a -> v s) (Main (MTask v u)))
 
 instance fun () Inter where ...
 instance fun (Inter a) Inter | type a where ...
-instance fun (Inter a, Inter b) Inter | type a where ...
-instance fun (Inter a, Inter b, Inter c) Inter | type a where ...
+instance fun (Inter a, Inter b) Inter | type a, type b where ...
+instance fun (Inter a, Inter b, Inter c) Inter | type a, ... where ...
 ...
 \end{lstClean}
 
@@ -356,11 +452,11 @@ swapTuple =
 \end{lstClean}
 % VimTeX: SynIgnore off
 
-\section{Tasks}\label{sec:top}
+\section{Tasks and task combinators}\label{sec:top}
 \Gls{MTASK}'s task language can be divided into three categories, namely
 \begin{enumerate*}
        \item Basic tasks, in most \gls{TOP} systems, the basic tasks are called editors, modelling the interactivity with the user.
-               In \gls{MTASK}, there are no \emph{editors} in that sense but there is interaction with the outside world through microprocessor peripherals such as sensors and actuators.
+               In \gls{MTASK}, there are no \emph{editors} in that sense but there is interaction with the outside world through microcontroller peripherals such as sensors and actuators.
        \item Task combinators provide a way of describing the workflow.
                They combine one or more tasks into a compound task.
        \item \glspl{SDS} in \gls{MTASK} can be seen as references to data that can be shared using many-to-many communication and are only accessible from within the task language to ensure atomicity.
@@ -382,6 +478,7 @@ They lift the value from the \gls{MTASK} expression language to the task domain
 There is also a special type of basic task for delaying execution.
 The \cleaninline{delay} task---given a number of milliseconds---yields an unstable value while the time has not passed.
 Once the specified time has passed, the time it overshot the planned time is yielded as a stable task value.
+See \cref{sec:repeat} for an example task using \cleaninline{delay}.
 
 \begin{lstClean}[label={lst:basic_tasks},caption={Function examples in \gls{MTASK}.}]
 class rtrn v :: (v t) -> MTask v t
@@ -392,9 +489,9 @@ class delay v :: (v n) -> MTask v n | long v n
 \subsubsection{Peripherals}\label{sssec:peripherals}
 For every sensor or actuator, basic tasks are available that allow interaction with the specific peripheral.
 The type classes for these tasks are not included in the \cleaninline{mtask} class collection as not all devices nor all language interpretations have such peripherals connected.
-\todo{Historically, peripheral support has been added \emph{by need}.}
+%\todo{Historically, peripheral support has been added \emph{by need}.}
 
-\Cref{lst:dht} and \cref{lst:gpio} show the type classes for \glspl{DHT} sensors and \gls{GPIO} access.
+\Cref{lst:dht,lst:gpio} show the type classes for \glspl{DHT} sensors and \gls{GPIO} access.
 Other peripherals have similar interfaces, they are available in the \cref{sec:aux_peripherals}.
 For the \gls{DHT} sensor there are two basic tasks, \cleaninline{temperature} and \cleaninline{humidity}, that---will given a \cleaninline{DHT} object---produce a task that yields the observed temperature in \unit{\celcius} or relative humidity as a percentage as an unstable value.
 Currently, two different types of \gls{DHT} sensors are supported, the \emph{DHT} family of sensors connect through $1$-wire protocol and the \emph{SHT} family of sensors connected using \gls{I2C} protocol.
@@ -418,7 +515,7 @@ measureTemp = DHT (DHT_SHT (i2c 0x36)) \dht->
 
 \Gls{GPIO} access is divided into three classes: analog, digital and pin modes.
 For all pins and pin modes an \gls{ADT} is available that enumerates the pins.
-The analog \gls{GPIO} pins of a microprocessor are connected to an \gls{ADC} that translates the voltage to an integer.
+The analog \gls{GPIO} pins of a microcontroller are connected to an \gls{ADC} that translates the voltage to an integer.
 Analog \gls{GPIO} pins can be either read or written to.
 Digital \gls{GPIO} pins only report a high or a low value.
 The type class definition is a bit more complex since analog \gls{GPIO} pins can be used as digital \gls{GPIO} pins as well.
@@ -429,7 +526,7 @@ Setting the pin mode is a task that immediately finisheds and fields a stable un
 Writing to a pin is also a task that immediately finishes but yields the written value instead.
 Reading a pin is a task that yields an unstable value---i.e.\ the value read from the actual pin.
 
-\begin{lstClean}[label={lst:gpio},caption{The \gls{MTASK} interface for \gls{GPIO} access.}]
+\begin{lstClean}[label={lst:gpio},caption={The \gls{MTASK} interface for \gls{GPIO} access.}]
 :: APin = A0 | A1 | A2 | A3 | A4 | A5
 :: DPin = D0 | D1 | D2 | D3 | D4 | D5 | D6 | D7 | D8 | D9 | D10 | D11 | D12 | D13
 :: PinMode = PMInput | PMOutput | PMInputPullup
@@ -449,6 +546,14 @@ class pinMode v where
        declarePin :: p PinMode ((v p) -> Main (v a)) -> Main (v a) | pin p
 \end{lstClean}
 
+\begin{lstClean}[label={lst:gpio_examples},caption={\Gls{GPIO} example in \gls{MTASK}.}]
+task1 :: MTask v Int | mtask v
+task1 = declarePin A3 PMInput \a3->{main=readA a3}
+
+task2 :: MTask v Int | mtask v
+task2 = declarePin D3 PMOutput \d3->{main=writeD d3 true}
+\end{lstClean}
+
 \subsection{Task combinators}
 Task combinators are used to combine multiple tasks into one to describe workflows.
 There are three main types of task combinators, namely:
@@ -552,7 +657,7 @@ task =
        In {main = monitor d0 .||. monitor d1}
 \end{lstClean}
 
-\subsubsection{Repeat}
+\subsubsection{Repeat}\label{sec:repeat}
 The \cleaninline{rpeat} combinator executes the child task.
 If a stable value is observed, the task is reinstated.
 The functionality of \cleaninline{rpeat} can also be simulated by using functions and sequential task combinators and even made to be stateful as can be seen in \cref{lst:blinkthreadmtask}.
@@ -570,19 +675,19 @@ task :: MTask v Int | mtask v
 task =
        declarePin A1 PMInput \a1->
        declarePin A2 PMOutput \a2->
-       {main = rpeat (readA a1 >>~. writeA a2)}
+       {main = rpeat (readA a1 >>~. writeA a2 >>|. delay (lit 1000))}
 \end{lstClean}
 
-\subsection{\texorpdfstring{\Acrlongpl{SDS}}{Shared data sources}}
-\Glspl{SDS} in \gls{MTASK} are by default references to shared memory.
+\subsection{\texorpdfstring{\Glsxtrlongpl{SDS}}{Shared data sources}}
+\Glspl{SDS} in \gls{MTASK} are by default references to shared memory but can also be references to \glspl{SDS} in \gls{ITASK} (see \cref{sec:liftsds}).
 Similar to peripherals (see \cref{sssec:peripherals}), they are constructed at the top level and are accessed through interaction tasks.
 The \cleaninline{getSds} task yields the current value of the \gls{SDS} as an unstable value.
 This behaviour is similar to the \cleaninline{watch} task in \gls{ITASK}.
-Writing a new value to an \gls{SDS} is done using \cleaninline{setSds}.
+Writing a new value to \pgls{SDS} is done using \cleaninline{setSds}.
 This task yields the written value as a stable result after it is done writing.
-Getting and immediately after setting an \gls{SDS} is not an \emph{atomic} operation.
-It is possible that another task accesses the \gls{SDS} in between.
+Getting and immediately after setting \pgls{SDS} is not necessarily an \emph{atomic} operation in \gls{MTASK} because it is possible that another task accesses the \gls{SDS} in between.
 To circumvent this issue, \cleaninline{updSds} is created, this task atomically updates the value of the \gls{SDS}.
+The \cleaninline{updSds} task only guarantees atomicity within \gls{MTASK}.
 
 \begin{lstClean}[label={lst:mtask_sds},caption={\Glspl{SDS} in \gls{MTASK}.}]
 :: Sds a // abstract
@@ -593,20 +698,44 @@ class sds v where
        updSds :: (v (Sds t)) ((v t) -> v t) -> MTask v t
 \end{lstClean}
 
-\todo{examples sdss}
+\Cref{lst:mtask_sds_examples} shows an example using \glspl{SDS}.
+The \cleaninline{count} function takes a pin and returns a task that counts the number of times the pin is observed as high by incrementing the \cleaninline{share} \gls{SDS}.
+In the \cleaninline{main} expression, this function is called twice and the results are combined using the parallel or combinator (\cleaninline{.||.}).
+Using a sequence of \cleaninline{getSds} and \cleaninline{setSds} would be unsafe here because the other branch might write their old increment value immediately after writing, effectively missing a count.\todo{beter opschrijven}
 
-\chapter{Green computing with \texorpdfstring{\gls{MTASK}}{mTask}}%
-\label{chp:green_computing_mtask}
+\begin{lstClean}[label={lst:mtask_sds_examples},caption={Examples with \glspl{SDS} in \gls{MTASK}.}]
+task :: MTask v Int | mtask v
+task = declarePin D3 PMInput \d3->
+       declarePin D5 PMInput \d5->
+          sds \share=0
+       In fun \count=(\pin->
+                   readD pin
+               >>* [IfValue (\x->x) (\_->updSds (\x->x +. lit 1) share)]
+               >>| delay (lit 100) // debounce
+               >>| count pin)
+       In {main=count d3 .||. count d5}
+\end{lstClean}
 
 \chapter{Integration with \texorpdfstring{\gls{ITASK}}{iTask}}%
 \label{chp:integration_with_itask}
+\begin{chapterabstract}
+       This chapter shows the integration of \gls{MTASK} with \gls{ITASK} by showing:
+       \begin{itemize}
+               \item an architectural overview of \gls{MTASK};
+               \item on the interface for connecting devices;
+               \item the interface for lifting \gls{MTASK} tasks to \gls{ITASK} tasks;
+               \item and interface for lifting \gls{ITASK} \glspl{SDS} to \gls{MTASK} \glspl{SDS}.
+       \end{itemize}
+\end{chapterabstract}
+
 The \gls{MTASK} language is a multi-view \gls{DSL}, i.e.\ there are multiple interpretations possible for a single \gls{MTASK} term.
-Using the byte code compiler (\cleaninline{BCInterpret}) \gls{DSL} interpretation, \gls{MTASK} tasks are fully integrated in \gls{ITASK} and executed as if they were regular \gls{ITASK} tasks and communicate using \gls{ITASK} \glspl{SDS}.
-\Gls{MTASK} devices contain a domain-specific \gls{OS} (\gls{RTS}) and are little \gls{TOP} servers in their own respect, being able to execute tasks.
+Using the byte code compiler (\cleaninline{BCInterpret}) \gls{DSL} interpretation, \gls{MTASK} tasks can be fully integrated in \gls{ITASK}.
+They are executed as if they are regular \gls{ITASK} tasks and they communicate may access \glspl{SDS} from \gls{ITASK} as well.
+\Gls{MTASK} devices contain a domain-specific \gls{OS} (\gls{RTS}) and are little \gls{TOP} engines in their own respect, being able to execute tasks.
 \Cref{fig:mtask_integration} shows the architectural layout of a typical \gls{IOT} system created with \gls{ITASK} and \gls{MTASK}.
 The entire system is written as a single \gls{CLEAN} specification where multiple tasks are executed at the same time.
 Tasks can access \glspl{SDS} according to many-to-many communication and multiple clients can work on the same task.
-Devices are integrated into the system using the \cleaninline{widthDevice} function (see \cref{sec:withdevice}).
+Devices are integrated into the system using the \cleaninline{withDevice} function (see \cref{sec:withdevice}).
 Using \cleaninline{liftmTask}, \gls{MTASK} tasks are lifted to a device (see \cref{sec:liftmtask}).
 \Gls{ITASK} \glspl{SDS} are lifted to the \gls{MTASK} device using \cleaninline{liftsds} (see \cref{sec:liftmtask}).
 
@@ -618,7 +747,8 @@ Using \cleaninline{liftmTask}, \gls{MTASK} tasks are lifted to a device (see \cr
 \end{figure}
 
 \section{Devices}\label{sec:withdevice}
-\Gls{MTASK} tasks in the byte code compiler view are always executed on a certain device.
+When interpreted by the byte code compiler view, an \gls{MTASK} task produces a compiler.
+This compiler is exceuted at run time so that the resulting byte code can be sent to an edge device.
 All communication with this device happens through a so-called \emph{channels} \gls{SDS}.
 The channels contain three fields, a queue of messages that are received, a queue of messages to send and a stop flag.
 Every communication method that implements the \cleaninline{channelSync} class can provide the communication with an \gls{MTASK} device.
@@ -631,7 +761,7 @@ This task sets up the communication, exchanges specifications, handles errors an
 :: MTDevice //abstract
 :: Channels :== ([MTMessageFro], [MTMessageTo], Bool)
 
-class channelSync a :: a (sds () Channels Channels) -> Task () | RWShared sds
+class channelSync a :: a (Shared sds Channels) -> Task () | RWShared sds
 
 withDevice :: (a (MTDevice -> Task b) -> Task b) | iTask b & channelSync, iTask a
 \end{lstClean}
@@ -642,60 +772,25 @@ Once the connection with the device is established, \ldots
 liftmTask :: (Main (BCInterpret (TaskValue u))) MTDevice -> Task u | iTask u
 \end{lstClean}
 
-\section{Lifting \texorpdfstring{\acrlongpl{SDS}}{shared data sources}}\label{sec:liftsds}
+\section{Lifting \texorpdfstring{\glsxtrlongpl{SDS}}{shared data sources}}\label{sec:liftsds}
 \begin{lstClean}[label={lst:mtask_itasksds},caption={Lifted \gls{ITASK} \glspl{SDS} in \gls{MTASK}.}]
 class liftsds v where
-       liftsds :: ((v (Sds t))->In (Shared sds t) (Main (MTask v u)))
+       liftsds :: ((v (Sds t)) -> In (Shared sds t) (Main (MTask v u)))
                -> Main (MTask v u) | RWShared sds
 \end{lstClean}
 
 \chapter{Implementation}%
 \label{chp:implementation}
+\begin{chapterabstract}
+       This chapter shows the implementation of the \gls{MTASK} system.
+       It is threefold: first it shows the implementation of the byte code compiler for \gls{MTASK}'s \gls{TOP} language, then is details of the implementation of \gls{MTASK}'s \gls{TOP} engine that executes the \gls{MTASK} tasks on the microcontroller, and finally it shows how the integration of \gls{MTASK} tasks and \glspl{SDS} is implemented both on the server and on the device.
+\end{chapterabstract}
 IFL19 paper, bytecode instructieset~\cref{chp:bytecode_instruction_set}
 
 \section{Integration with \texorpdfstring{\gls{ITASK}}{iTask}}
 IFL18 paper stukken
 
-\chapter{\texorpdfstring{\gls{MTASK}}{mTask} history}
-\section{Generating \texorpdfstring{\gls{C}/\gls{CPP}}{C/C++} code}
-A first throw at a class-based shallowly \gls{EDSL} for microprocessors was made by \citet{plasmeijer_shallow_2016}.
-The language was called \gls{ARDSL} and offered a type safe interface to \gls{ARDUINO} \gls{CPP} dialect.
-A \gls{CPP} code generation backend was available together with an \gls{ITASK} simulation backend.
-There was no support for tasks or even functions.
-Some time later in the 2015 \gls{CEFP} summer school, an extended version was created that allowed the creation of imperative tasks, \glspl{SDS} and the usage of functions~\citep{koopman_type-safe_2019}.
-The name then changed from \gls{ARDSL} to \gls{MTASK}.
-
-\section{Integration with \texorpdfstring{\gls{ITASK}}{iTask}}
-Mart Lubbers extended this in his Master's Thesis by adding integration with \gls{ITASK} and a bytecode compiler to the language~\citep{lubbers_task_2017}.
-\Gls{SDS} in \gls{MTASK} could be accessed on the \gls{ITASK} server.
-In this way, entire \gls{IOT} systems could be programmed from a single source.
-However, this version used a simplified version of \gls{MTASK} without functions.
-This was later improved upon by creating a simplified interface where \glspl{SDS} from \gls{ITASK} could be used in \gls{MTASK} and the other way around~\citep{lubbers_task_2018}.
-It was shown by Matheus Amazonas Cabral de Andrade that it was possible to build real-life \gls{IOT} systems with this integration~\citep{amazonas_cabral_de_andrade_developing_2018}.
-Moreover, a course on the \gls{MTASK} simulator was provided at the 2018 \gls{CEFP}/\gls{3COWS} winter school in Ko\v{s}ice, Slovakia~\citep{koopman_simulation_2018}.
-
-\section{Transition to \texorpdfstring{\gls{TOP}}{TOP}}
-The \gls{MTASK} language as it is now was introduced in 2018~\citep{koopman_task-based_2018}.
-This paper updated the language to support functions, tasks and \glspl{SDS} but still compiled to \gls{CPP} \gls{ARDUINO} code.
-Later the bytecode compiler and \gls{ITASK} integration was added to the language~\citep{lubbers_interpreting_2019}.
-Moreover, it was shown that it is very intuitive to write \gls{MCU} applications in a \gls{TOP} language~\citep{lubbers_multitasking_2019}.
-One reason for this is that a lot of design patterns that are difficult using standard means are for free in \gls{TOP} (e.g.\ multithreading).
-In 2019, the \gls{CEFP} summer school in Budapest, Hungary hosted a course on developing \gls{IOT} applications with \gls{MTASK} as well~\citep{lubbers_writing_2019}.
-
-\section{\texorpdfstring{\gls{TOP}}{TOP}}
-In 2022, the SusTrainable summer school in Rijeka, Croatia hosted a course on developing greener \gls{IOT} applications using \gls{MTASK} as well (the lecture notes are to be written).
-Several students worked on extending \gls{MTASK} with many useful features:
-Erin van der Veen did preliminary work on a green computer analysis, built a simulator and explored the possibilities for adding bounded datatypes~\citep{veen_van_der_mutable_2020}; Michel de Boer investigated the possibilities for secure communication channels~\citep{boer_de_secure_2020}; and Sjoerd Crooijmans added abstractions for low-power operation to \gls{MTASK} such as hardware interrupts and power efficient scheduling~\citep{crooijmans_reducing_2021}.
-Elina Antonova defined a preliminary formal semantics for a subset of \gls{MTASK}~\citep{antonova_MTASK_2022}.
-Moreover, plans for student projects and improvements include exploring integrating \gls{TINYML} into \gls{MTASK}; and adding intermittent computing support to \gls{MTASK}.
-
-In 2023, the SusTrainable summer school in Coimbra, Portugal will host a course on \gls{MTASK} as well.
-
-\section{\texorpdfstring{\gls{MTASK}}{mTask} in practise}
-Funded by the Radboud-Glasgow Collaboration Fund, collaborative work was executed with Phil Trinder, Jeremy Singer and Adrian Ravi Kishore Ramsingh.
-An existing smart campus application was developed using \gls{MTASK} and quantitively and qualitatively compared to the original application that was developed using a traditional \gls{IOT} stack~\citep{lubbers_tiered_2020}.
-The collaboration is still ongoing and a journal article is under review comparing four approaches for the edge layer: \gls{PYTHON}, \gls{MICROPYTHON}, \gls{ITASK} and \gls{MTASK}.
-Furthermore, power efficiency behaviour of traditional versus \gls{TOP} \gls{IOT} stacks is being compared as well adding a \gls{FREERTOS} implementation to the mix as well
+\subfile{green}
 
 \input{subfilepostamble}
 \end{document}