finalise finale
[phd-thesis.git] / tvt / tvt.tex
index 3360822..540d8fa 100644 (file)
@@ -239,9 +239,9 @@ Tierless languages may adopt a range of communication paradigms for communicatin
 \Cimtask{} and \citask{} communicate using a combination of remote task invocation, similar to remote procedures, and shared state through \glspl{SDS}.
 \Cref{lst_t4t:itaskTempFull} illustrates: \cref{lst_t4t:itaskTempFull:startdevtask} shows a server task launching a remote task, \cleaninline{devTask}, on to a sensor node; and \cref{lst_t4t:itaskTempFull:remoteShare} shows the sharing of the remote \cleaninline{latestTemp} \gls{SDS}.
 
-\subsubsection{Security}
+\subsubsection{Security}\label{ssec_t4t:security}
 
-Security is a major issue and a considerable challenge for many \gls{IOT} systems \citep{10.1145/3437537}. There are potentially security issues at each layer in an \gls{IOT} application (\cref{fig_t4t:iot_arch}). The security issues and defence mechanisms at the application and presentation layers are relatively standard, e.g.\ defending against SQL injection attacks. The security issues at the network and perception layers are more challenging. Resource-rich sensor nodes can adopt some standard security measures like encrypting messages, and regularly applying software patches to the operating system. However microcontrollers often lack the computational resources for encryption, and it is hard to patch their system software because the program is often stored in flash memory. In consequence there are infamous examples of \gls{IOT} systems being hijacked to create botnets \citep{203628,herwig_measurement_2019}.
+Security is a major issue and a considerable challenge for many \gls{IOT} systems \citep{alhirabi_security_2021}. There are potentially security issues at each layer in an \gls{IOT} application (\cref{fig_t4t:iot_arch}). The security issues and defence mechanisms at the application and presentation layers are relatively standard, e.g.\ defending against SQL injection attacks. The security issues at the network and perception layers are more challenging. Resource-rich sensor nodes can adopt some standard security measures like encrypting messages, and regularly applying software patches to the operating system. However microcontrollers often lack the computational resources for encryption, and it is hard to patch their system software because the program is often stored in flash memory. In consequence there are infamous examples of \gls{IOT} systems being hijacked to create botnets \citep{203628,herwig_measurement_2019}.
 
 Securing the entire stack in a conventional tiered \gls{IOT} application is particularly challenging as the stack is implemented in a collection of programming languages with low level programming and communication abstractions. In such polyglot distributed systems it is hard to determine, and hence secure, the flow of data between components. In consequence a small mistake may have severe security implications.