restructure
[phd-thesis.git] / tvt / tvt.tex
index 222b09e..bacd7d9 100644 (file)
@@ -278,7 +278,7 @@ A number of characteristics of tierless languages help to improve security. Comm
 
 However many tierless languages have yet to provide a comprehensive set of security technologies, despite its importance in domains like web and \gls{IOT} applications. For example Erlang and many Erlang-based systems \citep{shibanai_distributed_2018,sivieri2012drop}, lack important security measures. Indeed security is not covered in a recent, otherwise comprehensive, survey of tierless technologies \citep{weisenburger2020survey}.
 
-\Gls{CLEAN}\slash\gls{ITASK} and \gls{CLEAN}/\gls{ITASK}/\gls{MTASK} are typical in this respect: little effort has yet been expended on improving their security. Of course as tierless languages they benefit from static type safety and automatically generated communication and placement. Some preliminary work shows that, as the communication between layers is protocol agnostic, more secure alternatives can be used. One example is to run the \gls{ITASK} server behind a reverse proxy implementing TLS/SSL encryption \citep{wijkhuizen_security_2018}. A second is to add integrity checks or even encryption to the communication protocol for resource-rich sensor nodes \citep{boer_de_secure_2020}.
+\Gls{CLEAN}\slash\gls{ITASK} and \gls{CLEAN}/\gls{ITASK}/\gls{MTASK} are typical in this respect: little effort has yet been expended on improving their security. Of course as tierless languages they benefit from static type safety and automatically generated communication and placement. Some preliminary work shows that, as the communication between layers is protocol agnostic, more secure alternatives can be used. One example is to run the \gls{ITASK} server behind a reverse proxy implementing TLS/SSL encryption \citep{wijkhuizen_security_2018}. A second is to add integrity checks or even encryption to the communication protocol for resource-rich sensor nodes \citep{de_boer_secure_2020}.
 
 \section{Task-oriented and \texorpdfstring{\glsxtrshort{IOT}}{IoT} programming in \texorpdfstring{\glsentrytext{CLEAN}}{Clean}}
 
@@ -950,7 +950,7 @@ The exchange of data, user interface, and communication are all automatically ge
 Another reason that the tierless \gls{CLEAN} implementations are concise is because they use powerful higher order \gls{IOT} programming abstractions.
 For comprehensibility the simple temperature sensor from \cref{sec_t4t:mtasks} (\cref{lst_t4t:mtasktemp}) is used to compare the expressive power of \gls{CLEAN} and \gls{PYTHON}-based \gls{IOT} programming abstractions.
 There are implementations for all four configurations: \gls{PRTS} (\gls{PYTHON} Raspberry Pi Temperature Sensor)\footnotemark, \gls{PWTS}\footnotemark[\value{footnote}]
-\footnotetext{Lubbers, M.; Koopman, P.; Ramsingh, A.; Singer, J.; Trinder, P. (2021): Source code, line counts and memory stats for PRS, PWS, PRT and PWT.\ Zenodo.\ \href{https://doi.org/10.5281/zenodo.5081386}{10.5281/zenodo.5081386}.}, \gls{CRTS}\footnotemark{} and \gls{CWTS}\footnotemark[\value{footnote}].
+\footnotetext{Lubbers, M.; Koopman, P.; Ramsingh, A.; Singer, J.; Trinder, P. (2021): Source code, line counts and memory stats for PRS, PWS, PRT and PWT.\ Zenodo.\ \href{https://doi.org/10.5281/zenodo.5081386}{10.5281/zenodo.5081386}.}, \gls{CRTS}\footnotemark{} and \gls{CWTS}.\footnotemark[\value{footnote}]
 \footnotetext{Lubbers, M.; Koopman, P.; Ramsingh, A.; Singer, J.; Trinder, P. (2021): Source code, line counts and memory stats for CRS, CWS, CRTS and CWTS.\ Zenodo.\ \href{https://doi.org/10.5281/zenodo.5040754}{10.5281/zenodo.5040754}.}
 but as the programming abstractions are broadly similar, we compare only the \gls{PWTS} and \gls{CWTS} implementations.