X-Git-Url: https://git.martlubbers.net/?a=blobdiff_plain;f=a2%2F1cases.tex;h=d84752a90b12c610a3a7104865fc1c4286281414;hb=f332d78e82a391ad322fca496065e3002553d606;hp=1bfdc39213491bbdc566edc48e908167e5b69638;hpb=68e3344a6e17ea512f3c04cc9d25951e3cff530a;p=tt2015.git diff --git a/a2/1cases.tex b/a2/1cases.tex index 1bfdc39..d84752a 100644 --- a/a2/1cases.tex +++ b/a2/1cases.tex @@ -89,13 +89,14 @@ a feasible test suite the tests are divided into equivalence partitions. Below these partitions are given. \begin{enumerate} - \item \emph{Number of packets} in request~\footnote{A request is considered - establishing a connection (handshake) and a number of payload packets} + \item \emph{Number of segments} in request~\footnote{A request is + considered establishing a connection (handshake) and a number of + payload segments} \begin{enumerate} - \item 0 payload packets - \item 1 payload packet - \item n=small payload packets - \item n=big payload packets + \item 0 payload segments + \item 1 payload segments + \item n=small payload segments (1 byte) + \item n=big payload segments (65495 bytes) \end{enumerate} \item \emph{source port} \begin{enumerate} @@ -107,76 +108,90 @@ these partitions are given. \item Correct \item Incorrect \end{enumerate} - \item Bits flipped in \emph{payload} + \item Bit errors in \emph{payload} \begin{enumerate} \item Correct payload - \item Payload with bit flips - \item Payload with odd number of bits flipped + \item Payload with bit flips that do not show in checksum + \item Payload with bit flips that do show in checksum \end{enumerate} \item \emph{checksum} \begin{enumerate} \item Correct \item Incorrect \end{enumerate} - \item Packet order + \item \emph{Segment order} \begin{enumerate} \item Correct \item Out of order - \item Missing packets + \item Missing Segments \end{enumerate} \end{enumerate} These partitions were chosen since they correspond to key parts of the TCP specification. -TCP segments are send over a TCP connection from a \emph{source} to a \emph{destination port}. Therefore segments which are received which have a +TCP segments are send over a TCP connection from a \emph{source} to a \emph{destination port}. Therefore segments which are received that have a source or destination port set to an incorrect value should not be regarded -as segments belonging to the connection. +as segments belonging to the connection by the SUT. TCP uses a \emph{checksum} to catch any error introduced in headers, when this -checksum does not match the actual computed checksum the packet should be -disregarded. +checksum does not match the actual computed checksum the SUT should +disregard the received segment. The TCP checksum is also an inherently weak one, as it is simply the -bitwise negation of the addition in ones complement arithmetic +bitwise negation of the addition, in ones complement arithmetic, of all 16 bit words in the header and data of the segment (excluding the -header). Therefore any bit error where the ones complement value of one word +checksum itself). Therefore any \emph{bit error} where the ones complement value +of one word increases by one, and the value of another decreases by one, is undetected. The SUT should exhibit the same behavior and accept packets where these type -of bit error occur. +of bit errors occur. + +TCP guarantees that segments are delivered \emph{in order} +,even when they are received +out of order and that missing segments are resend. The SUT should +exhibit the same behavior. If segments are received out of order it should +either reassemble them when the missing packet has arrived or request them to +be resend when the Missing segments should be re-requested (by ACK-ing +the correct sequence number). -\textbf{hier iets over waarom deze partities relevant zijn! Waarom odd en -even number of bits flipped bijv interessant?} \bigskip Partitions 2 to 6 are tested using pairwise testing to keep the number of test cases feasible. The pairs are then all *except some where it does not make sense to do so) tested with the different request sizes of partition 1. -This is expressed in Table~\ref{table:testpairs}. +This is expressed in Table~\ref{tbl:testpairs}. In this table the first five +columns represent the different options for the partitions 2 to 6 of the above +enumeration. The last four columns are the different number segments as +described in the partition 1 of the above enumeration. These cells identify +individual test cases by a number. An \xmark in the cell indicates that this +test case can not be created as it is not possible with that number of segments +(eg. sending segments out of order when the number of segments is 1). +\setcounter{TCC}{1} \begin{table}[H] \centering - \begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|} + \begin{tabular}{|l|l|l|l|l|l||l|l|l|l|} \hline - & \multicolumn{10}{c|}{\textbf{Partition}}\\ + & \multicolumn{9}{c|}{\textbf{Partition}}\\ \hline - & \# & 4 & 5 & 3 & 6 & 2 & 1a & 1b & 1c & 1d\\ + & 4 & 5 & 3 & 6 & 2 & 1a & 1b & 1c & 1d\\ \hline\hline \multirow{9}{*}{Instance} - & 1 & a & a & a & a & a & \checkmark & \checkmark & \checkmark & \checkmark\\ - & 2 & a & b & b & c & b & \xmark & \xmark & \checkmark & \checkmark\\ - & 3 & c & a & b & a & b & \xmark & \xmark & \checkmark & \checkmark\\ - & 4 & c & b & a & c & a & \xmark & \xmark & \checkmark & \checkmark\\ - & 5 & b & a & b & c & a & \xmark & \xmark & \checkmark & \checkmark\\ - & 6 & b & b & a & b & b & \xmark & \xmark & \checkmark & \checkmark\\ - & 7 & c & b & b & a & b & \checkmark & \checkmark & \checkmark & \checkmark\\ - & 8 & b & b & b & a & b & \checkmark & \checkmark & \checkmark & \checkmark\\ - & 9 & a & b & b & b & a & \xmark & \xmark & \checkmark & \checkmark\\ + & a & a & a & a & a & \doTCC & \doTCC & \doTCC & \doTCC\\ + & a & b & b & c & b & \xmark & \xmark & \doTCC & \doTCC\\ + & c & a & b & a & b & \xmark & \xmark & \doTCC & \doTCC\\ + & c & b & a & c & a & \xmark & \xmark & \doTCC & \doTCC\\ + & b & a & b & c & a & \xmark & \xmark & \doTCC & \doTCC\\ + & b & b & a & b & b & \xmark & \xmark & \doTCC & \doTCC\\ + & c & b & b & a & b & \xmark & \doTCC & \doTCC & \doTCC\\ + & b & b & b & a & b & \xmark & \doTCC & \doTCC & \doTCC\\ + & a & b & b & b & a & \xmark & \xmark & \doTCC & \doTCC\\ \hline -\end{tabular} + \end{tabular} \caption{Combinations of test cases} -\label{table:testpairs} +\label{tbl:testpairs} \end{table} \subsection{Quality, completeness and coverage of tests} @@ -203,11 +218,18 @@ test suite can be clearly assessed. As always, $100\%$ completeness is not feasible, therefore test cases are carefully selected to cover the most interesting parts of the TCP specification -to ensure a test suite. +to ensure a complete but feasible test suite. + +To further increase the coverage of the test suites tests are randomized. The +tests which test the handling of \emph{bit errors}, changes in the \emph{packet +order} and \emph{dropped packets} randomize where they introduce an error. The +test suite runs these tests multiple times to increase the likelihood that they +discover a fault which is only present when an error occurs in a certain +position. To further decrease the number of tests needed test cases are divided into equivalence partitions and the combination of cases as described in -Table~\ref{table:testpairs} ensures that all partitions are +Table~\ref{tbl:testpairs} ensures that all partitions are covered and the number of individual tests is still feasible. @@ -217,9 +239,136 @@ covered and the number of individual tests is still feasible. % -\subsection{Test cases} +\subsection{Test suite} + +Before executing the test suite the test environment has to be initialized. + +\begin{enumerate} + \item Boot the vm using VirtualBox. + \item Setup iptables by executing \texttt{\# code/iptables.sh} + \item Navigate to the working directory by running + \texttt{\$ cd /home/student/tt2015} + \item Start the echo server by running + \texttt{\# cd code/server \&\& Java Main} +\end{enumerate} + +\subsubsection{Preflight checks} +The we do the preflight checks as defined in Table~\ref{tbl:preflight}. + +\subsubsection{Test Cases} +If the SUT passes the preflight checks the actual test cases can be executed. +Table~\ref{tbl:testcases} shows the expected results of each of the test cases +described in Table~\ref{table:testpairs}. + +\setcounter{TCC}{1} +\begin{table}[H] + \centering + \begin{tabular}{|l|p{.7\linewidth}|} + \hline + Test number & Expected results\\ + \hline\hline + \doTCC & An ACK\# of the send sequence number + 1.\\ \hline + \doTCC & An ACK\# of the sequence number of the last send segment + the + size of the payload of that segment.\\ \hline + \doTCC & An ACK\# of the sequence number of the last send segment + the + size of the payload of that segment.\\ \hline + \doTCC & An ACK\# of the sequence number of the last send segment + the + size of the payload of that segment.\\ \hline + \doTCC & The ACK\# for the SEQ\# of the first segments which is + corrupted is received for each consecutive segment send.\\ + $\vdots$ & \\ + \setcounter{TCC}{14} + \doTCC & The ACK\# for the SEQ\# of the first segments which is + corrupted is received for each consecutive segment send.\\ \hline + \doTCC & The segment is not attributed to the current connection + and therefore no ACK\# is received. \\ \hline + \doTCC & The ACK\# for the SEQ\# of the first segments which is + corrupted is received for each consecutive segment send.\\ \hline + \doTCC & The ACK\# for the SEQ\# of the first segments which is + corrupted is received for each consecutive segment send.\\ \hline + \doTCC & The segment is not attributed to the current connection + and therefore no ACK\# is received. \\ \hline + \doTCC & The ACK\# for the SEQ\# of the first segments which is + corrupted is received for each consecutive segment send.\\ \hline + \doTCC & The ACK\# for the SEQ\# of the first segments which is + corrupted is received for each consecutive segment send.\\ \hline + \doTCC & The ACK\# for the SEQ\# of the first segments which is + corrupted is received for each consecutive segment send.\\ \hline + \doTCC & The ACK\# for the SEQ\# of the first segments which is + corrupted is received for each consecutive segment send.\\ \hline + \hline + \end{tabular} +\caption{Expected results of test cases} +\label{table:preflightresults} +\end{table} + +% Bij Ramons aanwezigheid +% Paul Vitero (linkerkant lange gang) +% verdieping Mercator + +%Before every test case use the following steps to initialize the testing environment. +% +%\begin{enumerate} + %\item Boot the vm using VirtualBox. + %\item Setup iptables by executing \texttt{\# code/iptables.sh} + %\item Navigate to the working directory by running \texttt{\$ cd /home/student/tt2015} + %\item Start the echo server by running \texttt{\# cd code/server \&\& java Main} +%\end{enumerate} +% +%\begin{longtable}{|p{.2\linewidth}|p{.8\linewidth}|} + %\hline + %Nr & 1 \\\hline + %Title & Single valid request with 1byte payload. \\\hline + %Input & Generated packets. \\\hline + %Expected output & Packets echoed back by Echo-Server. \\\hline + %\multirow{2}{*}{Course of action} + %& 1. Use the steps listed above in order to start the SUT. \\ + %& 2. Execute the script by running \texttt{\# code/client/tests/1.py} \\\hline + %Valid trace & Verify that the script prints 'Success'. \\\hline + %\hline +% + %Nr & 2 \\\hline + %Title & Single valid request with 65495bytes payload. \\\hline + %Input & Generated packets. \\\hline + %Expected output & Packets echoed back by Echo-Server. \\\hline + %\multirow{2}{*}{Course of action} + %& 1. Use the steps listed above in order to start the SUT. \\ + %& 2. Execute the script by running \texttt{\# code/client/tests/2.py} \\\hline + %Valid trace & Verify that the script prints 'Success'. \\\hline + %\hline +% + %Nr & 3 \\\hline + %Title & 5 valid requests with 1byte payload. \\\hline + %Input & Generated packets. \\\hline + %Expected output & Packets echoed back by Echo-Server, in the same order as the client sent them. \\\hline + %\multirow{2}{*}{Course of action} + %& 1. Use the steps listed above in order to start the SUT. \\ + %& 2. Execute the script by running \texttt{\# code/client/tests/3.py} \\\hline + %Valid trace & Verify that the script prints 'Success'. \\\hline + %\hline +% + %Nr & 4 \\\hline + %Title & 5 valid requests with 65495bytes payload. \\\hline + %Input & Generated packets with 65495bytes payload. \\\hline + %Expected output & Packets echoed back by Echo-Server, in the same order as the client sent them. \\\hline + %\multirow{2}{*}{Course of action} + %& 1. Use the steps listed above in order to start the SUT. \\ + %& 2. Execute the script by running \texttt{\# code/client/tests/4.py} \\\hline + %Valid trace & Verify that the script prints 'Success'. \\\hline + %\hline +% + %Nr & 5 \\\hline + %Title & 5 valid requests with 1byte payload sent out of order. \\\hline + %Input & Generated packets with 1byte payload, two packets are swapped in position. \\\hline + %Expected output & All requests sent up to and including + %the swapped packet with the lowest sequence number, the remaining packets are dropped. \\\hline + %\multirow{2}{*}{Course of action} + %& 1. Use the steps listed above in order to start the SUT. \\ + %& 2. Execute the script by running \texttt{\# code/client/tests/5.py} \\\hline + %Valid trace & Verify that the script prints 'Success'. \\\hline + %\hline +%\end{longtable} -%\begin{table} %\begin{tabularx}{\linewidth}{| l | X|} %\hline %Nr & 1 \\\hline