X-Git-Url: https://git.martlubbers.net/?a=blobdiff_plain;f=sem.icl;h=272ef5a38d0f0a5d3cef5652ad84f16d990f5a40;hb=1f01e39fb2383aa2c63234d0750c0459fe3de752;hp=fc8614b0c2a462501b364cc5cb52ad855d85a03b;hpb=249bdba5121bca15012597a09e63a242781b001b;p=cc1516.git diff --git a/sem.icl b/sem.icl index fc8614b..272ef5a 100644 --- a/sem.icl +++ b/sem.icl @@ -1,144 +1,423 @@ implementation module sem import qualified Data.Map as Map + from Data.Func import $ -import Data.Maybe -import Data.Either -import Data.Functor -import Control.Applicative +from StdFunc import o, flip, const, id + import Control.Monad -import Control.Monad.State -import Control.Monad.Identity import Control.Monad.Trans -import StdMisc -from StdFunc import id, const +import Control.Monad.State +import Data.Either +import Data.Maybe +import Data.Monoid +import Data.List +import Data.Functor +import Data.Tuple + import StdString +import StdTuple import StdList +import StdMisc +import StdEnum +import GenEq from Text import class Text(concat), instance Text String import AST -from parse import :: ParserOutput, :: Error -:: Gamma :== 'Map'.Map String Type -:: Env a :== StateT Gamma (Either SemError) a -//we need to redefine this even though it is in Control.Monad.State -instance MonadTrans (StateT Gamma) where - liftT m = StateT \s-> m >>= \a-> return (a, s) +:: Scheme = Forall [TVar] Type +:: Gamma :== 'Map'.Map String Scheme //map from Variables! to types +:: Substitution :== 'Map'.Map TVar Type +:: Constraints :== [(Type, Type)] +:: SemError + = ParseError Pos String + | UnifyError Pos Type Type + | InfiniteTypeError Pos Type + | FieldSelectorError Pos Type FieldSelector + | OperatorError Pos Op2 Type + | UndeclaredVariableError Pos String + | ArgumentMisMatchError Pos String + | SanityError Pos String + | Error String + +instance zero Gamma where + zero = 'Map'.newMap + +variableStream :: [TVar] +variableStream = map toString [1..] + +sem :: AST -> Either [SemError] Constraints +sem (AST fd) = case foldM (const $ hasNoDups fd) () fd + >>| foldM (const isNiceMain) () fd + >>| hasMain fd of + Left e = Left [e] + _ = Right [] + //_ = case execRWST (constraints fd) zero variableStream of + // Left e = Left [e] + // Right (a, b) = Right b +where + constraints :: [FunDecl] -> Typing () + constraints _ = pure () + //TODO: fix + //constraints fds = mapM_ funconstraint fds >>| pure () + + funconstraint :: FunDecl -> Typing () + funconstraint fd=:(FunDecl _ ident args mt vardecls stmts) = case mt of + Nothing = abort "Cannot infer functions yet" + _ = pure () + //Just t = inEnv (ident, (Forall [] t)) ( + // mapM_ vardeclconstraint vardecls >>| pure ()) + + vardeclconstraint :: VarDecl -> Typing () + vardeclconstraint _ = pure () + //TODO: fix! + //vardeclconstraint (VarDecl p mt ident expr) = infer expr + //>>= \it->inEnv (ident, (Forall [] it)) (pure ()) + + hasNoDups :: [FunDecl] FunDecl -> Either SemError () + hasNoDups fds (FunDecl p n _ _ _ _) + # mbs = map (\(FunDecl p` n` _ _ _ _)->if (n == n`) (Just p`) Nothing) fds + = case catMaybes mbs of + [] = Left $ SanityError p "HUH THIS SHOULDN'T HAPPEN" + [x] = pure () + [_:x] = Left $ SanityError p (concat + [n, " multiply defined at ", toString p]) + + hasMain :: [FunDecl] -> Either SemError () + hasMain [(FunDecl _ "main" _ _ _ _):fd] = pure () + hasMain [_:fd] = hasMain fd + hasMain [] = Left $ SanityError zero "no main function defined" + + isNiceMain :: FunDecl -> Either SemError () + isNiceMain (FunDecl p "main" as mt _ _) = case (as, mt) of + ([_:_], _) = Left $ SanityError p "main must have arity 0" + ([], t) = (case t of + Nothing = pure () + Just VoidType = pure () + _ = Left $ SanityError p "main has to return Void") + isNiceMain _ = pure () + +class Typeable a where + ftv :: a -> [TVar] + subst :: Substitution a -> a + +instance Typeable Scheme where + ftv (Forall bound t) = difference (ftv t) bound + subst s (Forall bound t) = Forall bound $ subst s_ t + where s_ = 'Map'.filterWithKey (\k _ -> not (elem k bound)) s + +instance Typeable [a] | Typeable a where + ftv types = foldr (\t ts-> ftv t ++ ts) [] types + subst s ts = map (\t->subst s t) ts + +instance Typeable Type where + ftv (TupleType (t1, t2)) = ftv t1 ++ ftv t2 + ftv (ListType t) = ftv t + ftv (IdType tvar) = [tvar] + ftv (t1 ->> t2) = ftv t1 ++ ftv t2 + ftv _ = [] + subst s (TupleType (t1, t2))= TupleType (subst s t1, subst s t2) + subst s (ListType t1) = ListType (subst s t1) + subst s (t1 ->> t2) = (subst s t1) ->> (subst s t2) + subst s t1=:(IdType tvar) = 'Map'.findWithDefault t1 tvar s + subst s t = t + +instance Typeable Gamma where + ftv gamma = concatMap id $ map ftv ('Map'.elems gamma) + subst s gamma = Mapmap (subst s) gamma + +extend :: String Scheme Gamma -> Gamma +extend k t g = 'Map'.put k t g + +//// ------------------------ +//// algorithm U, Unification +//// ------------------------ +instance zero Substitution where zero = 'Map'.newMap + +compose :: Substitution Substitution -> Substitution +compose s1 s2 = 'Map'.union (Mapmap (subst s1) s2) s1 +//Note: just like function compositon compose does snd first + +occurs :: TVar a -> Bool | Typeable a +occurs tvar a = elem tvar (ftv a) + +unify :: Type Type -> Either SemError Substitution +unify t1=:(IdType tv) t2 = unify t2 t1 +unify t1 t2=:(IdType tv) | t1 == (IdType tv) = Right zero + | occurs tv t1 = Left $ InfiniteTypeError zero t1 + | otherwise = Right $ 'Map'.singleton tv t1 +unify (ta1->>ta2) (tb1->>tb2) = unify ta1 tb1 >>= \s1-> + unify tb1 tb2 >>= \s2-> + Right $ compose s1 s2 +unify (TupleType (ta1,ta2)) (TupleType (tb1,tb2)) = unify ta1 tb1 >>= \s1-> + unify ta2 tb2 >>= \s2-> + Right $ compose s1 s2 +unify (ListType t1) (ListType t2) = unify t1 t2 +unify t1 t2 | t1 == t2 = Right zero + | otherwise = Left $ UnifyError zero t1 t2 + +//// ------------------------ +//// Algorithm M, Inference and Solving +//// ------------------------ +//The typing monad +:: Typing a :== StateT (Gamma, [TVar]) (Either SemError) a +gamma :: Typing Gamma +gamma = gets fst +putGamma :: Gamma -> Typing () +putGamma g = modify (appFst $ const g) >>| pure () +changeGamma :: (Gamma -> Gamma) -> Typing Gamma +changeGamma f = modify (appFst f) >>| gamma +withGamma :: (Gamma -> a) -> Typing a +withGamma f = f <$> gamma +fresh :: Typing Type +fresh = gets snd >>= \vars-> + modify (appSnd $ const $ tail vars) >>| + pure (IdType (head vars)) + +lift :: (Either SemError a) -> Typing a +lift (Left e) = liftT $ Left e +lift (Right v) = pure v + +//instantiate maps a schemes type variables to variables with fresh names +//and drops the quantification: i.e. forall a,b.a->[b] becomes c->[d] +instantiate :: Scheme -> Typing Type +instantiate (Forall bound t) = + mapM (const fresh) bound >>= \newVars-> + let s = 'Map'.fromList (zip (bound,newVars)) in + pure (subst s t) -get = gets id +//generalize quentifies all free type variables in a type which are not +//in the gamma +generalize :: Type -> Typing Scheme +generalize t = gamma >>= \g-> pure $ Forall (difference (ftv t) (ftv g)) t + +lookup :: String -> Typing Type +lookup k = gamma >>= \g-> case 'Map'.member k g of + False = liftT (Left $ UndeclaredVariableError zero k) + True = instantiate $ 'Map'.find k g + +//The inference class +//When tying it all together we will treat the program is a big +//let x=e1 in let y=e2 in .... +class infer a :: a -> Typing (Substitution, Type) + +////---- Inference for Expressions ---- + +instance infer Expr where + infer e = case e of + VarExpr _ (VarDef k fs) = (\t->(zero,t)) <$> lookup k + //instantiate is key for the let polymorphism! + //TODO: field selectors + + Op2Expr _ e1 op e2 = + infer e1 >>= \(s1, t1) -> + infer e2 >>= \(s2, t2) -> + fresh >>= \tv -> + let given = t1 ->> t2 ->> tv in + op2Type op >>= \expected -> + lift (unify expected given) >>= \s3 -> + pure ((compose s3 $ compose s2 s1), subst s3 tv) + + Op1Expr _ op e1 = + infer e1 >>= \(s1, t1) -> + fresh >>= \tv -> + let given = t1 ->> tv in + op1Type op >>= \expected -> + lift (unify expected given) >>= \s2 -> + pure (compose s2 s1, subst s2 tv) + + EmptyListExpr _ = (\tv->(zero,tv)) <$> fresh + + TupleExpr _ (e1, e2) = + infer e1 >>= \(s1, t1) -> + infer e2 >>= \(s2, t2) -> + pure (compose s2 s1, TupleType (t1,t2)) + + FunExpr _ f args fs = //todo: fieldselectors + lookup f >>= \expected -> + let accST = (\(s,ts) e->infer e >>= \(s_,et)->pure (compose s_ s,ts++[et])) in + foldM accST (zero,[]) args >>= \(s1, argTs)-> + fresh >>= \tv-> + let given = foldr (->>) tv argTs in + lift (unify expected given) >>= \s2-> + pure (compose s2 s1, subst s2 tv) + + IntExpr _ _ = pure $ (zero, IntType) + BoolExpr _ _ = pure $ (zero, BoolType) + CharExpr _ _ = pure $ (zero, CharType) + + +op2Type :: Op2 -> Typing Type +op2Type op +| elem op [BiPlus, BiMinus, BiTimes, BiDivide, BiMod] + = pure (IntType ->> IntType ->> IntType) +| elem op [BiEquals, BiUnEqual] + = fresh >>= \t1-> fresh >>= \t2-> pure (t1 ->> t2 ->> BoolType) +| elem op [BiLesser, BiGreater, BiLesserEq, BiGreaterEq] + = pure (IntType ->> IntType ->> BoolType) +| elem op [BiAnd, BiOr] + = pure (BoolType ->> BoolType ->> BoolType) +| op == BiCons + = fresh >>= \t1-> pure (t1 ->> ListType t1 ->> ListType t1) + +op1Type :: Op1 -> Typing Type +op1Type UnNegation = pure $ (BoolType ->> BoolType) +op1Type UnMinus = pure $ (IntType ->> IntType) + +////----- Inference for Statements ----- +applySubst :: Substitution -> Typing Gamma +applySubst s = changeGamma (subst s) + +instance infer Stmt where + infer s = case s of + IfStmt e th el = + infer e >>= \(s1, et)-> + lift (unify et BoolType) >>= \s2 -> + applySubst (compose s2 s1) >>| + infer th >>= \(s3, tht)-> + applySubst s3 >>| + infer el >>= \(s4, elt)-> + applySubst s4 >>| + lift (unify tht elt) >>= \s5-> + pure (compose s5 $ compose s4 $ compose s3 $ compose s1 s2, subst s5 tht) + + WhileStmt e wh = + infer e >>= \(s1, et)-> + lift (unify et BoolType) >>= \s2 -> + applySubst (compose s2 s1) >>| + infer wh >>= \(s3, wht)-> + pure (compose s3 $ compose s1 s2, subst s3 wht) + + AssStmt (VarDef k fs) e = + infer e >>= \(s1, et)-> + applySubst s1 >>| + changeGamma (extend k (Forall [] et)) >>| //todo: fieldselectors + pure (s1, VoidType) + + FunStmt f es = undef //what is this? + + ReturnStmt Nothing = pure (zero, VoidType) + ReturnStmt (Just e) = infer e + + +instance infer [a] | infer a where + infer _ = undef + +Mapmap :: (a->b) ('Map'.Map k a) -> ('Map'.Map k b) +Mapmap _ 'Map'.Tip = 'Map'.Tip +Mapmap f ('Map'.Bin sz k v ml mr) = 'Map'.Bin sz k (f v) + (Mapmap f ml) + (Mapmap f mr) + +instance toString Scheme where + toString (Forall x t) = + concat ["Forall ": map ((+++) "\n") x] +++ toString t + +instance toString Gamma where + toString mp = + concat [concat [k, ": ", toString v, "\n"]\\(k, v)<-'Map'.toList mp] instance toString SemError where - toString (ParseError p e) = concat [ - toString p,"SemError: ParseError: ", e] - toString (Error e) = "SemError: " +++ e - toString (UnifyErrorStub t1 t2) = toString (UnifyError {line=0,col=0} t1 t2) - toString (UnifyError p t1 t2) = concat [ - toString p, - "SemError: Cannot unify types. Expected: ", - toString t1, ". Given: ", toString t2] - -putIdent :: String Type -> Env Void -putIdent i t = gets ('Map'.get i) >>= \mt -> case mt of - Nothing = modify ('Map'.put i t) - Just t2 = unify t t2 >>= \t3-> modify ('Map'.put i t3) - -sem :: AST -> SemOutput -sem (AST vd fd) = case evalStateT m 'Map'.newMap of - Left e = Left [e] - Right (vds, fds) = Right (AST vds fds) -where - m :: Env (([VarDecl], [FunDecl])) - m = (mapM semVarDecl vd) >>= \vds -> - mapM semFunDecl fd >>= \fds -> - pure (vds, fds) - -splitEithers :: [Either a b] -> Either [a] [b] -splitEithers [] = Right [] -splitEithers [Right x:xs] = splitEithers xs >>= \rest->Right [x:rest] -splitEithers xs = Left $ [x\\(Left x)<-xs] - -semFunDecl :: FunDecl -> Env FunDecl -semFunDecl f = pure f - -semVarDecl :: VarDecl -> Env VarDecl -semVarDecl (VarDecl pos type ident ex) = unify type ex - >>= \t-> putIdent ident t >>| (pure $ VarDecl pos t ident ex) - -typeExpr :: Expr -> Env Type -typeExpr (IntExpr _ _) = pure IntType -typeExpr (CharExpr _ _) = pure CharType -typeExpr (BoolExpr _ _) = pure BoolType -typeExpr (Op1Expr p UnNegation expr) = unify BoolType expr -typeExpr (Op1Expr p UnMinus expr) = unify IntType expr -typeExpr (TupleExpr p (e1, e2)) = typeExpr e1 - >>= \t1-> typeExpr e2 >>= \t2-> pure $ TupleType (t1, t2) -//Int -typeExpr (Op2Expr p e1 BiPlus e2) = unify IntType e1 >>| unify IntType e2 -typeExpr (Op2Expr p e1 BiMinus e2) = unify IntType e1 >>| unify IntType e2 -typeExpr (Op2Expr p e1 BiTimes e2) = unify IntType e1 >>| unify IntType e2 -typeExpr (Op2Expr p e1 BiDivide e2) = unify IntType e1 >>| unify IntType e2 -typeExpr (Op2Expr p e1 BiMod e2) = unify IntType e1 >>| unify IntType e2 -//bool, char of int -typeExpr (Op2Expr p e1 BiEquals e2) = undef -typeExpr (Op2Expr p e1 BiUnEqual e2) = undef -//char of int -typeExpr (Op2Expr p e1 BiLesser e2) = undef -typeExpr (Op2Expr p e1 BiGreater e2) = undef -typeExpr (Op2Expr p e1 BiLesserEq e2) = undef -typeExpr (Op2Expr p e1 BiGreaterEq e2) = undef -//bool -typeExpr (Op2Expr p e1 BiAnd e2) = undef -typeExpr (Op2Expr p e1 BiOr e2) = undef -//a -typeExpr (Op2Expr p e1 BiCons e2) = undef -//typeExpr (FunExpr Pos FunCall) = undef -//typeExpr (EmptyListExpr Pos) = undef -//typeExpr (VarExpr Pos VarDef) = undef //when checking var-expr, be sure to put the infered type - //in the context - -class unify a :: Type a -> Env Type - -instance unify Expr where - unify (_ ->> _) e = liftT $ Left $ ParseError (extrPos e) - "Expression cannot be a higher order function. Yet..." - unify VoidType e = liftT $ Left $ ParseError (extrPos e) - "Expression cannot be a Void type." - unify (IdType _) e = liftT $ Left $ ParseError (extrPos e) - "Expression cannot be an polymorf type." - unify VarType e = typeExpr e - //we have to cheat to decorate the error, can be done nicer? - unify t e = StateT $ \s0 -> let res = runStateT m s0 in case res of - Left err = Left $ decErr e err - Right t = Right t //note, t :: (Type, Gamma) - where m = typeExpr e >>= \tex-> unify t tex - -instance unify Type where - unify IntType IntType = pure IntType - unify BoolType BoolType = pure BoolType - unify CharType CharType = pure CharType - unify t1 t2 = liftT $ Left $ UnifyError zero t1 t2 - -instance zero Pos where - zero = {line=0,col=0} - -decErr :: Expr SemError -> SemError -decErr e (UnifyError _ t1 t2) = UnifyError (extrPos e) t1 t2 -decErr e (ParseError _ s) = ParseError (extrPos e) s -decErr e err = err - -dc2 :: Expr (Either SemError a) -> Either SemError a -dc2 e (Right t) = Right t -dc2 e (Left err) = Left err - -extrPos :: Expr -> Pos -extrPos (VarExpr p _) = p -extrPos (Op2Expr p _ _ _) = p -extrPos (Op1Expr p _ _) = p -extrPos (IntExpr p _) = p -extrPos (CharExpr p _) = p -extrPos (BoolExpr p _) = p -extrPos (FunExpr p _) = p -extrPos (EmptyListExpr p) = p -extrPos (TupleExpr p _) = p \ No newline at end of file + toString (SanityError p e) = concat [toString p, + "SemError: SanityError: ", e] + toString se = "SemError: " + +instance MonadTrans (StateT (Gamma, [TVar])) where + liftT m = StateT \s-> m >>= \a-> return (a, s) + +//// ------------------------ +//// First step: Inference +//// ------------------------// + +//unify :: Type Type -> Infer () +//unify t1 t2 = tell [(t1, t2)]// + +//fresh :: Infer Type +//fresh = (gets id) >>= \vars-> (put $ tail vars) >>| (pure $ IdType $ head vars)// + +//op2Type :: Op2 -> Infer Type +//op2Type op +//| elem op [BiPlus, BiMinus, BiTimes, BiDivide, BiMod] +// = pure (IntType ->> IntType ->> IntType) +//| elem op [BiEquals, BiUnEqual] +// = fresh >>= \t1-> fresh >>= \t2-> pure (t1 ->> t2 ->> BoolType) +//| elem op [BiLesser, BiGreater, BiLesserEq, BiGreaterEq] +// = pure (IntType ->> IntType ->> BoolType) +//| elem op [BiAnd, BiOr] +// = pure (BoolType ->> BoolType ->> BoolType) +//| op == BiCons +// = fresh >>= \t1-> pure (t1 ->> ListType t1 ->> ListType t1)// + +//op1Type :: Op1 -> Infer Type +//op1Type UnNegation = pure $ (BoolType ->> BoolType) +//op1Type UnMinus = pure $ (IntType ->> IntType)// + +////instantiate :: Scheme -> Infer Type +////instantiate (Forall as t) = mapM (const fresh) as// + +//lookupEnv :: String -> Infer Type +//lookupEnv ident = asks ('Map'.get ident) +// >>= \m->case m of +// Nothing = liftT $ Left $ UndeclaredVariableError zero ident +// Just (Forall as t) = pure t //instantiate ???// + +//class infer a :: a -> Infer Type +//instance infer Expr where +// infer (VarExpr _ (VarDef ident fs)) = lookupEnv ident +// infer (Op2Expr _ e1 op e2) = +// infer e1 >>= \t1 -> +// infer e2 >>= \t2 -> +// fresh >>= \frsh -> +// let given = t1 ->> (t2 ->> frsh) in +// op2Type op >>= \expected -> +// unify expected given >>| +// return frsh +// infer (Op1Expr _ op e) = +// infer e >>= \t1 -> +// fresh >>= \frsh -> +// let given = t1 ->> frsh in +// op1Type op >>= \expected -> +// unify expected given >>| +// pure frsh +// infer (IntExpr _ _) = pure IntType +// infer (CharExpr _ _) = pure CharType +// infer (BoolExpr _ _) = pure BoolType +// infer (FunExpr _ f args sels) = //todo, iets met field selectors +// lookupEnv f >>= \expected -> +// fresh >>= \frsh -> +// mapM infer args >>= \argTypes -> +// let given = foldr (->>) frsh argTypes in +// unify expected given >>| +// pure frsh +// infer (EmptyListExpr _) = ListType <$> fresh +// infer (TupleExpr _ (e1, e2)) = +// infer e1 >>= \et1->infer e2 >>= \et2->pure $ TupleType (et1, et2)// + +////:: VarDef = VarDef String [FieldSelector] +////:: FieldSelector = FieldHd | FieldTl | FieldFst | FieldSnd +////:: Op1 = UnNegation | UnMinus +////:: Op2 = BiPlus | BiMinus | BiTimes | BiDivide | BiMod | BiEquals | BiLesser | +//// BiGreater | BiLesserEq | BiGreaterEq | BiUnEqual | BiAnd | BiOr | BiCons +////:: FunDecl = FunDecl Pos String [String] (Maybe Type) [VarDecl] [Stmt] +////:: FunCall = FunCall String [Expr] +////:: Stmt +//// = IfStmt Expr [Stmt] [Stmt] +//// | WhileStmt Expr [Stmt] +//// | AssStmt VarDef Expr +//// | FunStmt FunCall +//// | ReturnStmt (Maybe Expr) +////:: Pos = {line :: Int, col :: Int} +////:: AST = AST [VarDecl] [FunDecl] +////:: VarDecl = VarDecl Pos Type String Expr +////:: Type +//// = TupleType (Type, Type) +//// | ListType Type +//// | IdType String +//// | IntType +//// | BoolType +//// | CharType +//// | VarType +//// | VoidType +//// | (->>) infixl 7 Type Type