\maketitle
\begin{enumerate}
\item
+ $\begin{array}{rl}
+ \Psi_1
+ & =\exists\ev\forall\al c\\
+ & =\exists(true\un\forall\al c)\\
+ & =\exists(true\un\neg\exists\ev\neg c)\\
+ & =\exists(true\un\neg\exists(true\un \neg c))\\
+ \Psi_2
+ & =\forall(a\un\forall\ev c)\\
+ \ldots
+ \end{array}$
\item
$\text{TS}\vDash\Phi_1\Leftrightarrow \{s_0\}\subseteq Sat(
\exists\ev\forall\al c)\\
Sat(c)= \{s_3, s_4\}\\
Sat(\forall\al (s_3\vee s_4))= \{s_4\}\\
Sat(\exists\ev(s_4)= \{s_0,s_1\}\\
- \{s_0\}\subseteq \{s_0,s_1\}\text{ thus }\Phi_1\text{ is satisfied}$
+ \{s_0\}\subseteq \{s_0,s_1,s_4\}\text{ thus }\Phi_1\text{ is satisfied}$
\\\strut\\
$\text{TS}\vDash\Phi_2\Leftrightarrow \{s_0\}\subseteq Sat(
\forall(a\un \forall\ev c))\\
Sat(\forall(a\un \forall\ev c))=\{s_0,s_1,s_4\}\\
\{s_0\}\subseteq \{s_0,s_1,s_4\}\text{ thus }\Phi_2\text{ is satisfied} $
\item
+
\item
For formula:
$$\varphi:=\al(a\ra(\neg b\un(a\wedge b)))$$
\neg\varphi
& :=\ev\neg(a\ra(\neg b\un(a\wedge b)))\\
& :=\ev(a\wedge\neg(\neg b\un(a\wedge b)))\\
- & :=\ev(a\wedge(\al\neg b\vee
-
-
- \end{array}$$
- Elementary sets:
- $$\begin{array}{lll}
- a & b &
+ & :=\ev(a\wedge\neg\ev b\vee(\neg b\un(b\wedge \neg a)))
\end{array}$$
+ $$\xymatrix{
+ \ar[r] &
+ *+[Fo]{q_0}
+ \ar[r]^{a\wedge\neg b}
+ \ar@(ul,ur)^{\neg a}
+ \ar[d]^{a\wedge b} &
+ *+[F]{q_2}
+ \ar@(ul,ur)^{\neg b}
+ \ar[d]^{b\vee\neg a}\\
+ & *+[Fo]{q_1} \ar@(dl,ul)^{true}
+ & *+[F]{q_3} \ar@(dr,ur)_{true}
+ }$$
+ Which leads to the following product TS:
+ $$\xymatrix{
+ \ar[dr] & s_0 & s_1 & s_2 & s_3\\
+ q_0 & *+[Fo]{}\ar[r]\ar[ddrrr] & *+[Fo]{}\ar[dr]\\
+ q_1 & *+[Fo]{}\ar[r]\ar@/_/[rrr] & *+[Fo]{}\ar[r] & *+[Fo]{}\ar@(u,r)\ar[r] & *+[Fo]{}\ar@/^/[lll]\\
+ q_2 & *+[F]{}\ar@/_/[rrr]\ar[dr] & & & *+[F]{}\ar@/^/[lll]\\
+ q_3 & *+[F]{}\ar@/_/[rrr]\ar[r] & *+[F]{}\ar[r] & *+[F]{}\ar@(u,r)\ar[r] & *+[F]{}\ar@/^/[lll]
+ }$$
+ Thus forexample the path: $(s_0s_3)^{\omega}$ is a counterexample.
+
\end{enumerate}
\end{document}