$$I*x=x, inv(inv(x))=x, inv(x)*x=I\text{ and } x*y=y*x$$
holds for all $x,y\in G$. If a property does not hold,
determine the size of the smallest finite group for which it
- does not hold.}
+ does not hold.}\\
+
+ As found by \textsc{prover9} a proof for $I*x=x$.
+ \begin{lstlisting}
+1 I * x = x. [goal].
+2 x * (y * z) = (x * y) * z.[assumption].
+3 (x * y) * z = x * (y * z).[copy(2),flip(a)].
+4 x * I = x. [assumption].
+5 x * inv(x) = I. [assumption].
+6 I * c1 != c1. [deny(1)].
+7 x * (I * y) = x * y. [para(4(a,1),3(a,1,1)),flip(a)].
+8 x * (inv(x) * y) = I * y. [para(5(a,1),3(a,1,1)),flip(a)].
+13 I * inv(inv(x)) = x. [para(5(a,1),8(a,1,2)),rewrite([4(2)]),flip(a)].
+15 x * inv(inv(y)) = x * y. [para(13(a,1),3(a,2,2)),rewrite([4(2)])].
+16 I * x = x. [para(13(a,1),7(a,2)),rewrite([15(5),7(4)])].
+17 \$F. [resolve(16,a,6,a)].
+ \end{lstlisting}
+
+ As found by \textsc{prover9} a proof for $inv(inv(x))=x$.
+ \begin{lstlisting}
+1 inv(inv(x)) = x. [goal].
+2 x * (y * z) = (x * y) * z.[assumption].
+3 (x * y) * z = x * (y * z).[copy(2),flip(a)].
+4 x * I = x. [assumption]
+5 x * inv(x) = I. [assumption].
+6 inv(inv(c1)) != c1. [deny(1)].
+7 x * (I * y) = x * y. [para(4(a,1),3(a,1,1)),flip(a)].
+8 x * (inv(x) * y) = I * y. [para(5(a,1),3(a,1,1)),flip(a)].
+13 I * inv(inv(x)) = x. [para(5(a,1),8(a,1,2)),rewrite([4(2)]),flip(a)].
+15 x * inv(inv(y)) = x * y. [para(13(a,1),3(a,2,2)),rewrite([4(2)])].
+16 I * x = x. [para(13(a,1),7(a,2)),rewrite([15(5),7(4)])].
+19 x * (inv(x) * y) = y. [back_rewrite(8),rewrite([16(5)])].
+22 inv(inv(x)) = x. [para(5(a,1),19(a,1,2)),rewrite([4(2)]),flip(a)].
+23 \$F. [resolve(22,a,6,a)].
+ \end{lstlisting}
+
+ As found by \textsc{prover9} a proof for $x*inv(x)=I$.
+ \begin{lstlisting}
+1 inv(x) * x = I. [goal].
+2 x * (y * z) = (x * y) * z.[assumption].
+3 (x * y) * z = x * (y * z).[copy(2),flip(a)].
+4 x * I = x. [assumption].
+5 x * inv(x) = I. [assumption].
+6 inv(c1) * c1 != I. [deny(1)].
+7 x * (I * y) = x * y. [para(4(a,1),3(a,1,1)),flip(a)].
+8 x * (inv(x) * y) = I * y. [para(5(a,1),3(a,1,1)),flip(a)].
+13 I * inv(inv(x)) = x. [para(5(a,1),8(a,1,2)),rewrite([4(2)]),flip(a)].
+15 x * inv(inv(y)) = x * y. [para(13(a,1),3(a,2,2)),rewrite([4(2)])].
+16 I * x = x. [para(13(a,1),7(a,2)),rewrite([15(5),7(4)])].
+19 x * (inv(x) * y) = y. [back_rewrite(8),rewrite([16(5)])].
+22 inv(inv(x)) = x. [para(5(a,1),19(a,1,2)),rewrite([4(2)]),flip(a)].
+24 inv(x) * x = I. [para(22(a,1),5(a,1,2))].
+25 \$F. [resolve(24,a,6,a)].
+\end{lstlisting}
+
+ \textsc{prover9} fails to find a proof for $x*y=y*x$.
+
+
+
\item\emph{A term rewrite sysetm consists of the single rule
$$a(x,a(y,a(z,u)))\rightarrow a(y,a(z,a(x,u))),$$
in which $a$ is a binary symbol and $x,y,z,u$ are variables.