\textsc{prover9} fails to find a proof for $x*y=y*x$.
Running the same file with \textsc{mace4} gives the following
- counterexample.
-
-
+ counterexample listed in Table~\ref{tab:s3a}.
+ \begin{table}[H]
+ \centering
+ \begin{tabular}{llll}
+ $G=\{0,1,2,3,4,5\}$ & $I=0$ &
+ $inv(x)=\left\{\begin{array}{ll}
+ x=3 & 4\\
+ x=4 & 3\\
+ \text{else} & x
+ \end{array}\right.$ &
+ $x*y=\left\{\begin{array}{ll|llllll}
+ & & \multicolumn{6}{c}{x}\\
+ & & 0& 1 & 2 & 3 & 4 & 5\\
+ \hline
+ \multirow{6}{*}{y}& 1 & 0 & 1 & 2 & 3 & 4 & 5\\
+ & 1 & 1 & 0 & 3 & 2 & 5 & 4\\
+ & 2 & 2 & 4 & 0 & 5 & 1 & 3\\
+ & 3 & 3 & 5 & 1 & 4 & 0 & 2\\
+ & 4 & 4 & 2 & 5 & 0 & 3 & 1\\
+ & 5 & 5 & 3 & 4 & 1 & 2 & 0
+ \end{array}\right.$
+ \end{tabular}
+ \caption{Solution for problem 3a}\label{tab:s3a}
+ \end{table}
\item\emph{A term rewrite system consists of the single rule
$$a(x,a(y,a(z,u)))\rightarrow a(y,a(z,a(x,u))),$$
in which $a$ is a binary symbol and $x,y,z,u$ are variables.