LATEX:=latex
DOCUMENT:=tt4
-MODELS=model.small.LStar.rand.eps model.partial.LStar.rand.eps model.full.LStar.rand.eps
+MODELS=model.small.LStar.rand.eps model.small.TTT.rand.eps model.small.RS.rand.eps model.small.KV.rand.eps \
+ model.small.LStar.wm.eps model.small.TTT.wm.eps model.small.RS.wm.eps model.small.KV.wm.eps \
+ model.partial.LStar.rand.eps model.partial.TTT.rand.eps model.partial.RS.rand.eps model.partial.KV.rand.eps \
+ model.partial.LStar.wm.eps model.partial.TTT.wm.eps model.partial.RS.wm.eps model.partial.KV.wm.eps \
+ model.partial.LStar.rand.eps model.full.LStar.rand.eps
.SECONDARY: $(DOCUMENT).fmt
.PHONY: clean
\usepackage[dvipdfm]{hyperref}
\usepackage{graphicx}
\usepackage{longtable}
+\usepackage{float}
\author{%
Charlie Gerhardus\and
The Candymachine was learned using LearnLib. Figure~\ref{fig:candy} shows the
learned model. In this Figure S0 is the initial state.
-\begin{figure}
+\begin{figure}[H]
\includegraphics[width=1.7\textwidth,natwidth=2389,natheight=891]{1candyFig.png}
\caption{Learned model of the candy machine}
\label{fig:candy}
Just as in our previous assignment the \emph{DATA} packet is actually a \emph{ACK} with an user data payload and the \emph{push} flag set. \r
These input alphabets will influence the size of the model produced. \emph{small} will result in a 2 state model, \emph{partial} will be the full model without the \emph{CLOSED} state and \emph{full} should result in the full model as used in the previous assignment.\r
\r
-\paragraph{Model learned with small input alphabet}\r
-\includegraphics{model.small.LStar.rand.eps}\r
+\begin{figure}[H]\r
+ \centering\r
+ \includegraphics[scale=0.75]{model.small.LStar.rand.eps}\r
+ \vspace{5mm}\r
+ \caption{Model learned with small input alphabet}\r
+\end{figure}\r
\r
+\begin{figure}[H]\r
+ \centering\r
+ \includegraphics[width=\textwidth]{model.partial.LStar.rand.eps}\r
+ \vspace{5mm}\r
+ \caption{Model learned with partial input alphabet}\r
+\end{figure}\r
\r
-\paragraph{Model learned with partial input alphabet}\r
-\includegraphics{model.partial.LStar.rand.eps}\r
-\r
-\paragraph{Model learned with full input alphabet}\r
-\includegraphics{model.full.LStar.rand.eps}
\ No newline at end of file
+\begin{figure}[H]\r
+ \centering\r
+ \includegraphics[width=1.2\textwidth]{model.full.LStar.rand.eps}\r
+ \vspace{5mm}\r
+ \caption{Model learned with full input alphabet}\r
+\end{figure}\r
The table below contains some statistics about all the different parameter configurations we ran learnlib with.\r
-All except \emph{RivestSchapire} using the Random test method result in the correct model being learned. \r
+The \emph{RivestSchapire} learner using the Random test method resulted in an incorrect model being learned.\r
+When the \emph{KearnsVazirani} learner using the WMethod tester wasn't able to learn a model, this is due the learner hitting a non-deterministic path. \r
+This problem hasn't anything to do with the actual learner and is the result of a uncaught error situation in the adapter.\r
+This shows us that a leaner can be used to test software, since we discovered a bug in our adapter.\r
+Due to time constrains we were not able to fix this bug.\r
When \emph{WMethod} is selected as the testing method \emph{RivestSchapire} is also able to learn the correct model.\r
\emph{WMethod} does however increase the time needed to learn the model significantly, when a different learner is used there is no reason not to use the Random testing method.\r
\r
\section{Question 4}
\input{question4.tex}
+\appendix
+\section{Models}
+\input{models.tex}
+
\nocite{*}
\bibliographystyle{ieeetr}
\bibliography{tt4}