\includegraphics[scale=0.5]{d1.eps}
\end{figure}
-\strut\\
+We introduced a \textit{Noisy OR} to represent the causal independence of
+\textit{Burglar} and \textit{Earthquake} on Alarm. Probabilities for the causes
+of the alarm are calculated using days, in practice this means that the
+smallest discrete time interval is one day. The calculation for the probability
+of a burglar is then calculated with the following formula(taking leap years
+into account and assuming a standard gregorian calendar).
+$$\frac{1}{365 + 0.25 - 0.01 - 0.0025}=\frac{1}{365.2425}$$
+
+This gives the following probability distributions\\
\begin{tabular}{|l|ll|}
\hline
- & \multicolumn{2}{c|}{Radio}\\
- Earthquake & T & F\\
+ & \multicolumn{2}{c|}{Earthquake}\\
\hline
- T & $0.9998$ & $0.0002$\\
- F & $0.0002$ & $0.9998$\\
+ T & $0.0027$ & $0.9972$ \\
+ F & $0.9973$ & $0.0027$\\
\hline
\end{tabular}
%
+\begin{tabular}{|l|ll|}
+ \hline
+ & \multicolumn{2}{c|}{Burglar}\\
+ \hline
+ T & $0.0027$ & $0.9973$ \\
+ F & $0.9973$ & $0.0027$\\
+ \hline
+\end{tabular}
+
\begin{tabular}{|l|ll|}
\hline
& \multicolumn{2}{c|}{$I_1$}\\
F & $0$ & $1$\\
\hline
\end{tabular}
-%
\begin{tabular}{|l|ll|}
\hline
& \multicolumn{2}{c|}{$I_2$}\\
F & $0$ & $1$\\
\hline
\end{tabular}
-%
\begin{tabular}{|ll|ll|}
\hline
&& \multicolumn{2}{c|}{Burglar}\\
F & F & $0$ & $1$\\
\hline
\end{tabular}
-%
+
\begin{tabular}{|l|ll|}
\hline
& \multicolumn{2}{c|}{Watson}\\
F & $0.4$ & $0.6$\\
\hline
\end{tabular}
-%
\begin{tabular}{|l|ll|}
\hline
& \multicolumn{2}{c|}{Gibbons}\\
F & $0.04$ & $0.96$\\
\hline
\end{tabular}
+\begin{tabular}{|l|ll|}
+ \hline
+ & \multicolumn{2}{c|}{Radio}\\
+ Earthquake & T & F\\
+ \hline
+ T & $0.9998$ & $0.0002$\\
+ F & $0.0002$ & $0.9998$\\
+ \hline
+\end{tabular}
i2 [label=<I<SUB>2</SUB>>]
n [shape=plaintext label="Noisy OR"]
n -> alarm [style=invis]
- newscast [label="Newcast calls"]
gibbons [label="Gibbons calls"]
watson [label="Watson calls"]
+ newscast [rank=max label="Newcast calls"]
earthquake -> i1
burglar -> i2
i1 -> alarm
i2 -> alarm
- earthquake -> newscast
-
alarm -> watson
alarm -> gibbons
+ earthquake -> newscast
}