--- /dev/null
--- /dev/null
++\documentclass{article}
++
++\usepackage{a4wide}
++\usepackage{amssymb}
++\usepackage{amsmath}
++\usepackage[all]{xypic}
++
++\newcommand{\ra}{\rightarrow}
++\newcommand{\un}{\text{ \textsf{U} }}
++\newcommand{\ev}{\lozenge}
++\newcommand{\al}{\square}
++\newcommand{\nx}{\bigcirc}
++
++\everymath{\displaystyle}
++
++\author{Mart Lubbers}
++\date{\today}
++\title{Model Checking Excercises 3}
++
++\begin{document}
++\maketitle
++\begin{enumerate}
++ \item
++ \item
++ $\text{TS}\vDash\Phi_1\Leftrightarrow \{s_0\}\subseteq Sat(
++ \exists\ev\forall\al c)\\
++ Sat(c)= \{s_3, s_4\}\\
++ Sat(\forall\al (s_3\vee s_4))= \{s_4\}\\
++ Sat(\exists\ev(s_4)= \{s_0,s_1\}\\
++ \{s_0\}\subseteq \{s_0,s_1\}\text{ thus }\Phi_1\text{ is satisfied}$
++ \\\strut\\
++ $\text{TS}\vDash\Phi_2\Leftrightarrow \{s_0\}\subseteq Sat(
++ \forall(a\un \forall\ev c))\\
++ Sat(c)= \{s_3, s_4\}\\
++ Sat(\forall\ev(s_3\vee s_4))=\{s_0,s_1,s_4\}\\
++ Sat(a)= \{s_0, s_1\}\\
++ Sat(\forall(a\un \forall\ev c))=\{s_0,s_1,s_4\}\\
++ \{s_0\}\subseteq \{s_0,s_1,s_4\}\text{ thus }\Phi_2\text{ is satisfied} $
++ \item
++ \item
++ For formula:
++ $$\varphi:=\al(a\ra(\neg b\un(a\wedge b)))$$
++ We create an automaton $\neg\varphi$ where
++ $$\begin{array}{rl}
++ \neg\varphi
++ & :=\ev\neg(a\ra(\neg b\un(a\wedge b)))\\
++ & :=\ev(a\wedge\neg(\neg b\un(a\wedge b)))\\
++ & :=\ev(a\wedge(\al\neg b\vee
++
++
++ \end{array}$$
++ Elementary sets:
++ $$\begin{array}{lll}
++ a & b &
++ \end{array}$$
++\end{enumerate}
++\end{document}