--- /dev/null
+%&mbt
+\begin{document}
+
+\section{Theory of Labelled Transition Systems}
+\subsection{Testing equivalences}
+\begin{enumerate}[a)]
+ \item $\bordermatrix{
+ ~ & Q_1 & Q_2 & Q_3 & Q_4 & Q_5\cr
+ Q_1 & 1\cr
+ Q_2 & 0 & 1\cr
+ Q_3 & 0 & 0 & 1\cr
+ Q_4 & 0 & 0 & 0 & 1\cr
+ Q_5 & 0 & 0 & 0 & 0 & 1\cr
+ }$
+ \item $\bordermatrix{
+ ~ & Q_1 & Q_2 & Q_3 & Q_4 & Q_5\cr
+ Q_1 & 1\cr
+ Q_2 & 0 & 1\cr
+ Q_3 & 0 & 1 & 1\cr
+ Q_4 & 0 & 1 & 1 & 1\cr
+ Q_5 & 0 & 1 & 1 & 1 & 1\cr
+ }$
+ \item $\bordermatrix{
+ ~ & Q_1 & Q_2 & Q_3 & Q_4 & Q_5\cr
+ Q_1 & 1\cr
+ Q_2 & 0 & 1\cr
+ Q_3 & 0 & 1 & 1\cr
+ Q_4 & 0 & 1 & 1 & 1\cr
+ Q_5 & 0 & 1 & 1 & 1 & 1\cr
+ }$
+ \item You can discriminate $Q_1$ from all the others by running the
+ trace $a\rightarrow c$. $Q_2$ can be discriminated from the
+ rest by running $a\rightarrow b\rightarrow c$ because
+ $Q_3,Q_4$ and $Q_5$ may refuse the last $c$. To
+ discriminate $Q_3$ you can run $a\rightarrow c$ since
+ $Q_4$ and $Q_5$ may refuse $c$. To discriminate $Q_4$ you need
+ to be able to go back. You can then discriminate by running
+ $a\rightarrow c$ and then go back and run $b\rightarrow c$.
+ This trace can only be accepted by $Q_4$.
+ \item $\bordermatrix{
+ ~ & Q_1 & Q_2 & Q_3 & Q_4 & Q_5\cr
+ Q_1 & 1\cr
+ Q_2 & 0 & 1\cr
+ Q_3 & 0 & 0 & 1\cr
+ Q_4 & 0 & 1 & 1 & 1\cr
+ Q_5 & 0 & 1 & 1 & 1 & 1\cr
+ }$
+ \item See $d)$.
+ \item $\bordermatrix{
+ ~ & Q_1 & Q_2 & Q_3 & Q_4 & Q_5\cr
+ Q_1 & 1\cr
+ Q_2 & 0 & 1\cr
+ Q_3 & 0 & 0 & 1\cr
+ Q_4 & 0 & 0 & 0 & 1\cr
+ Q_5 & 0 & 0 & 0 & 1 & 1\cr
+ }$
+ \item All processes as explained in $d)$.
+ \item $\bordermatrix{
+ i\setminus s & Q_1 & Q_2 & Q_3 & Q_4 & Q_5\cr
+ Q_1 & 1 & 0 & 0 & 0 & 0\cr
+ Q_2 & 1 & 1 & 1 & 1 & 1\cr
+ Q_3 & 1 & 1 & 1 & 1 & 1\cr
+ Q_4 & 1 & 1 & 1 & 1 & 1\cr
+ Q_5 & 1 & 1 & 1 & 1 & 1\cr
+ }$
+\end{enumerate}
+
+\subsection{Testing equivalences}
+\begin{enumerate}[a)]
+ \item $\bordermatrix{
+ ~ & P_1 & P_2 & P_3 & P_4\cr
+ P_1 & 1\cr
+ P_2 & 0 & 1\cr
+ P_3 & 0 & 0 & 1\cr
+ P_4 & 0 & 0 & 0 & 1\cr
+ }$
+ \item $\bordermatrix{
+ ~ & P_1 & P_2 & P_3 & P_4\cr
+ P_1 & 1\cr
+ P_2 & 0 & 1\cr
+ P_3 & 0 & 1 & 1\cr
+ P_4 & 0 & 1 & 1 & 1\cr
+ }$
+ \item Trace $a\rightarrow b\rightarrow c$ may refuse in $P_3$ and $P_4$
+ but not in $P_2$. $P_3$ and $P_4$ can only be distinguished if
+ you are allowed to go back. If the trace $a\rightarrow
+ b\rightarrow c$ accepts you can go back to the state after $a$
+ and try $b\rightarrow d$. This might only accept in $P_3$.
+ \item $\bordermatrix{
+ ~ & P_1 & P_2 & P_3 & P_4\cr
+ P_1 & 1\cr
+ P_2 & 0 & 1\cr
+ P_3 & 0 & 0 & 1\cr
+ P_4 & 0 & 0 & 1 & 1\cr
+ }$
+ \item All processes.
+ \item $\bordermatrix{
+ i\setminus s& P_1 & P_2 & P_3 & P_4\cr
+ P_1 & 1 & 0 & 0 & 0\cr
+ P_2 & 0 & 1 & \cr
+ P_3 & 0 & 0 & 1\cr
+ P_4 & 0 & 0 & 1 & 1\cr
+ }$
+ \item
+ $P_1=\xymatrix{
+ \ar[dr]&\\
+ & s_0\ar[d]^a\\
+ & s_1\ar[d]^b\\
+ & s_2\ar[d]^c\\
+ & s_3\\
+ }$
+ $P_2=\xymatrix{
+ \ar[dr]&\\
+ & s_0\ar[d]^a\\
+ & s_1\ar[d]^b\\
+ & s_2\ar[dl]^c\ar[dr]^d\\
+ s_3 & & s_4\\
+ }$
+ $P_3=\xymatrix{
+ \ar[dr] &\\
+ & s_0\ar[d]^a\\
+ & s_1\ar[dl]^b\ar[dr]^b\\
+ s_2\ar[d]^c & & s_3\ar[d]^d\\
+ s_4 & & s_5\\
+ }$
+ $P_4=\xymatrix{
+ \ar[dr] &\\
+ & s_0\ar[dl]^a\ar[dr]^a\\
+ s_2\ar[d]^b & & s_3\ar[d]^b\\
+ s_4\ar[d]^c & & s_5\ar[d]^d\\
+ s_6 & & s_7
+ }$
+\end{enumerate}
+
+\subsection{Testing equivalences}
+\subsection{Testing equivalences}
+\subsection{Testing equivalences}
+
+\end{document}