This means that the encoding of a screen takes $3*|F|$ variables.
+Regarding the BDD representation, we use sylvan cubes. For state state variables we use odd variables in sylvan cubes.
+
+
\subsection{Transition encoding}
We introduce a variable denoting the intended direction of movement $m \in
-\{\text{up}, \text{down}, \text{left}, \text{right}\}$. Per move we define a
-$\delta$ and $\gamma$ variable which represent the change in coordinate value
-respectively for the next position and the position next to the next postition.
+\{\text{up}, \text{down}, \text{left}, \text{right}\}$. Per move we define a $\delta$ and $\gamma$ variables which represent the change in coordinate values respectively for the next position and the position next to the next postition.
$$\delta_{(x,y)}(m)=\begin{cases}
(x-1, y) & \text{if } m = left\\
(x+1, y) & \text{if } m = right\\
the agent and $i_2$ and $i_3$ are adjacent to it in some direction.
$$next(i_1, i_2, i_3)=\left\{\begin{array}{lp{2pt}l}
% Three state transitions
- (free, agent, box) & \text{if } &
+ (free, agent, box) & \text{if } &
i_1=agent \wedge i_2=box \wedge i_3=free\\
- (target, agent, box) & \text{if } &
+ (target, agent, box) & \text{if } &
i_1=targetagent \wedge i_2=box \wedge i_3=free\\
(free, targetagent, box) & \text{if } &
i_1=agent \wedge i_2=targetbox \wedge i_3=free\\