import qualified Text
from Data.Func import $
import Data.Tuple
+import Data.Monoid
import Control.Monad
-import Control.Monad.State
+import Control.Monad.RWST
import Control.Applicative
import Data.Maybe
import Data.Functor
:: Coord :== (Int, Int)
:: Position = Inv | Emp | Peg
-:: PegBoard :== {#{Position}}
+:: PegBoard :== {{Position}}
:: Move :== (Coord, Direction)
:: Direction = N | E | S | W
+:: Solver a :== RWST () [PegBoard] PegBoard Maybe a
european :: PegBoard
european =
,{Inv, Inv, Peg, Peg, Peg, Inv, Inv}
}
+empty = RWST $ \_ _->Nothing
+(<|>) (RWST fa) (RWST fb) = RWST $ \r s->case fa r s of
+ Nothing = fb r s
+ x = x
+
instance toChar Position where
toChar p = case p of Inv = ' '; Emp = '.'; Peg = 'o'
(==) _ _ = False
transform :: Coord Direction -> Coord
-transform (x, y) d = case d of
- N = (x, y-1)
- S = (x, y+1)
- W = (x-1, y)
- E = (x+1, y)
-
-getPos :: Coord -> StateT PegBoard Maybe Position
-getPos c=:(x, y) = getState >>= \b->if (valid b c)
- fail (pure b.[y].[x])
-
-valid :: PegBoard Coord -> Bool
-valid b (x, y) = y<0 || x<0 || y >= size b || x >= size b.[0] || b.[y].[x] == Inv
-
-fail :: StateT PegBoard Maybe a
-fail = StateT \s->Nothing
-
-applyMove :: Move PegBoard -> Maybe PegBoard
-applyMove (c=:(fx, fy), d) b = Nothing
-//# sc=:(sx, sy) = transform c d
-//# tc=:(tx, ty) = transform sc d
-//= liftM3 tuple3 (getPos c b) (getPos sc b) (getPos tc b)
-// >>= \f->case f of
-// (Peg, Peg, Emp) = Nothing//Just {b & [fx,fy]=Emp, [sx,sy]=Emp, [tx,ty]=Peg}
-// _ = Nothing
+transform (x, y) d = case d of N = (x, y+1); S = (x, y-1); W = (x+1, y); E = (x-1, y)
+
+getPos :: Coord -> Solver Position
+getPos c=:(x, y) = get >>= \b->if (valid b) empty (pure b.[y].[x])
+where
+ valid b = y<0 || x<0 || y >= size b || x >= size b.[0] || b.[y].[x] == Inv
+
+applyMove :: Move -> Solver ()
+applyMove (tc=:(tx, ty), d)
+# sc=:(sx, sy) = transform tc d
+# fc=:(fx, fy) = transform sc d
+= get >>= \b->liftM3 tuple3 (getPos fc) (getPos sc) (getPos tc) >>= \f->case f of
+ (Peg, Peg, Emp)
+ # b = {{{c\\c<-:r}\\r<-:b} & [fy,fx]=Emp, [sy,sx]=Emp, [ty,tx]=Peg}
+ = tell [b] >>| put b
+ _ = empty
getCoords :: (Position -> Bool) PegBoard -> [Coord]
getCoords f b = [(x, y)\\r<-:b & y<-[0..] , c<-:r & x<-[0..] | f c]
win :: (PegBoard -> Bool)
-win = isEmpty o getCoords ((<>)Peg)
+win = (==) 1 o length o getCoords ((==)Peg)
printPegBoard :: PegBoard -> String
-printPegBoard b = 'Text'.join "\n" [{#toChar x\\x<-:r}\\r <-: b]
-
-Start =
- ( getCoords ((==)Emp) european
- , win european
- , printPegBoard <$> applyMove ((3,2), S) european
- )
-//Start = printPegBoard european
+printPegBoard b = 'Text'.join "\n" ["\n":[{#toChar x\\x<-:r}\\r <-: b]]
+
+getMoves :: Solver [Move]
+getMoves = gets (\b->[(c,d)\\c<-getCoords ((==)Emp) b, d<-[N,E,S,W]])
+
+solve :: PegBoard -> Maybe [PegBoard]
+solve b = snd <$> evalRWST (tell [b] >>| solver) () b
+where
+ solver = get >>= \board->case win board of
+ True = get >>= \b->tell [b]
+ False = getMoves
+ >>= foldr (<|>) empty o map (\m->applyMove m >>| solver)
+
+Start = 'Text'.join "\n" o map printPegBoard <$> solve european