\usepackage[nonumberlist,acronyms]{glossaries}
\makeglossaries%
\newacronym{HMM}{HMM}{Hidden Markov Model}
+\newacronym{GMM}{GMM}{Gaussian Mixture Models}
+\newacronym{DHMM}{DHMM}{Duration-explicit \acrlong{HMM}}
\newacronym{HTK}{HTK}{\acrlong{HMM} Toolkit}
\newacronym{FA}{FA}{Forced alignment}
\newacronym{MFC}{MFC}{Mel-frequency cepstrum}
detector for singing lines. They achive 80\% accuracy for forty 15 second
exerpts. They mention people that wrote signal features that discriminate
between speech and music. Neural net
-\glspl{HMM}.\cite{berenzweig_locating_2001}.
+\glspl{HMM}~\cite{berenzweig_locating_2001}.
In 2014 Dzhambazov et al.\ applied state of the art segmentation methods to
polyphonic turkish music, this might be interesting to use for heavy metal.
They mention Fujihara(2011) to have a similar \gls{FA} system. This method uses
phone level segmentation, first 12 \gls{MFCC}s. They first do vocal/non-vocal
detection, then melody extraction, then alignment. They compare results with
-Mesaros \& Virtanen, 2008.
+Mesaros \& Virtanen, 2008~\cite{dzhambazov_automatic_2014}. Later they
+specialize in long syllables in a capella. They use \glspl{DHMM} with
+\glspl{GMM} and show that adding knowledge increases alignment (bejing opera
+has long syllables)~\cite{dzhambazov_automatic_2016}.
-t\cite{dzhambazov_automatic_2014}
-t\cite{dzhambazov_automatic_2016}
t\cite{fujihara_automatic_2006}
t\cite{fujihara_lyricsynchronizer:_2011}
t\cite{fujihara_three_2008}