ftv gamma = concatMap id $ map ftv ('Map'.elems gamma)
subst s gamma = Mapmap (subst s) gamma
+extend :: String Scheme Gamma -> Gamma
+extend k t g = 'Map'.put k t g
+
//// ------------------------
//// algorithm U, Unification
//// ------------------------
instance zero Substitution where zero = 'Map'.newMap
compose :: Substitution Substitution -> Substitution
-compose s1 s2 = 'Map'.union (Mapmap (subst s2) s1) s2
+compose s1 s2 = 'Map'.union (Mapmap (subst s1) s2) s1
//Note: just like function compositon compose does snd first
occurs :: TVar a -> Bool | Typeable a
gamma = gets fst
putGamma :: Gamma -> Typing ()
putGamma g = modify (appFst $ const g) >>| pure ()
-changeGamma :: (Gamma -> Gamma) -> Typing ()
-changeGamma f = modify (appFst f) >>| pure ()
+changeGamma :: (Gamma -> Gamma) -> Typing Gamma
+changeGamma f = modify (appFst f) >>| gamma
withGamma :: (Gamma -> a) -> Typing a
withGamma f = f <$> gamma
fresh :: Typing Type
generalize :: Type -> Typing Scheme
generalize t = gamma >>= \g-> pure $ Forall (difference (ftv t) (ftv g)) t
-lookup :: String -> Typing Scheme
+lookup :: String -> Typing Type
lookup k = gamma >>= \g-> case 'Map'.member k g of
False = liftT (Left $ UndeclaredVariableError zero k)
- True = pure ('Map'.find k g)
+ True = instantiate $ 'Map'.find k g
//The inference class
//When tying it all together we will treat the program is a big
//let x=e1 in let y=e2 in ....
class infer a :: a -> Typing (Substitution, Type)
+////---- Inference for Expressions ----
+
instance infer Expr where
infer e = case e of
- VarExpr _ (VarDef k fs) = (\t->(zero,t)) <$> (lookup k >>= instantiate)
+ VarExpr _ (VarDef k fs) = (\t->(zero,t)) <$> lookup k
//instantiate is key for the let polymorphism!
//TODO: field selectors
let given = t1 ->> t2 ->> tv in
op2Type op >>= \expected ->
lift (unify expected given) >>= \s3 ->
- pure ((compose s1 $ compose s2 s3), subst s3 tv)
+ pure ((compose s3 $ compose s2 s1), subst s3 tv)
Op1Expr _ op e1 =
infer e1 >>= \(s1, t1) ->
let given = t1 ->> tv in
op1Type op >>= \expected ->
lift (unify expected given) >>= \s2 ->
- pure (compose s1 s2, subst s2 tv)
+ pure (compose s2 s1, subst s2 tv)
EmptyListExpr _ = (\tv->(zero,tv)) <$> fresh
TupleExpr _ (e1, e2) =
infer e1 >>= \(s1, t1) ->
infer e2 >>= \(s2, t2) ->
- pure (compose s1 s2, TupleType (t1,t2))
+ pure (compose s2 s1, TupleType (t1,t2))
FunExpr _ f args fs = //todo: fieldselectors
- lookup f >>= instantiate >>= \expected ->
- let accTypSub = (\(s,ts) e->infer e >>= \(s_,et)->pure (compose s_ s,ts++[et])) in
- foldM accTypSub (zero,[]) args >>= \(s1, argTs)->
+ lookup f >>= \expected ->
+ let accST = (\(s,ts) e->infer e >>= \(s_,et)->pure (compose s_ s,ts++[et])) in
+ foldM accST (zero,[]) args >>= \(s1, argTs)->
fresh >>= \tv->
let given = foldr (->>) tv argTs in
lift (unify expected given) >>= \s2->
- pure (compose s1 s2, subst s2 tv)
+ pure (compose s2 s1, subst s2 tv)
IntExpr _ _ = pure $ (zero, IntType)
BoolExpr _ _ = pure $ (zero, BoolType)
op1Type UnNegation = pure $ (BoolType ->> BoolType)
op1Type UnMinus = pure $ (IntType ->> IntType)
+////----- Inference for Statements -----
+applySubst :: Substitution -> Typing Gamma
+applySubst s = changeGamma (subst s)
+
+instance infer Stmt where
+ infer s = case s of
+ IfStmt e th el =
+ infer e >>= \(s1, et)->
+ lift (unify et BoolType) >>= \s2 ->
+ applySubst (compose s2 s1) >>|
+ infer th >>= \(s3, tht)->
+ applySubst s3 >>|
+ infer el >>= \(s4, elt)->
+ applySubst s4 >>|
+ lift (unify tht elt) >>= \s5->
+ pure (compose s5 $ compose s4 $ compose s3 $ compose s1 s2, subst s5 tht)
+
+ WhileStmt e wh =
+ infer e >>= \(s1, et)->
+ lift (unify et BoolType) >>= \s2 ->
+ applySubst (compose s2 s1) >>|
+ infer wh >>= \(s3, wht)->
+ pure (compose s3 $ compose s1 s2, subst s3 wht)
+
+ AssStmt (VarDef k fs) e =
+ infer e >>= \(s1, et)->
+ applySubst s1 >>|
+ changeGamma (extend k (Forall [] et)) >>| //todo: fieldselectors
+ pure (s1, VoidType)
+
+
+instance infer [a] | infer a where
+ infer _ = undef
Mapmap :: (a->b) ('Map'.Map k a) -> ('Map'.Map k b)
Mapmap _ 'Map'.Tip = 'Map'.Tip