\usepackage{amssymb}
\usepackage{booktabs}
-\usepackage{float}
\usepackage{geometry}
\title{Exercise: Machine Learning}
\begin{document}
\maketitle
\subsection*{Chapter 5: Machine Learning}
-\begin{table}[H]
+Table~\ref{t2} shows that there is some difference in classification when
+choosing different parameter sets. The results show that adding the focus word
+is very important knowledge since the percentage increases quite a bit.
+However, knowing only the focus word gives exceptionally low performance.
+
+Knowing the next words or the previous words gives some improvement but not a
+whole lot.
+
+Table~\ref{t1} shows that the method does not make a big difference.
+
+Using ten-fold cross validation decreases the percentage.
+
+\begin{table}
\centering
\begin{tabular}{lll}
\toprule
J48 (10FCF) & $96.4352\%$ & $36.5122\%$\\
\bottomrule
\end{tabular}
- \caption{Results for \texttt{P1D} and \texttt{FD}}
+ \caption{Results for \texttt{P1D} and \texttt{FD}\label{t1}}
\end{table}
-\begin{table}[H]
+\begin{table}
\centering
\begin{tabular}{lllllll}
\toprule
\texttt{P2D} & \texttt{P1D} & \texttt{N2D} & \texttt{N1D} & \texttt{FW} & Correctly classified\\
\midrule
- \checkmark{} & \checkmark{} & \checkmark{} & \checkmark{} & \checkmark{} & $98.3225\%$\\
- \checkmark{} & \checkmark{} & \checkmark{} & \checkmark{} & & $97.3905\%$\\
- \checkmark{} & \checkmark{} & & \checkmark{} & \checkmark{} & $98.5555\%$\\
- \checkmark{} & \checkmark{} & & \checkmark{} & & $97.507\%$\\
- \checkmark{} & \checkmark{} & & & \checkmark{} & $98.0429\%$\\
- \checkmark{} & \checkmark{} & & & & $95.5732\%$\\
-
- & \checkmark{} & \checkmark{} & \checkmark{} & \checkmark{} & $\%$\\
- & \checkmark{} & \checkmark{} & \checkmark{} & & $\%$\\
- & \checkmark{} & & \checkmark{} & \checkmark{} & $\%$\\
- & \checkmark{} & & \checkmark{} & & $\%$\\
- & \checkmark{} & & & \checkmark{} & $98.2992\%$\\
- & \checkmark{} & & & & $96.6449\%$\\
-
- & & \checkmark{} & \checkmark{} & \checkmark{} & $\%$\\
- & & \checkmark{} & \checkmark{} & & $\%$\\
- & & & \checkmark{} & \checkmark{} & $\%$\\
- & & & \checkmark{} & & $\%$\\
- & & & & \checkmark{} & $88.4436\%$\\
-
+ \checkmark{} & \checkmark{} & \checkmark{} & \checkmark{} & \checkmark{} & $98.3225\%$\\
+ \checkmark{} & \checkmark{} & \checkmark{} & \checkmark{} & & $97.3905\%$\\
+ \checkmark{} & \checkmark{} & & \checkmark{} & \checkmark{} & $98.5555\%$\\
+ \checkmark{} & \checkmark{} & & \checkmark{} & & $97.507\%$\\
+ \checkmark{} & \checkmark{} & & & \checkmark{} & $98.0429\%$\\
+ \checkmark{} & \checkmark{} & & & & $95.5732\%$\\
+
+ & \checkmark{} & \checkmark{} & \checkmark{} & \checkmark{} & $98.6486\%$\\
+ & \checkmark{} & \checkmark{} & \checkmark{} & & $97.5769\%$\\
+ & \checkmark{} & & \checkmark{} & \checkmark{} & $98.5555\%$\\
+ & \checkmark{} & & \checkmark{} & & $97.973\%$\\
+ & \checkmark{} & & & \checkmark{} & $98.2992\%$\\
+ & \checkmark{} & & & & $96.6449\%$\\
+
+ & & \checkmark{} & \checkmark{} & \checkmark{} & $91.8919\%$\\
+ & & \checkmark{} & \checkmark{} & & $85.5079\%$\\
+ & & & \checkmark{} & \checkmark{} & $92.579\%$\\
+ & & & \checkmark{} & & $85.2516\%$\\
+ & & & & \checkmark{} & $88.4436\%$\\
\bottomrule
\end{tabular}
- \caption{NaiveBayes}
+ \caption{NaiveBayes on all sensible combinations\label{t2}}
\end{table}
\subsection*{Chapter 6: Exercises}
the preceding $n$ states. However, it is claimed that the algorithm
takes into account the whole sequence. Explain in your own words (at
most $100$) how the probability is influenced by the rest of the
- sequence, i.e.\ both the positions more than n back and the following
+ sequence, i.e.\ both the positions more than $n$ back and the following
positions.}
\item\emph{Explain in your own words (at most 50) how the EM algorithm
works. I don't mean the mathematics, but the underlying concept.}
+
\end{itemize}
\end{document}