update
authorMart Lubbers <mart@martlubbers.net>
Thu, 18 Jun 2015 20:10:06 +0000 (22:10 +0200)
committerMart Lubbers <mart@martlubbers.net>
Thu, 18 Jun 2015 20:10:06 +0000 (22:10 +0200)
pres/pres.tex

index eaa1d7f..18c332f 100644 (file)
@@ -11,7 +11,7 @@
                        \begin{figure}[H]
                                \includegraphics[width=0.2\linewidth]{hyperleaplogo}
                        \end{figure}
-                       \begin{itemize}[<+->]
+                       \pause\begin{itemize}
                                \item Information $+$ Entertainment $=$ Infotainment
                                \item Nijmegen
                                \item 1995
@@ -22,7 +22,7 @@
 
        \begin{frame}
                \frametitle{Current situation}
-               \begin{block}{}
+               \pause\begin{block}{}
                        \begin{figure}[H]
                                \includegraphics[width=\linewidth]{informationflow}
                        \end{figure}
@@ -34,7 +34,7 @@
        \begin{frame}
                \frametitle{Current feedback loop}
                \framesubtitle{Indepth in the automated path}
-               \begin{block}{}
+               \pause\begin{block}{}
                        \begin{figure}[H]
                                \includegraphics<1>[width=\linewidth]{feedbackloop}
                                \includegraphics<2>[width=\linewidth]{feedbackloop2}
@@ -46,7 +46,7 @@
        \subsection{Crash course graphs}
        \begin{frame}
                \frametitle{Directed graphs}
-               \begin{columns}[T]
+               \pause\begin{columns}[T]
                        \column{.5\textwidth}
                                Graph $G=(V, E)$\\
                                \pause$\quad$ where\\
@@ -64,7 +64,7 @@
 
        \begin{frame}
                \frametitle{Directed acyclic graphs}
-               \begin{block}{Arrow notation}
+               \pause\begin{block}{Arrow notation}
                        If $e\in E$ and $e=(v_1,v_2)$ or $v_1\rightarrow v_2$ then\\
                        $\quad v_1\xrightarrow{+}v_n$ which means
                        $v_1\rightarrow v_2\rightarrow\ldots\rightarrow v_{n-1}\rightarrow v_n$
@@ -82,6 +82,9 @@
                \pause\begin{figure}[H]
                        \includegraphics[width=\textwidth]{dawgexample}
                \end{figure}
+               \pause\begin{block}{Mathematical definition}
+                       $G=(V,v_0,E,F)$
+               \end{block}
        \end{frame}
 
        \section{Methods}