\begin{figure}[H]
\includegraphics[width=0.2\linewidth]{hyperleaplogo}
\end{figure}
- \begin{itemize}[<+->]
+ \pause\begin{itemize}
\item Information $+$ Entertainment $=$ Infotainment
\item Nijmegen
\item 1995
\begin{frame}
\frametitle{Current situation}
- \begin{block}{}
+ \pause\begin{block}{}
\begin{figure}[H]
\includegraphics[width=\linewidth]{informationflow}
\end{figure}
\begin{frame}
\frametitle{Current feedback loop}
\framesubtitle{Indepth in the automated path}
- \begin{block}{}
+ \pause\begin{block}{}
\begin{figure}[H]
\includegraphics<1>[width=\linewidth]{feedbackloop}
\includegraphics<2>[width=\linewidth]{feedbackloop2}
\subsection{Crash course graphs}
\begin{frame}
\frametitle{Directed graphs}
- \begin{columns}[T]
+ \pause\begin{columns}[T]
\column{.5\textwidth}
Graph $G=(V, E)$\\
\pause$\quad$ where\\
\begin{frame}
\frametitle{Directed acyclic graphs}
- \begin{block}{Arrow notation}
+ \pause\begin{block}{Arrow notation}
If $e\in E$ and $e=(v_1,v_2)$ or $v_1\rightarrow v_2$ then\\
$\quad v_1\xrightarrow{+}v_n$ which means
$v_1\rightarrow v_2\rightarrow\ldots\rightarrow v_{n-1}\rightarrow v_n$
\pause\begin{figure}[H]
\includegraphics[width=\textwidth]{dawgexample}
\end{figure}
+ \pause\begin{block}{Mathematical definition}
+ $G=(V,v_0,E,F)$
+ \end{block}
\end{frame}
\section{Methods}