LATEX:=latex
DOCUMENT:=tt4
- MODELS=model.small.LStar.rand.eps model.partial.LStar.rand.eps model.full.LStar.rand.eps
- TEXS=question1.tex question2.tex question3.tex question4.tex
+ MODELS=model.small.LStar.rand.eps model.small.TTT.rand.eps model.small.RS.rand.eps model.small.KV.rand.eps \
+ model.small.LStar.wm.eps model.small.TTT.wm.eps model.small.RS.wm.eps model.small.KV.wm.eps \
+ model.partial.LStar.rand.eps model.partial.TTT.rand.eps model.partial.RS.rand.eps model.partial.KV.rand.eps \
+ model.partial.LStar.wm.eps model.partial.TTT.wm.eps model.partial.RS.wm.eps model.partial.KV.wm.eps \
+ model.full.LStar.rand.eps model.full.TTT.rand.eps model.full.RS.rand.eps model.full.KV.rand.eps \
+ model.full.LStar.wm.eps model.full.TTT.wm.eps model.full.RS.wm.eps
++TEXS=question1.tex question2.tex question3.tex question4.tex models.tex
.SECONDARY: $(DOCUMENT).fmt
.PHONY: clean
--- /dev/null
-\begin{figure}[H]\r
- \centering\r
- \includegraphics[scale=0.75]{model.small.LStar.rand.eps}\r
- \vspace{5mm}\r
- \caption{small alphabet, LStar, Random}\r
-\end{figure}\r
-\r
-\begin{figure}[H]\r
- \centering\r
- \includegraphics[scale=0.75]{model.small.TTT.rand.eps}\r
- \vspace{5mm}\r
- \caption{small alphabet, TTT, Random}\r
-\end{figure}\r
-\r
-\begin{figure}[H]\r
- \centering\r
- \includegraphics[scale=0.75]{model.small.RS.rand.eps}\r
- \vspace{5mm}\r
- \caption{small alphabet, RivestSchapire, Random}\r
-\end{figure}\r
-\r
-\begin{figure}[H]\r
- \centering\r
- \includegraphics[scale=0.75]{model.small.KV.rand.eps}\r
- \vspace{5mm}\r
- \caption{small alphabet, KearnsVazirani, Random}\r
-\end{figure}\r
-\r
-\begin{figure}[H]\r
- \centering\r
- \includegraphics[scale=0.75]{model.small.LStar.wm.eps}\r
- \vspace{5mm}\r
- \caption{small alphabet, LStar, WMethod}\r
-\end{figure}\r
-\r
-\begin{figure}[H]\r
- \centering\r
- \includegraphics[scale=0.75]{model.small.TTT.wm.eps}\r
- \vspace{5mm}\r
- \caption{small alphabet, TTT, WMethod}\r
-\end{figure}\r
-\r
-\begin{figure}[H]\r
- \centering\r
- \includegraphics[scale=0.75]{model.small.RS.wm.eps}\r
- \vspace{5mm}\r
- \caption{small alphabet, RivestSchapire, WMethod}\r
-\end{figure}\r
-\r
-\begin{figure}[H]\r
- \centering\r
- \includegraphics[scale=0.75]{model.small.KV.wm.eps}\r
- \vspace{5mm}\r
- \caption{small alphabet, KearnsVazirani, WMethod}\r
-\end{figure}\r
-\r
-\begin{figure}[H]\r
- \centering\r
- \includegraphics[scale=0.75]{model.partial.LStar.rand.eps}\r
- \vspace{5mm}\r
- \caption{partial alphabet, LStar, Random}\r
-\end{figure}\r
-\r
-\begin{figure}[H]\r
- \centering\r
- \includegraphics[scale=0.75]{model.partial.TTT.rand.eps}\r
- \vspace{5mm}\r
- \caption{partial alphabet, TTT, Random}\r
-\end{figure}\r
-\r
-\begin{figure}[H]\r
- \centering\r
- \includegraphics[scale=0.75]{model.partial.RS.rand.eps}\r
- \vspace{5mm}\r
- \caption{partial alphabet, RivestSchapire, Random}\r
-\end{figure}\r
-\r
-\begin{figure}[H]\r
- \centering\r
- \includegraphics[scale=0.75]{model.partial.KV.rand.eps}\r
- \vspace{5mm}\r
- \caption{partial alphabet, KearnsVazirani, Random}\r
-\end{figure}\r
-\r
-\begin{figure}[H]\r
- \centering\r
- \includegraphics[scale=0.75]{model.partial.LStar.wm.eps}\r
- \vspace{5mm}\r
- \caption{partial alphabet, LStar, WMethod}\r
-\end{figure}\r
-\r
-\begin{figure}[H]\r
- \centering\r
- \includegraphics[scale=0.75]{model.partial.TTT.wm.eps}\r
- \vspace{5mm}\r
- \caption{partial alphabet, TTT, WMethod}\r
-\end{figure}\r
-\r
-\begin{figure}[H]\r
- \centering\r
- \includegraphics[scale=0.75]{model.partial.RS.wm.eps}\r
- \vspace{5mm}\r
- \caption{partial alphabet, RivestSchapire, WMethod}\r
-\end{figure}\r
-\r
-\begin{figure}[H]\r
- \centering\r
- \includegraphics[scale=0.75]{model.partial.KV.wm.eps}\r
- \vspace{5mm}\r
- \caption{partial alphabet, KearnsVazirani, WMethod}\r
-\end{figure}\r
-\r
-\begin{figure}[H]\r
- \centering\r
- \includegraphics[width=\textwidth]{model.full.LStar.rand.eps}\r
- \vspace{5mm}\r
- \caption{full alphabet, LStar, Random}\r
-\end{figure}\r
-\r
-\begin{figure}[H]\r
- \centering\r
- \includegraphics[width=\textwidth]{model.full.TTT.rand.eps}\r
- \vspace{5mm}\r
- \caption{full alphabet, TTT, Random}\r
-\end{figure}\r
-\r
-\begin{figure}[H]\r
- \centering\r
- \includegraphics[width=\textwidth]{model.full.RS.rand.eps}\r
- \vspace{5mm}\r
- \caption{full alphabet, RivestSchapire, Random}\r
-\end{figure}\r
-\r
-\begin{figure}[H]\r
- \centering\r
- \includegraphics[width=\textwidth]{model.full.KV.rand.eps}\r
- \vspace{5mm}\r
- \caption{full alphabet, KearnsVazirani, Random}\r
-\end{figure}\r
-\r
-\begin{figure}[H]\r
- \centering\r
- \includegraphics[width=\textwidth]{model.full.LStar.wm.eps}\r
- \vspace{5mm}\r
- \caption{full alphabet, LStar, WMethod}\r
-\end{figure}\r
-\r
-\begin{figure}[H]\r
- \centering\r
- \includegraphics[width=\textwidth]{model.full.TTT.wm.eps}\r
- \vspace{5mm}\r
- \caption{full alphabet, TTT, WMethod}\r
-\end{figure}\r
-\r
-\begin{figure}[H]\r
- \centering\r
- \includegraphics[width=\textwidth]{model.full.RS.wm.eps}\r
- \vspace{5mm}\r
- \caption{full alphabet, RivestSchapire, WMethod}\r
-\end{figure}\r
++%\begin{figure}[H]\r
++% \centering\r
++% \includegraphics[scale=0.75]{model.small.LStar.rand.eps}\r
++% \vspace{5mm}\r
++% \caption{small alphabet, LStar, Random}\r
++%\end{figure}\r
++%\r
++%\begin{figure}[H]\r
++% \centering\r
++% \includegraphics[scale=0.75]{model.small.TTT.rand.eps}\r
++% \vspace{5mm}\r
++% \caption{small alphabet, TTT, Random}\r
++%\end{figure}\r
++%\r
++%\begin{figure}[H]\r
++% \centering\r
++% \includegraphics[scale=0.75]{model.small.RS.rand.eps}\r
++% \vspace{5mm}\r
++% \caption{small alphabet, RivestSchapire, Random}\r
++%\end{figure}\r
++%\r
++%\begin{figure}[H]\r
++% \centering\r
++% \includegraphics[scale=0.75]{model.small.KV.rand.eps}\r
++% \vspace{5mm}\r
++% \caption{small alphabet, KearnsVazirani, Random}\r
++%\end{figure}\r
++%\r
++%\begin{figure}[H]\r
++% \centering\r
++% \includegraphics[scale=0.75]{model.small.LStar.wm.eps}\r
++% \vspace{5mm}\r
++% \caption{small alphabet, LStar, WMethod}\r
++%\end{figure}\r
++%\r
++%\begin{figure}[H]\r
++% \centering\r
++% \includegraphics[scale=0.75]{model.small.TTT.wm.eps}\r
++% \vspace{5mm}\r
++% \caption{small alphabet, TTT, WMethod}\r
++%\end{figure}\r
++%\r
++%\begin{figure}[H]\r
++% \centering\r
++% \includegraphics[scale=0.75]{model.small.RS.wm.eps}\r
++% \vspace{5mm}\r
++% \caption{small alphabet, RivestSchapire, WMethod}\r
++%\end{figure}\r
++%\r
++%\begin{figure}[H]\r
++% \centering\r
++% \includegraphics[scale=0.75]{model.small.KV.wm.eps}\r
++% \vspace{5mm}\r
++% \caption{small alphabet, KearnsVazirani, WMethod}\r
++%\end{figure}\r
++%\r
++%\begin{figure}[H]\r
++% \centering\r
++% \includegraphics[scale=0.75]{model.partial.LStar.rand.eps}\r
++% \vspace{5mm}\r
++% \caption{partial alphabet, LStar, Random}\r
++%\end{figure}\r
++%\r
++%\begin{figure}[H]\r
++% \centering\r
++% \includegraphics[scale=0.75]{model.partial.TTT.rand.eps}\r
++% \vspace{5mm}\r
++% \caption{partial alphabet, TTT, Random}\r
++%\end{figure}\r
++%\r
++%\begin{figure}[H]\r
++% \centering\r
++% \includegraphics[scale=0.75]{model.partial.RS.rand.eps}\r
++% \vspace{5mm}\r
++% \caption{partial alphabet, RivestSchapire, Random}\r
++%\end{figure}\r
++%\r
++%\begin{figure}[H]\r
++% \centering\r
++% \includegraphics[scale=0.75]{model.partial.KV.rand.eps}\r
++% \vspace{5mm}\r
++% \caption{partial alphabet, KearnsVazirani, Random}\r
++%\end{figure}\r
++%\r
++%\begin{figure}[H]\r
++% \centering\r
++% \includegraphics[scale=0.75]{model.partial.LStar.wm.eps}\r
++% \vspace{5mm}\r
++% \caption{partial alphabet, LStar, WMethod}\r
++%\end{figure}\r
++%\r
++%\begin{figure}[H]\r
++% \centering\r
++% \includegraphics[scale=0.75]{model.partial.TTT.wm.eps}\r
++% \vspace{5mm}\r
++% \caption{partial alphabet, TTT, WMethod}\r
++%\end{figure}\r
++%\r
++%\begin{figure}[H]\r
++% \centering\r
++% \includegraphics[scale=0.75]{model.partial.RS.wm.eps}\r
++% \vspace{5mm}\r
++% \caption{partial alphabet, RivestSchapire, WMethod}\r
++%\end{figure}\r
++%\r
++%\begin{figure}[H]\r
++% \centering\r
++% \includegraphics[scale=0.75]{model.partial.KV.wm.eps}\r
++% \vspace{5mm}\r
++% \caption{partial alphabet, KearnsVazirani, WMethod}\r
++%\end{figure}\r
++%\r
++%\begin{figure}[H]\r
++% \centering\r
++% \includegraphics[width=\textwidth]{model.full.LStar.rand.eps}\r
++% \vspace{5mm}\r
++% \caption{full alphabet, LStar, Random}\r
++%\end{figure}\r
++%\r
++%\begin{figure}[H]\r
++% \centering\r
++% \includegraphics[width=\textwidth]{model.full.TTT.rand.eps}\r
++% \vspace{5mm}\r
++% \caption{full alphabet, TTT, Random}\r
++%\end{figure}\r
++%\r
++%\begin{figure}[H]\r
++% \centering\r
++% \includegraphics[width=\textwidth]{model.full.RS.rand.eps}\r
++% \vspace{5mm}\r
++% \caption{full alphabet, RivestSchapire, Random}\r
++%\end{figure}\r
++%\r
++%\begin{figure}[H]\r
++% \centering\r
++% \includegraphics[width=\textwidth]{model.full.KV.rand.eps}\r
++% \vspace{5mm}\r
++% \caption{full alphabet, KearnsVazirani, Random}\r
++%\end{figure}\r
++%\r
++%\begin{figure}[H]\r
++% \centering\r
++% \includegraphics[width=\textwidth]{model.full.LStar.wm.eps}\r
++% \vspace{5mm}\r
++% \caption{full alphabet, LStar, WMethod}\r
++%\end{figure}\r
++%\r
++%\begin{figure}[H]\r
++% \centering\r
++% \includegraphics[width=\textwidth]{model.full.TTT.wm.eps}\r
++% \vspace{5mm}\r
++% \caption{full alphabet, TTT, WMethod}\r
++%\end{figure}\r
++%\r
++%\begin{figure}[H]\r
++% \centering\r
++% \includegraphics[width=\textwidth]{model.full.RS.wm.eps}\r
++% \vspace{5mm}\r
++% \caption{full alphabet, RivestSchapire, WMethod}\r
++%\end{figure}\r
- In order to be allow learnlib to learn the TCP model it was necessary to have a\r
- deterministic model. We accomplished this by modifying the adapter so it can\r
- reach a \texttt{ERROR} or \texttt{CLOSED} state. In these states all inputs are\r
- discarded and a default output is returned. In the case of a state where an\r
- input results in a non-deterministic output we jump to the \texttt{ERROR} state\r
- for additional this given input. When the connection is successfully closed\r
- using a \texttt{FIN} packet we move the adapter to the \texttt{CLOSED} state.\r
-In order to be allow learnlib to learn the TCP model it was necessary to have a deterministic model.\r
-We accomplished this by modifying the adapter so it can reach a \emph{ERROR} or \emph{CLOSED} state. In these states all inputs are discarded and a default output is returned.\r
-In the case of a state where an input results in a non-deterministic output we jump to the \emph{ERROR} state for additional this given input. When the connection is successfully closed using a \emph{FIN} packet we move the adapter to the \emph{CLOSED} state.\r
--\r
- We divided the input alphabet into three sets, this way we can control the size\r
- of the model learned by learnlib.\r
-We divided the input alphabet into three sets, this way we can control the size of the model learned by learnlib.\r
--\r
- \begin{table}[H]\r
- \begin{tabular}{cl}\r
- \toprule\r
- Alphabet & Inputs \\\r
- \midrule\r
- small & \texttt{SYN}, \texttt{ACK} \\\r
- partial & \texttt{SYN}, \texttt{ACK}, \texttt{DATA} \\\r
- full & \texttt{SYN}, \texttt{ACK}, \texttt{DATA}, \texttt{RST},\r
- \texttt{FIN} \\\r
- \bottomrule\r
- \end{tabular}\r
- \caption{Different input alphabets used during learning.}\r
- \end{table}\r
-\begin{longtable}{|c|l|}\r
- \caption{Different input alphabets used during learning.} \\\hline\r
- Alphabet & Inputs \\\hline \hline\r
- small & SYN, ACK \\\hline\r
- partial & SYN, ACK, DATA \\\hline\r
- full & SYN, ACK, DATA, RST, FIN \\\hline\r
-\end{longtable}\r
--\r
- Just as in our previous assignment the \texttt{DATA} packet is actually a\r
- \texttt{ACK} with an user data payload and the \emph{push} flag set. These\r
- input alphabets will influence the size of the model produced. \emph{small}\r
- will result in a 2 state model, \emph{partial} will be the full model without\r
- the \texttt{CLOSED} state and \emph{full} should result in the full model as\r
- used in the previous assignment.\r
-Just as in our previous assignment the \emph{DATA} packet is actually a \emph{ACK} with an user data payload and the \emph{push} flag set. \r
-These input alphabets will influence the size of the model produced. \emph{small} will result in a 2 state model, \emph{partial} will be the full model without the \emph{CLOSED} state and \emph{full} should result in the full model as used in the previous assignment.\r
--\r
- \paragraph{Model learned with small input alphabet}\r
- %\includegraphics{model.small.LStar.rand.eps}\r
-\begin{figure}[H]\r
- \centering\r
- \includegraphics[scale=0.75]{model.small.LStar.rand.eps}\r
- \vspace{5mm}\r
- \caption{Model learned with small input alphabet}\r
-\end{figure}\r
--\r
- \paragraph{Model learned with partial input alphabet}\r
- %\includegraphics{model.partial.LStar.rand.eps}\r
-\begin{figure}[H]\r
- \centering\r
- \includegraphics[width=\textwidth]{model.partial.LStar.rand.eps}\r
- \vspace{5mm}\r
- \caption{Model learned with partial input alphabet}\r
-\end{figure}\r
--\r
- \paragraph{Model learned with full input alphabet}\r
- %\includegraphics{model.full.LStar.rand.eps}\r
-\begin{figure}[H]\r
- \centering\r
- \includegraphics[width=1.2\textwidth]{model.full.LStar.rand.eps}\r
- \vspace{5mm}\r
- \caption{Model learned with full input alphabet}\r
-\end{figure}\r
++In order to be allow learnlib to learn the TCP model it was necessary to have a
++deterministic model. We accomplished this by modifying the adapter so it can
++reach a \texttt{ERROR} or \texttt{CLOSED} state. In these states all inputs are
++discarded and a default output is returned. In the case of a state where an
++input results in a non-deterministic output we jump to the \texttt{ERROR} state
++for additional this given input. When the connection is successfully closed
++using a \texttt{FIN} packet we move the adapter to the \texttt{CLOSED} state.
++
++We divided the input alphabet into three sets, this way we can control the size
++of the model learned by learnlib.
++
++\begin{table}[H]
++ \begin{tabular}{cl}
++ \toprule
++ Alphabet & Inputs \\
++ \midrule
++ small & \texttt{SYN}, \texttt{ACK} \\
++ partial & \texttt{SYN}, \texttt{ACK}, \texttt{DATA} \\
++ full & \texttt{SYN}, \texttt{ACK}, \texttt{DATA}, \texttt{RST},
++ \texttt{FIN} \\
++ \bottomrule
++ \end{tabular}
++ \caption{Different input alphabets used during learning.}
++\end{table}
++
++Just as in our previous assignment the \texttt{DATA} packet is actually a
++\texttt{ACK} with an user data payload and the \emph{push} flag set. These
++input alphabets will influence the size of the model produced. \emph{small}
++will result in a 2 state model, \emph{partial} will be the full model without
++the \texttt{CLOSED} state and \emph{full} should result in the full model as
++used in the previous assignment.
++%
++%\begin{figure}[H]
++% \centering
++% \includegraphics[scale=0.75]{model.small.LStar.rand.eps}
++% \vspace{5mm}
++% \caption{Model learned with small input alphabet}
++%\end{figure}
++%
++%\begin{figure}[H]
++% \centering
++% \includegraphics[width=\textwidth]{model.partial.LStar.rand.eps}
++% \vspace{5mm}
++% \caption{Model learned with partial input alphabet}
++%\end{figure}
++%
++%\begin{figure}[H]
++% \centering
++% \includegraphics[width=1.2\textwidth]{model.full.LStar.rand.eps}
++% \vspace{5mm}
++% \caption{Model learned with full input alphabet}
++%\end{figure}
- The table below contains some statistics about all the different parameter\r
- configurations we ran learnlib with. All except \emph{RivestSchapire} using\r
- the Random test method result in the correct model being learned. When\r
- \emph{WMethod} is selected as the testing method \emph{RivestSchapire} is also\r
- able to learn the correct model.\r
- \emph{WMethod} does however increase the time needed to learn the model\r
- significantly, when a different learner is used there is no reason not to use\r
- the Random testing method.\r
-The table below contains some statistics about all the different parameter configurations we ran learnlib with.\r
-The \emph{RivestSchapire} learner using the Random test method resulted in an incorrect model being learned.\r
-When the \emph{KearnsVazirani} learner using the WMethod tester wasn't able to learn a model, this is due the learner hitting a non-deterministic path. \r
-This problem hasn't anything to do with the actual learner and is the result of a uncaught error situation in the adapter.\r
-This shows us that a leaner can be used to test software, since we discovered a bug in our adapter.\r
-Due to time constrains we were not able to fix this bug.\r
-When \emph{WMethod} is selected as the testing method \emph{RivestSchapire} is also able to learn the correct model.\r
-\emph{WMethod} does however increase the time needed to learn the model significantly, when a different learner is used there is no reason not to use the Random testing method.\r
--\r
- \begin{table}[H]\r
- \begin{tabular}{lllccc}\r
- \toprule\r
- Alphabet & Method & Test method & States & Time \\\r
- \midrule\r
- small & LStar & Random & 2 & 12 sec \\\r
- small & TTT & Random & 2 & 5 sec \\\r
- small & RivestSchapire & Random & 2 & 6 sec \\\r
- small & KearnsVazirani & Random & 2 & 5 sec \\\r
- small & LStar & WMethod & 2 & 35 sec \\\r
- small & TTT & WMethod & 2 & 32 sec \\\r
- small & RivestSchapire & WMethod & 2 & 33 sec \\\r
- small & KearnsVazirani & WMethod & 2 & 33 sec \\\r
- \r
- partial & LStar & Random & 4 & 18 sec \\\r
- partial & TTT & Random & 4 & 16 sec \\\r
- partial & RivestSchapire & Random & 4 & 13 sec \\\r
- partial & KearnsVazirani & Random & 4 & 22 sec \\\r
- partial & LStar & WMethod & 4 & 384 sec \\\r
- partial & TTT & WMethod & 4 & 390 sec \\\r
- partial & RivestSchapire & WMethod & 4 & 384 sec \\\r
- partial & KearnsVazirani & WMethod & 4 & 383 sec \\\r
- \r
- full & LStar & Random & 5 & 44 sec \\\r
- full & TTT & Random & 5 & 25 sec \\\r
- full & RivestSchapire & Random & 4 & 12 sec \\\r
- full & KearnsVazirani & Random & 5 & 19 sec \\\r
- full & LStar & WMethod & 5 & 2666 sec \\\r
- full & TTT & WMethod & 5 & 2632 sec \\\r
- full & RivestSchapire & WMethod & 5 & 2638 sec \\\r
- full & KearnsVazirani & WMethod & - & - \\\r
- \bottomrule\r
- \end{tabular}\r
- \caption{Learning parameters and resulting model size.}\r
- \end{table}\r
-\begin{longtable}{| l | l | l | c | c | c |}\r
- \caption{Learning parameters and resulting model size.} \\\hline\r
- Alphabet & Method & Test method & States & Time \\\hline \hline\r
- small & LStar & Random & 2 & 12 sec \\\hline\r
- small & TTT & Random & 2 & 5 sec \\\hline\r
- small & RivestSchapire & Random & 2 & 6 sec \\\hline\r
- small & KearnsVazirani & Random & 2 & 5 sec \\\hline\r
- small & LStar & WMethod & 2 & 35 sec \\\hline\r
- small & TTT & WMethod & 2 & 32 sec \\\hline\r
- small & RivestSchapire & WMethod & 2 & 33 sec \\\hline\r
- small & KearnsVazirani & WMethod & 2 & 33 sec \\\hline\r
- \r
- partial & LStar & Random & 4 & 18 sec \\\hline\r
- partial & TTT & Random & 4 & 16 sec \\\hline\r
- partial & RivestSchapire & Random & 4 & 13 sec \\\hline\r
- partial & KearnsVazirani & Random & 4 & 22 sec \\\hline\r
- partial & LStar & WMethod & 4 & 384 sec \\\hline\r
- partial & TTT & WMethod & 4 & 390 sec \\\hline\r
- partial & RivestSchapire & WMethod & 4 & 384 sec \\\hline\r
- partial & KearnsVazirani & WMethod & 4 & 383 sec \\\hline\r
- \r
- full & LStar & Random & 5 & 44 sec \\\hline\r
- full & TTT & Random & 5 & 25 sec \\\hline\r
- full & RivestSchapire & Random & 4 & 12 sec \\\hline\r
- full & KearnsVazirani & Random & 5 & 19 sec \\\hline\r
- full & LStar & WMethod & 5 & 2666 sec \\\hline\r
- full & TTT & WMethod & 5 & 2632 sec \\\hline\r
- full & RivestSchapire & WMethod & 5 & 2638 sec \\\hline\r
- full & KearnsVazirani & WMethod & - & - \\\hline\r
-\end{longtable}\r
-\r
++The table below contains some statistics about all the different parameter
++configurations we ran learnlib with. The \emph{RivestSchapire} learner using
++the Random test method resulted in an incorrect model being learned. When the
++\emph{KearnsVazirani} learner using the WMethod tester wasn't able to learn a
++model, this is due the learner hitting a non-deterministic path. This
++problem hasn't anything to do with the actual learner and is the result of a
++uncaught error situation in the adapter. This shows us that a leaner can be
++used to test software, since we discovered a bug in our adapter. Due to time
++constrains we were not able to fix this bug. When \emph{WMethod} is selected
++as the testing method \emph{RivestSchapire} is also able to learn the correct
++model. \emph{WMethod} does however increase the time needed to learn the
++model significantly, when a different learner is used there is no reason not to
++use the Random testing method.
++
++\begin{table}[H]
++ \begin{tabular}{lllccc}
++ \toprule
++ Alphabet & Method & Test method & States & Time \\
++ \midrule
++ small & LStar & Random & 2 & 12 sec \\
++ small & TTT & Random & 2 & 5 sec \\
++ small & RivestSchapire & Random & 2 & 6 sec \\
++ small & KearnsVazirani & Random & 2 & 5 sec \\
++ small & LStar & WMethod & 2 & 35 sec \\
++ small & TTT & WMethod & 2 & 32 sec \\
++ small & RivestSchapire & WMethod & 2 & 33 sec \\
++ small & KearnsVazirani & WMethod & 2 & 33 sec \\
++
++ partial & LStar & Random & 4 & 18 sec \\
++ partial & TTT & Random & 4 & 16 sec \\
++ partial & RivestSchapire & Random & 4 & 13 sec \\
++ partial & KearnsVazirani & Random & 4 & 22 sec \\
++ partial & LStar & WMethod & 4 & 384 sec \\
++ partial & TTT & WMethod & 4 & 390 sec \\
++ partial & RivestSchapire & WMethod & 4 & 384 sec \\
++ partial & KearnsVazirani & WMethod & 4 & 383 sec \\
++
++ full & LStar & Random & 5 & 44 sec \\
++ full & TTT & Random & 5 & 25 sec \\
++ full & RivestSchapire & Random & 4 & 12 sec \\
++ full & KearnsVazirani & Random & 5 & 19 sec \\
++ full & LStar & WMethod & 5 & 2666 sec \\
++ full & TTT & WMethod & 5 & 2632 sec \\
++ full & RivestSchapire & WMethod & 5 & 2638 sec \\
++ full & KearnsVazirani & WMethod & - & - \\
++ \bottomrule
++ \end{tabular}
++ \caption{Learning parameters and resulting model size.}
++\end{table}