rt_task_create(&task2, "t2", 0, 50, 0);
rt_task_create(&task3, "t3", 0, 50, 0);
- uint64_t num1 = 1000000000LLU;
- uint64_t num2 = 2000000000LLU;
- uint64_t num3 = 3000000000LLU;
+ uint64_t num1 = 1000000000LLU, num2 = 2000000000LLU, num3 = 3000000000LLU;
rt_task_start(&task1, &demo, (void *)&num1);
rt_task_start(&task2, &demo, (void *)&num2);
+++ /dev/null
-DES group members:
-Natanael Adityasatria 4417992
-Mart Lubbers
-
-2a
-The output describes the first task is the task that is first executed by the syntax rt_task_start. So the task order is ordered from the source code's order (in this case: inside loop, the lowest counter will be run first)
-
-2b
-The output describes that we can pass the integer argument that belongs to the task. In addition to the task name (string), the task can also has an integer value.
-
-2c
-There is no differences in the output with the exercise 2b.
-The order is the same as in exercise 2b.
-From the source code, this is because we put each of tasks in a loop.
-So the first task created and the first task started in the loop will
-be run first time. For the next loop, it will create and start the
-next task. So it is like the matter of the code order not the task
-priority.
-
-2d
-It is because we use Sleep of 1 second then the loop(while) will be run every one second. All tasks have the same priority, but each of tasks has different periods.
-The first task that has period of 1 will be run every seconds while the task that has period of 2 will be run once in two seconds. In addition, the task that has period of 3 will be run once in three seconds.
\ No newline at end of file
-###### CONFIGURATION ######
+CFLAGS=$(shell xeno-config --xeno-cflags) -lnative -lrtdk
+LDFLAGS=$(shell xeno-config --xeno-ldflags)
-### List of applications to be build
-APPLICATIONS = ex02
+BINARIES=$(addprefix ex02,a b c d)
-### Note: to override the search path for the xeno-config script, use "make XENO=..."
+all: $(BINARIES)
-
-### List of modules to be build
-MODULES = ex02
-
-### Note: to override the kernel source path, use "make KSRC=..."
-
-
-
-###### USER SPACE BUILD (no change required normally) ######
-ifeq ($(KERNELRELEASE),)
-ifneq ($(APPLICATIONS),)
-
-### Default Xenomai installation path
-XENO ?= /usr/xenomai
-
-XENOCONFIG=$(shell PATH=$(XENO):$(XENO)/bin:$(PATH) which xeno-config 2>/dev/null)
-
-### Sanity check
-ifeq ($(XENOCONFIG),)
-all::
- @echo ">>> Invoke make like this: \"make XENO=/path/to/xeno-config\" <<<"
- @echo
-endif
-
-
-CC=$(shell $(XENOCONFIG) --cc)
-
-CFLAGS=$(shell $(XENOCONFIG) --xeno-cflags) $(MY_CFLAGS)
-
-LDFLAGS=$(shell $(XENOCONFIG) --xeno-ldflags) $(MY_LDFLAGS) -lnative
-
-# This includes the library path of given Xenomai into the binary to make live
-# easier for beginners if Xenomai's libs are not in any default search path.
-LDFLAGS+=-Xlinker -rpath -Xlinker $(shell $(XENOCONFIG) --libdir)
-
-LDFLAGS+= -lrtdk
-
-all:: $(APPLICATIONS)
-
-clean::
- $(RM) $(APPLICATIONS) *.o
-
-endif
-endif
-
-
-
-###### SPECIAL TARGET RULES ######
-rtprint: rtprint.c
- $(CC) $(CFLAGS) $? $(LDFLAGS) -lrtdk -o $@
-
-
-
-###### KERNEL MODULE BUILD (no change required normally) ######
-ifneq ($(MODULES),)
-
-### Default to sources of currently running kernel
-KSRC ?= /lib/modules/$(shell uname -r)/build
-
-OBJS := ${patsubst %, %.o, $(MODULES)}
-CLEANMOD := ${patsubst %, .%*, $(MODULES)}
-PWD := $(shell if [ "$$PWD" != "" ]; then echo $$PWD; else pwd; fi)
-
-### Kernel 2.6
-ifeq ($(findstring 2.6,$(KSRC)),2.6)
-
-obj-m := $(OBJS)
-EXTRA_CFLAGS := -I$(KSRC)/include/xenomai -I$(KSRC)/include/xenomai/posix $(ADD_CFLAGS)
-
-all::
- $(MAKE) -C $(KSRC) SUBDIRS=$(PWD) modules
-
-### Kernel 2.4
-else
-
-ARCH ?= $(shell uname -i)
-INCLUDE := -I$(KSRC)/include/xenomai -I$(KSRC)/include/xenomai/compat -I$(KSRC)/include/xenomai/posix
-CFLAGS += $(shell $(MAKE) -s -C $(KSRC) CC=$(CC) ARCH=$(ARCH) SUBDIRS=$(PWD) modules) $(INCLUDE)
-
-all:: $(OBJS)
-
-endif
-
-## Target for capturing 2.4 module CFLAGS
-modules:
- @echo "$(CFLAGS)"
-
-clean::
- $(RM) $(CLEANMOD) *.o *.ko *.mod.c Module*.symvers
- $(RM) -R .tmp*
-
-endif
\ No newline at end of file
+clean:
+ $(RM) -v $(BINARIES) *.o
+++ /dev/null
-#include <stdio.h>
-#include <signal.h>
-#include <unistd.h>
-#include <sys/mman.h>
-
-#include <native/task.h>
-#include <native/timer.h>
-
-#include <rtdk.h>
-RT_TASK demo_task;
-
-void demo(void *arg)
-{
- RT_TASK *curtask;
- RT_TASK_INFO curtaskinfo;
-
- // inquire current task
- curtask=rt_task_self();
- rt_task_inquire(curtask,&curtaskinfo);
-
- // print task name
- rt_printf("Task name : %s \n", curtaskinfo.name);
-}
-
-int main(int argc, char* argv[])
-{
- char str[10] ;
- int i;
-
- // Perform auto-init of rt_print buffers if the task doesn't do so
- rt_print_auto_init(1);
-
- // Lock memory : avoid memory swapping for this program
- mlockall(MCL_CURRENT|MCL_FUTURE);
-
- rt_printf("start task\n");
-
- for (i=0; i<5; i++)
- {
- /*
- * Arguments: &task,
- * name,
- * stack size (0=default),
- * priority,
- * mode (FPU, start suspended, ...)
- */
- sprintf(str,"hello-%d",i);
- rt_task_create(&demo_task, str, 0, 50, 0);
- /*
- * Arguments: &task,
- * task function,
- * function argument
- */
- rt_task_start(&demo_task, &demo, 0);
- }
-
-}
\ No newline at end of file
--- /dev/null
+#include <stdio.h>
+#include <signal.h>
+#include <unistd.h>
+#include <sys/mman.h>
+
+#include <native/task.h>
+#include <native/timer.h>
+
+#include <rtdk.h>
+RT_TASK demo_task;
+
+void demo(void *arg)
+{
+ RT_TASK *curtask;
+ RT_TASK_INFO curtaskinfo;
+ curtask=rt_task_self();
+ rt_task_inquire(curtask, &curtaskinfo);
+ rt_printf("Task name : %s\n", curtaskinfo.name);
+}
+
+int main(int argc, char* argv[])
+{
+ char str[10] ;
+ int i;
+
+ rt_print_auto_init(1);
+ mlockall(MCL_CURRENT | MCL_FUTURE);
+ rt_printf("start task\n");
+
+ for (i=0; i<5; i++)
+ {
+ sprintf(str,"hello-%d",i);
+ rt_task_create(&demo_task, str, 0, 50, 0);
+ rt_task_start(&demo_task, &demo, 0);
+ }
+}
void demo(void *arg)
{
+ int num = * (int *)arg;
RT_TASK *curtask;
RT_TASK_INFO curtaskinfo;
-
- // inquire current task
curtask=rt_task_self();
- rt_task_inquire(curtask,&curtaskinfo);
-
- // print task name
- int num = * (int *)arg;
- rt_printf("Task name : %s - Argument %d \n", curtaskinfo.name,num);
+ rt_task_inquire(curtask, &curtaskinfo);
+ rt_printf("Task name: %s - Argument %d\n", curtaskinfo.name, num);
}
int main(int argc, char* argv[])
char str[10] ;
int i;
- // Perform auto-init of rt_print buffers if the task doesn't do so
rt_print_auto_init(1);
-
- // Lock memory : avoid memory swapping for this program
- mlockall(MCL_CURRENT|MCL_FUTURE);
-
+ mlockall(MCL_CURRENT| MCL_FUTURE);
rt_printf("start task\n");
for (i=0; i<5; i++)
{
- /*
- * Arguments: &task,
- * name,
- * stack size (0=default),
- * priority,
- * mode (FPU, start suspended, ...)
- */
- sprintf(str,"hello-%d",i);
+ sprintf(str, "hello-%d", i);
rt_task_create(&demo_task, str, 0, 50, 0);
- /*
- * Arguments: &task,
- * task function,
- * function argument
- */
rt_task_start(&demo_task, &demo, &i);
}
-
-}
\ No newline at end of file
+}
void demo(void *arg)
{
+ int num = * (int *)arg;
RT_TASK *curtask;
RT_TASK_INFO curtaskinfo;
-
- // inquire current task
curtask=rt_task_self();
- rt_task_inquire(curtask,&curtaskinfo);
-
- // print task name
- int num = * (int *)arg;
- rt_printf("Task name : %s - Argument %d \n", curtaskinfo.name,num);
+ rt_task_inquire(curtask, &curtaskinfo);
+ rt_printf("Task name: %s - Argument %d\n", curtaskinfo.name, num);
}
int main(int argc, char* argv[])
char str[10] ;
int i;
- // Perform auto-init of rt_print buffers if the task doesn't do so
rt_print_auto_init(1);
-
- // Lock memory : avoid memory swapping for this program
- mlockall(MCL_CURRENT|MCL_FUTURE);
-
+ mlockall(MCL_CURRENT | MCL_FUTURE);
rt_printf("start task\n");
for (i=0; i<5; i++)
{
- /*
- * Arguments: &task,
- * name,
- * stack size (0=default),
- * priority,
- * mode (FPU, start suspended, ...)
- */
- sprintf(str,"hello-%d",i);
+ sprintf(str, "hello-%d", i);
rt_task_create(&demo_task, str, 0, 50+i, 0);
-
- /*
- * Arguments: &task,
- * task function,
- * function argument
- */
rt_task_start(&demo_task, &demo, &i);
}
-
-}
\ No newline at end of file
+}
void demo(void *arg)
{
- sleep(1);
RT_TASK *curtask;
RT_TASK_INFO curtaskinfo;
// Read system clock
RTIME period = 1e9;
+ rt_task_sleep(period);
// inquire current task
curtask=rt_task_self();
rt_task_inquire(curtask,&curtaskinfo);
// determine the period
- int num = * (int *)arg;
- period*=num;
- rt_task_set_periodic(NULL,TM_NOW,period);
+ int num = *(int *)arg;
+ period *= num;
+ rt_task_set_periodic(NULL, TM_NOW, period);
while(1){
- // print task name
- rt_printf("Task name : %s - Period %d \n", curtaskinfo.name,num);
+ rt_printf("Task name: %s - Period %d\n", curtaskinfo.name, num);
rt_task_wait_period(NULL);
}
}
int i;
int periods[3];
- // Perform auto-init of rt_print buffers if the task doesn't do so
rt_print_auto_init(1);
-
- // Lock memory : avoid memory swapping for this program
- mlockall(MCL_CURRENT|MCL_FUTURE);
-
+ mlockall(MCL_CURRENT | MCL_FUTURE);
rt_printf("start task\n");
for (i=0; i<3; i++)
{
- /*
- * Arguments: &task,
- * name,
- * stack size (0=default),
- * priority,
- * mode (FPU, start suspended, ...)
- */
- sprintf(str,"hello-%d",i);
- periods[i]=i+1;
+ sprintf(str, "hello-%d", i);
+ periods[i] = i + 1;
rt_task_create(&demo_task, str, 0, 50, 0);
-
- /*
- * Arguments: &task,
- * task function,
- * function argument
- */
rt_task_start(&demo_task, &demo, &periods[i]);
}
+
rt_printf("end program by CTRL-C\n");
pause();
-}
\ No newline at end of file
+}
--- /dev/null
+DES group members:
+Natanael Adityasatria s4417992
+Mart Lubbers s4109503
+
+2a
+The output describes the first task is the task that is first executed by the
+syntax rt_task_start. So the task order is ordered from the source code's order
+(in this case: inside loop, the lowest counter will be run first)
+
+2b
+The output describes that we can pass the integer argument that belongs to the
+task. In addition to the task name (string), the task can also has an integer
+value.
+
+2c
+There is no differences in the output with the exercise 2b.
+The order is the same as in exercise 2b.
+From the source code, this is because we put each of tasks in a loop. So the
+first task created and the first task started in the loop will be run first
+time. For the next loop, it will create and start the next task. So it is like
+the matter of the code order not the task priority.
+
+2d
+It is because we use Sleep of 1 second then the loop(while) will be run every
+one second. All tasks have the same priority, but each of tasks has different
+periods. The first task that has period of 1 will be run every seconds while
+the task that has period of 2 will be run once in two seconds. In addition, the
+task that has period of 3 will be run once in three seconds.